Abstract
Recent advances in carbohydrate chemistry and biochemistry afford the opportunity to develop bioactive complex carbohydrates, per se, as drugs or as lead compounds in drug development. Complex carbohydrates are unique among biopolymers in their inherent potential to generate diverse molecular structures. While proteins vary only in the linear sequence of their monomer constituents, individual monosaccharides can combine at any of several sites on each carbohydrate ring, in linear or branched arrays, and with varied stereochemistry at each linkage bond. This chapter addresses some salient features of mammalian glycoconjugate structure and biosynthesis, and presents examples of the biological activities of complex carbohydrates. The chapter presents selected examples that will provide an accurate introduction to their pharmacological potential. In addition to their independent functions, oligosaccharides can modify the activities of proteins to which they are covalently attached. Many glycoprotein enzymes and hormones require glycosylation for expression and function. The chapter discusses the ancillary role of carbohydrates that is of great importance to the use of engineered glycoproteins as pharmaceuticals.
References
- Ariga T., Kohriyama T., Freddo L., Latov N., Saito M., Kon K., Ando S., Suzuki M., Hemling M.E., Rinehart K.L., Kusunoki S., Yu R.K. Characterization of sulfated glucuronic acid containing glycolipids reacting with IgM M-proteins in patients with neuropathy. J. Biol. Chem. 1987;262:848–853. [PubMed] [Google Scholar]
- Ashwell G., Harford J. Carbohydrate-specific receptors of the liver. Annu. Rev. Biochem. 1982;51:531–554. doi: 10.1146/annurev.bi.51.070182.002531. [DOI] [PubMed] [Google Scholar]
- Ashwell G., Morell G. The role of surface carbohydrates in the hepatic recognition and transport of circulating glycoproteins. Adv. Enzymol. 1974;41:99–128. doi: 10.1002/9780470122860.ch3. [DOI] [PubMed] [Google Scholar]
- Atha D.H., Lormeau J.-C., Petitou M., Rosenberg R.D., Choay J. Contribution of monosaccharide residues in heparin binding to antithrombin III. Biochemistry. 1985;24:6723–6729. doi: 10.1021/bi00344a063. [DOI] [PubMed] [Google Scholar]
- Austin G.E., Ratliff N.B., Hollman J., Tabei S., Phillips D.F. Intimal proliferation of smooth muscle cells as an explanation for recurrent coronary artery stenosis after percutaneous transluminal coronary angioplasty. J. Am. Coll. Cardiol. 1985;6:369–375. doi: 10.1016/s0735-1097(85)80174-1. [DOI] [PubMed] [Google Scholar]
- Barondes S.H. Soluble lectins: A new class of extracellular proteins. Science. 1984;223:1259–1264. doi: 10.1126/science.6367039. [DOI] [PubMed] [Google Scholar]
- Basu S., Basu M., Das K.K., Daussin F., Schaeper R.J., Banerjee P., Khan F.A., Suzuki I. Solubilized glycosyltransferases and biosynthesis in vitro of glycolipids. Biochimie. 1988;70:1551–1563. doi: 10.1016/0300-9084(88)90291-x. [DOI] [PubMed] [Google Scholar]
- Bevilacqua M.P., Pober J.S., Mendrick D.L., Cotran R.S., Gimbrone M.A., Jr. Identification of an inducible endothelial-leukocyte adhesion molecule. Proc. Natl. Acad. Sci. U. S. A. 1987;84:9238–9242. doi: 10.1073/pnas.84.24.9238. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bevilacqua M.P., Stengelin S., Gimbrone M.A., Jr., Seed B. Endothelial leukocyte adhesion molecule 1: An inducible receptor for neutrophils related to complement regulatory proteins and lectins. Science. 1989;243:1160–1165. doi: 10.1126/science.2466335. [DOI] [PubMed] [Google Scholar]
