Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Feb 11;187(1):308–315. doi: 10.1016/0042-6822(92)90319-K

Characterization of the potyviral HC-pro autoproteolytic cleavage site

James C Carrington 1,1, Kerri L Herndon 1
PMCID: PMC7173101  PMID: 1736533

Abstract

The helper component-proteinase (HC-Pro) encoded by potyviruses functions to cleave the viral polyprotein by an autoproteolytic mechanism at the HC-Pro C-terminus. This protein belongs to a group of viral cysteine-type proteinases and has been shown previously to catalyze proteolysis between a Gly-Gly dipeptide. The amino acid sequence requirements surrounding the HC-Pro C-terminal cleavage site of the tobacco etch virus polyprotein have been investigated using site-directed mutagenesis and in vitro expression systems. A total of 51 polyprotein derivatives, each differing by the substitution of a single amino acid between the P5 and P2′ positions, were tested for autoproteolytic activity. Substitutions of Tyr (P4), Val (P2), Gly (P1), and Gly (P1′) were found to eliminate or nearly eliminate proteolysis. Substitutions of Thr (P5), Asn (P3), and Met (P2′), on the other hand, were permissive for proteolysis, although the apparent processing rates of some polyproteins containing these alterations were reduced. These results suggest that auto-recognition by HC-Pro involves the interaction of the enzymatic binding site with four amino acids surrounding the cleavage site. Comparison of the homologous sequences of five potyviral polyproteins revealed that the residues essential for processing are strictly conserved, whereas the nonessential residues are divergent. The relationship between HC-Pro and other viral and cellular cysteine-type proteinases is discussed.

