Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2002 Nov 12;18(3):267–274. doi: 10.1016/0166-3542(92)90060-I

An ELISA system for evaluating antiretroviral activity against Rauscher murine leukemia virus

Melinda G Hollingshead 1, Louise Westbrook 1, Martha J Ross 1, Jean Bailey 1, KJeanine Qualls 1, Lois B Allen 1
PMCID: PMC7173104  PMID: 1416908

Abstract

A system for evaluating the activity of antiviral agents against Rauscher murine leukemia virus (R-MuLV) has been developed using an enzyme linked immunosorbent assay technique. The activity of various antiviral compounds demonstrated in this assay system has been compared to their activity in the UV-XC plaque reduction assay, which has been used historically for evaluating anti-R-MuLV compounds. The assay is based upon detection of R-MuLV encoded p30 protein production in virus infected murine cells. The assay reagents are readily available and the assay system is amenable to automated data collection systems. Cytotoxicity evaluations are conducted in parallel to the Rauscher MuLV ELISA assay in order to assess drug-induced reductions in cell viability. Cytotoxicity evaluations are important to interpretation of the ELISA results since reductions in cell viability reduce viral protein production which would indicate an antiviral drug effect. This system is less sensitive than the classical UV-XC plaque reduction assay; however, it does offer an alternative to the time-consuming and labor-intensive plaque assay.

Keywords: Rauscher murine leukemia virus, Retrovirus, ELISA

References

  1. Chirigos M.A., Rauscher F.J., Kamel I.A., Fanning G.R., Goldin A. Studies with the murine leukemogenic Rauscher virus. I. Chemotherapy studies with in vivo and in vitro assay systems. Cancer Res. 1963;23:762–769. [PubMed] [Google Scholar]
  2. Chirigos M.A., Rauscher F.J., Kamel I.A., Fanning G.R., Goldin A. Studies with the murine leukemogenic Rauscher virus. II. Chemotherapy of virus-induced lymphoid leukemia. Cancer Res. 1963;23:1646–1650. [PubMed] [Google Scholar]
  3. Declève A., Niwa O., Hilgers J., Kaplan H.S. An improved murine leukemia virus immunofluorescence assay. Virology. 1974;57:491–502. doi: 10.1016/0042-6822(74)90188-3. [DOI] [PubMed] [Google Scholar]
  4. Figueiredo L.T.M., Shope R.E. An enzyme immunoassay for dengue antibody using infected cultured mosquito cells as antigen. J. Virol. Methods. 1987;17:191–198. doi: 10.1016/0166-0934(87)90129-7. [DOI] [PubMed] [Google Scholar]
  5. Hartley J.W., Rowe W.P. Clonal cell lines from a feral mouse embryo which lack host-range restrictions for murine leukemia viruses. Virology. 1975;65:128–134. doi: 10.1016/0042-6822(75)90013-6. [DOI] [PubMed] [Google Scholar]
  6. Justewicz D.M., Magar R., Marsolais G., Lecomte J. Bovine viral diarrhea virus-infected MDBK monolayer as antigen in enzyme-linked immunosorbent assay (ELISA) for the measurement of antibodies in bovine sera. Vet. Immunol. Immunopathol. 1987;14:377–384. doi: 10.1016/0165-2427(87)90039-0. [DOI] [PubMed] [Google Scholar]
  7. Mosmann T. Rapid colorimetric assay for cellular growth and survival application to proliferation and cytotoxicity assays. J. Immunol. Methods. 1983;65:55–63. doi: 10.1016/0022-1759(83)90303-4. [DOI] [PubMed] [Google Scholar]
  8. Nexø B.A. A plaque assay for murine leukemia virus using enzyme-coupled antibodies. Virology. 1977;77:849–852. doi: 10.1016/0042-6822(77)90504-9. [DOI] [PubMed] [Google Scholar]
  9. Rauscher F.J. A virus-induced disease of mice characterized by erythrocytopoiesis and lymphoid leukemia. J. Natl. Cancer Inst. 1962;29:515–543. [PubMed] [Google Scholar]
  10. Rein A., Rice N., Simek S., Cohen M., Mural R.J. In situ hybridization: general infectivity assay for retroviruses. J. Virol. 1982;43:1055–1060. doi: 10.1128/jvi.43.3.1055-1060.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Rabalais G.P., Levin M.J., Berkowitz F.E. Rapid herpes simplex virus susceptibility testing using an enzyme-linked immunosorbent assay performed in situ on fixed virus-infected monolayers. Antimicrob. Agents Chemother. 1987;31:946–948. doi: 10.1128/aac.31.6.946. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ruprecht R.M., Rossini L.D., Haseltine W.A., Broder S. Vol. 82. 1985. Suppression of retroviral propagation and disease by suramin in murine systems; pp. 7733–7737. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ruprecht R.M., O'Brien L.G., Rossoni L.D., Nusinoff-Lehrman S. Suppression of mouse viraemia and retroviral disease by 3′-azido-3′-deoxythymidine. Nature. 1986;323:467–469. doi: 10.1038/323467a0. [DOI] [PubMed] [Google Scholar]
  14. Scolnick E.M., Parks W.P., Livingston D.M. Radioimmunoassay of mammalian type C viral proteins I. Species-specific reactions of murine and feline viruses. J. Immunol. 1972;109:570–577. [PubMed] [Google Scholar]
  15. Shannon W.M., Brockman R.W., Westbrook L., Shaddix S., Schabel F.M., Jr. Inhibition of Gross leukemia virus-induced plaque formation in XC cells by 3-deazauridine. J. Natl. Cancer Inst. 1974;52:199–205. doi: 10.1093/jnci/52.1.199. [DOI] [PubMed] [Google Scholar]
  16. Sitbon M., Nishio J., Wehrly K., Lodmell D., Chesebro B. Use of a focal immunofluorescence assay on live cells for quantitation of retroviruses: distinction of host range classes in virus mixtures and biological cloning of dual-tropic murine leukemia viruses. Virology. 1985;141:110–118. doi: 10.1016/0042-6822(85)90187-4. [DOI] [PubMed] [Google Scholar]
  17. Smith A.L., Winograd D.F. Two enzyme immunoassays for the detection of antibody to rodent coronaviruses. J. Virol. Methods. 1986;14:335–343. doi: 10.1016/0166-0934(86)90035-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Tahara S., Hakura A., Toyoshima K., Nakanishi T., Yoshizumi H. A new method for titration of murine leukemia virus using purothionin A. Virology. 1979;94:470–473. doi: 10.1016/0042-6822(79)90477-x. [DOI] [PubMed] [Google Scholar]

Articles from Antiviral Research are provided here courtesy of Elsevier

RESOURCES