- Bleil J.D., Wassarman P.M. Galactose at the nonreducing terminus of O-linked oligosaccharides of mouse egg zona pellucida glycoprotein ZP3 is essential for the glycoprotein's sperm receptor activity. Proc. Nail. Acad. Sci. U. S. A. 1988;85:6778–6782. doi: 10.1073/pnas.85.18.6778. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blum A.S., Barnstable C.J. O-Acetylation of a cell-surface carbohydrate creates discrete molecular patterns during neural development. Proc. Natl. Acad. Sci. U. S. A. 1987;84:8716–8720. doi: 10.1073/pnas.84.23.8716. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bock G., Harnett S. “Carbohydrate Recognition in Cellular Function.”. Wiley; Chichester: 1989. [Google Scholar]
- Bock K., Breimer M.E., Bringnole A., Hansson G.C., Karlsson K.A., Larson G., Leffler H., Samuelsson B.E., Stromberg N., Eden C.S., Thurin J. Specificity of binding of a strain of uropathic Escherichia coli to Galα1->4Gal-containing glycosphingolipids. J. Biol. Chem. 1985;260:8545–8551. [PubMed] [Google Scholar]
- Bradley W.G., Badger G.J., Tandan R., Fillyaw M.J., Young J., Fries T.J., Krusinski P.B., Witarsa M., Boerman J., Blair C.J. Double-blind controlled trials of Cronassial in chronic neuromuscular diseases and ataxia. Neurology. 1988;38:1731–1739. doi: 10.1212/wnl.38.11.1731. [DOI] [PubMed] [Google Scholar]
- Brandley B.K., Schnaar R.L. Review: Cell-surface carbohydrates in cell recognition and response. J. Leukocyte Biol. 1986;40:97–111. doi: 10.1002/jlb.40.1.97. [DOI] [PubMed] [Google Scholar]
- Brandley B.K., Swiedler S.J., Robbins P.W. Carbohydrate ligands of the LEC cell adhesion molecules. Cell (Cambridge, Mass.) 1990;63:861–863. doi: 10.1016/0092-8674(90)90487-y. [DOI] [PubMed] [Google Scholar]
- Bremer E.G., Schlessinger J., Hakomori S. Ganglioside-mediated modulation of cell growth: Specific effects of GM3 on tyrosine phosphorylation of the epidermal growth factor receptor. J. Biol. Chem. 1986;261:2434–2440. [PubMed] [Google Scholar]
- Brown A.G. “Organization in the Spinal Cord.”. Springer-Verlag; New York: 1983. [Google Scholar]
- Burgess W.H., Maciag T. The heparin-binding (fibroblast) growth factor family of proteins. Annu. Rev. Biochem. 1989;58:575–606. doi: 10.1146/annurev.bi.58.070189.003043. [DOI] [PubMed] [Google Scholar]
- Cannella M.S., Roisen F.J., Ogawa T., Sugimoto M., Ledeen R.W. Comparison of epi-GM3 with GM3 and GM1 as stimulators of neurite outgrowth. Brain Res. 1988;467:137–143. doi: 10.1016/0165-3806(88)90075-2. [DOI] [PubMed] [Google Scholar]
- Carlsson S.R., Sasaki H., Fukuda M. Structural variations of O-linked oligosaccharides present in leukosialin isolated from erythroid, myeloid, and T-lymphoid cell lines. J. Biol. Chem. 1986;261:12787–12795. [PubMed] [Google Scholar]
- Carver J.P., Brisson J.-R. In: Ginsburg V., Robbins P.W., editors. Vol. 2. Wiley; New York: 1984. The three-dimensional structure of N-linked oligosaccharides; pp. 289–331. (“Biology of Carbohydrates”). [Google Scholar]
- Cassel D., Pfeuffer T. Mechanism of cholera toxin action: Covalent modification of the guanyl nucleotide-binding protein of the adenylate cyclase system. Proc. Natl. Acad. Sci. U. S. A. 1978;75:2669–2673. doi: 10.1073/pnas.75.6.2669. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Castellot J.J., Jr., Addonizio M.L., Rosenberg R., Karnovsky M.J. Cultured endothelial cells produce a heparinlike inhibitor of smooth muscle cell growth. J. Cell Biol. 1981;90:372–379. doi: 10.1083/jcb.90.2.372. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Castellot J.J., Jr., Wong K., Herman B., Hoover R.L., Albertini D.F., Wright T.C., Caleb B.L., Karnovsky M.J. Binding and internalization of heparin by vascular smooth muscle cells. J. Cell. Physiol. 1985;124:13–20. doi: 10.1002/jcp.1041240104. [DOI] [PubMed] [Google Scholar]
- Castellot J.J., Jr., Pukac L.A., Caleb B.L., Wright T.C., Jr., Karnovsky M.J. Heparin selectively inhibits a protein kinase C-dependent mechanism of cell cycle progression in calf aortic smooth muscle cells. J. Cell Biol. 1989;109:3147–3155. doi: 10.1083/jcb.109.6.3147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Casu B. Structure of heparin and heparin fragments. Ann. N. Y. Acad. Sci. 1989;556:1–17. doi: 10.1111/j.1749-6632.1989.tb22485.x. [DOI] [PubMed] [Google Scholar]