References

  1. Allison R.F., Johnston R.E., Dougherty W.G. The nucleotide sequence of the coding region of tobacco etch virus genomic RNA: Evidence for the synthesis of a single polyprotein. Virology. 1986;154:9–20. doi: 10.1016/0042-6822(86)90425-3. [DOI] [PubMed] [Google Scholar]
  2. Barrett A.J. An introduction to the proteinases. In: Barrett A.J., Salvesen G., editors. Proteinase Inhibitors. Elsevier; New York: 1986. pp. 3–22. [Google Scholar]
  3. Carrington J.C., Cary S.M., Dougherty W.G. Mutational analysis of tobacco etch virus polyprotein processing: cis and trans proteolytic activity of polyproteins containing the 49-kilodalton proteinase. J. Virol. 1988;62:2313–2320. doi: 10.1128/jvi.62.7.2313-2320.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carrington J.C., Dougherty W.G. Processing of the tobacco etch virus 49K protease requires autoproteolysis. Virology. 1987;160:355–362. doi: 10.1016/0042-6822(87)90006-7. [DOI] [PubMed] [Google Scholar]
  5. Carrington J.C., Dougherty W.G. Small nuclear inclusion protein encoded by a plant potyvirus genome is a protease. J. Virol. 1987;61:2540–2548. doi: 10.1128/jvi.61.8.2540-2548.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carrington J.C., Freed D.D. Cap-independent enhancement of translation by a plant potyvirus 5′ nontranslated region. J. Virol. 1990;64:1590–1597. doi: 10.1128/jvi.64.4.1590-1597.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Carrington J.C., Freed D.D., Oh C.-S. Expression of potyviral polyproteins in transgenic plants reveals three proteolytic activities required for complete processing. EMBO J. 1990;9:1347–1353. doi: 10.1002/j.1460-2075.1990.tb08249.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Carrington J.C., Cary S.M., Parks T.D., Dougherty W.G. A second proteinase encoded by a plant potyviral genome. EMBO J. 1989;8:365–370. doi: 10.1002/j.1460-2075.1989.tb03386.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Carrington J.C., Freed D.D., Sanders T.C. Autocatalytic processing of the potyvirus helper component proteinase in Escherichia coli and in vitro. J. Virol. 1989;63:4459–4463. doi: 10.1128/jvi.63.10.4459-4463.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Choi G.H., Pawlyk D.M., Nuss D.L. The autocatalytic protease p29 encoded by the hypovirulence-associated virus of the chestnut blight fungus resembles the potyvirus-encoded protease HC-Pro. Virology. 1991;183:747–752. doi: 10.1016/0042-6822(91)91004-z. [DOI] [PubMed] [Google Scholar]
  11. Choi G.H., Shapira R., Nuss D.L. Vol. 88. 1991. Cotranslational autoproteolysis involved in gene expression from a doublestranded RNA genetic element associated with hypovirulence of the chestnut blight fungus; pp. 1167–1171. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Domier L.L., Franklin K.M., Shahabuddin M., Hellmann G.M., Overmeyer J.H., Hiremath S.T., Siaw M.F.E., Lomonossoff G.P., Shaw J.G., Rhoads R.E. The nucleotide sequence of tobacco vein mottling virus RNA. Nucleic Acids Res. 1986;14:5417–5430. doi: 10.1093/nar/14.13.5417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dougherty W.G., Carrington J.C. Expression and function of potyviral gene products. Annu. Rev. Phytopathol. 1988;26:123–143. [Google Scholar]
  14. Dougherty W.G., Carrington J.C., Cary S.M., Parks T.D. Biochemical and mutational analysis of a plant virus polyprotein cleavage site. EMBO J. 1988;7:1281–1287. doi: 10.1002/j.1460-2075.1988.tb02942.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Dougherty W.G., Cary S.M., Parks T.D. Molecular genetic analysis of a plant virus polyprotein cleavage site: A model. Virology. 1989;171:356–364. doi: 10.1016/0042-6822(89)90603-x. [DOI] [PubMed] [Google Scholar]
  16. Dougherty W.G., Parks T.D. Molecular genetic and biochemical evidence for the involvement of the heptapeptide cleavage sequence in determining the reaction profile at two tobacco etch virus cleavage sites in cell-free assays. Virology. 1989;172:145–155. doi: 10.1016/0042-6822(89)90116-5. [DOI] [PubMed] [Google Scholar]
  17. Dougherty W.G., Parks T.D. Post-translational processing of the tobacco etch virus 49-kDa small nuclear inclusion polyprotein: Identification of an internal cleavage site and delimitation of VPg and proteinase domains. Virology. 1991;183:449–456. doi: 10.1016/0042-6822(91)90974-g. [DOI] [PubMed] [Google Scholar]
  18. Garcia J.A., Riechmann J.L., Lain S. Proteolytic activity of the plum pox potyvirus Nla-like protein in Escherichia coli. Virology. 1989;170:362–369. doi: 10.1016/0042-6822(89)90426-1. [DOI] [PubMed] [Google Scholar]
  19. Gorbalenya A.E., Koonin E.V., Lai M.M.-C. Putative papain-related thiol proteases of positive-strand RNA viruses. Identification of rubi- and aphthovirus proteases and delineation of a novel conserved domain associated with proteases of rubi-, α-and coronaviruses. FEBS Lett. 1991;288:201–205. doi: 10.1016/0014-5793(91)81034-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hardy W.R., Strauss J.H. Processing the nonstructural proteins of Sindbis virus: Nonstructural proteinase is in the C-terminal half of nsP2 and functions both in cis and trans. J. Virol. 1989;63:4653–4664. doi: 10.1128/jvi.63.11.4653-4664.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hari V. The RNA of tobacco etch virus: further characterization and detection of protein linked to RNA. Virology. 1981;112:391–399. doi: 10.1016/0042-6822(81)90286-5. [DOI] [PubMed] [Google Scholar]
  22. Hari V., Siegle A., Rozek C., Timberlake W.E. The RNA of tobacco etch virus contains poly(A) Virology. 1979;92:568–571. doi: 10.1016/0042-6822(79)90159-4. [DOI] [PubMed] [Google Scholar]
  23. Hellmann G.M., Shaw J.G., Rhoads R.E. In vitro analysis of tobacco vein mottling virus Nla cistron: Evidence for a virus-encoded protease. Virology. 1988;163:554–562. doi: 10.1016/0042-6822(88)90296-6. [DOI] [PubMed] [Google Scholar]
  24. Johansen E. Institut for Okologi og Molekylaer Biologi Den Kongelige Veterinaer og Landbohojskole; Copenhagen, Denmark: 1990. Molekylaerbiologiske Metoder til Plantebeskyttelse. Diagnostik og Virusresistens. (Ph. D. Thesis). [Google Scholar]
  25. Koonin E.V., Choi G.H., Nuss D.L., Shapira R., Carrington J.C. Vol. 88. 1991. Evidence for common ancestry of a chestnut blight hypovirulence-associated double-stranded RNA and a group of positive-strand RNA plant viruses; pp. 10647–10651. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kunkel T.A., Roberts J.D., Zakour R.A. Rapid and efficient site-directed mutagenesis without phenotypic selection. In: Wu R., Grossman L., editors. Vol. 154. Academic Press; San Diego: 1987. pp. 367–382. (Methods in Enzymology). [DOI] [PubMed] [Google Scholar]
  27. Laemmli U.K. Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature (London) 1970;227:680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  28. Maiss E., Timpe U., Brisske A., Jelkmann W., Casper R., Himmler G., Mattanovich D., Katinger H.W.D. The complete nucleotide sequence of plum pox virus RNA. J. Gen. Virol. 1989;70:513–524. doi: 10.1099/0022-1317-70-3-513. [DOI] [PubMed] [Google Scholar]
  29. Mathews R.E.F. 3rd ed. Academic Press; San Diego: 1991. Plant Virology. [Google Scholar]
  30. Melton D.A., Krieg P.A., Rebagliati M.R., Maniatis T., Zinn K., Green M.R. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res. 1984;12:7035–7056. doi: 10.1093/nar/12.18.7035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Oh C.-S., Carrington J.C. Identification of essential residues in potyvirus proteinase HC-Pro by site-directed mutagenesis. Virology. 1989;173:692–699. doi: 10.1016/0042-6822(89)90582-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Robaglia C., Durand-Tardiff M., Tronchet M., Boudazin G., Astier-Manifacier S., Casse-Delbart F. Nucleotide sequence of potato virus Y (N strain) genomic RNA. J. Gen. Virol. 1989;70:935–947. doi: 10.1099/0022-1317-70-4-935. [DOI] [PubMed] [Google Scholar]
  33. Schechter I., Berger A. On the active site of proteases. I. Papain. Biochem. Biophys. Res. Commun. 1967;27:157–162. doi: 10.1016/s0006-291x(67)80055-x. [DOI] [PubMed] [Google Scholar]
  34. Schechter I., Berger A. On the active site of proteases. III. Mapping the active site of papain; spvcific peptide inhibitors of papain. Biochem. Biophys. Res. Commun. 1968;32:898–902. doi: 10.1016/0006-291x(68)90326-4. [DOI] [PubMed] [Google Scholar]
  35. Shapira R., Nuss D.L. Gene expression by a hypovirulence-associated virus of the chestnut blight fungus involves two papain-like protease activities. J. Biol. Chem. 1991;266:19419–19425. [PubMed] [Google Scholar]
  36. Shirako Y., Strauss J.H. Cleavage between nsP1 and nsP2 initiates the processing pathway of Sindbis virus nonstructural polyprotein P123. Virology. 1990;177:54–64. doi: 10.1016/0042-6822(90)90459-5. [DOI] [PubMed] [Google Scholar]
  37. Siaw M.F.E., Shahabuddin M., Ballard S., Shaw J.G., Rhoads R.E. Identification of a protein covalently linked to the 5′ terminus of tobacco vein mottling virus RNA. Virology. 1985;142:134–143. doi: 10.1016/0042-6822(85)90428-3. [DOI] [PubMed] [Google Scholar]
  38. Strauss J.H. Introduction: Viral proteinases. Semin. Virol. 1990;1:307–309. [Google Scholar]
  39. Strauss J.H., Strauss E.G. Alphavirus proteinases. Semin. Virol. 1990;1:347–356. [Google Scholar]
  40. Verchot J., Koonin E.V., Carrington J.C. The 35-kDa protein from the N-terminus of the potyviral polyprotein functions as a third virus-encoded proteinase. Virology. 1991;185:527–536. doi: 10.1016/0042-6822(91)90522-d. [DOI] [PubMed] [Google Scholar]

Articles from Virology are provided here courtesy of Elsevier

RESOURCES