- Chan K.J. Ganglioside-modulated protein phosphorylation. Partial purification and characterization of a ganglioside-stimulated protein kinase in brain. J. Biol. Chem. 1987;262:5248–5255. [PubMed] [Google Scholar]
- Chan K.J. Ganglioside-modulated protein phosphorylation. Partial purification and characterization of a ganglioside-inhibited protein kinase in brain. J. Biol. Chem. 1988;263:568–574. [PubMed] [Google Scholar]
- Chan P., Oko R., Hermo L., Bergeron J.J.M. Galactosyl transferase localization to cytoplasmic droplets of rat spermatozoa. J. Cell Biol. 1990;111:363a. [Google Scholar]
- Choay J. Structure and activity of heparin and its fragments: An overview. Semin. Thromb. Hemostasis. 1989;15:359–364. doi: 10.1055/s-2007-1002730. [DOI] [PubMed] [Google Scholar]
- Chou D.K.H., Ilyas A.A., Evans J.E., Costello C., Quarles R.H., Jungalwala F.B. Structure of sulfated glucuronyl glycolipids in the nervous system reacting with HNK-1 antibody and some IgM paraproteins in neuropathy. J. Biol. Chem. 1986;261:11717–11725. [PubMed] [Google Scholar]
- Collins S.J. The HL-60 promyelocytic leukemia cell line: Proliferation, differentiation, and cellular oncogene expression. Blood. 1987;70:1233–1244. [PubMed] [Google Scholar]
- Conrad H.E. Structure of heparan sulfate and dermatan sulfate. Ann. N. Y. Acad. Sci. 1989;556:18–28. doi: 10.1111/j.1749-6632.1989.tb22486.x. [DOI] [PubMed] [Google Scholar]
- Critchley D.R., Habig W.H., Fishman P.H. Reevaluation of the role of gangliosides as receptors for tetanus toxin. J. Neurochem. 1986;47:213–222. doi: 10.1111/j.1471-4159.1986.tb02852.x. [DOI] [PubMed] [Google Scholar]
- Cross N.L., Morales P., Overstreet J.W., Hanson F.W. Induction of acrosome reactions by the human zona pellucida. Biol. Reprod. 1988;38:235–244. doi: 10.1095/biolreprod38.1.235. [DOI] [PubMed] [Google Scholar]
- Cuello A.C. Glycosphingolipids that can regulate nerve growth and repair. Adv. Pharmacol. 1990;21:1–50. doi: 10.1016/s1054-3589(08)60338-5. [DOI] [PubMed] [Google Scholar]
- Cummings R.D., Merkle R.K., Stults N.L. Separation and analysis of glycoprotein oligosaccharides. Methods Cell Biol. 1989;32:141–183. doi: 10.1016/s0091-679x(08)61170-x. [DOI] [PubMed] [Google Scholar]
- Dabrowski J. Vol. 179. Academic Press; San Diego, California: 1989. Two-dimensional proton magnetic resonance spectroscopy; pp. 122–156. (“Methods in Enzymology”). [DOI] [PubMed] [Google Scholar]
- Deal C.D., Krivan H.C. Lacto-and ganglio-series glycolipids are adhesion receptors for Neisseria gonorrhoeae. J. Biol. Chem. 1990;265:12774–12777. [PubMed] [Google Scholar]
- Dell A. F. A. B. -mass spectrometry of carbohydrates. Adv. Carbohydr. Chem. Biochem. 1987;45:19–72. doi: 10.1016/s0065-2318(08)60136-5. [DOI] [PubMed] [Google Scholar]
- Dodd J., Jessell T.M. Lactoseries carbohydrates specify subsets of dorsal root ganglion neurons projecting to the superficial dorsal horn of rat spinal cord. J. Neurosci. 1985;5:3278–3294. doi: 10.1523/JNEUROSCI.05-12-03278.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doherty P., Dickson J.G., Flanigan T.P., Walsh F.S. Ganglioside GM1 does not initiate, but enhances neurite regeneration of nerve growth factor-dependent sensory neurones. J. Neurochem. 1985;44:1259–1265. doi: 10.1111/j.1471-4159.1985.tb08752.x. [DOI] [PubMed] [Google Scholar]
- Doubet S., Bock K., Smith D., Darvill A., Albersheim P. The complex carbohydrate structure database. Trends Biochem. Sci. 1989;14:475–477. doi: 10.1016/0968-0004(89)90175-8. [DOI] [PubMed] [Google Scholar]
- Drickamer K. Two distinct classes of carbohydrate-recognition domains in animal lectins. J. Biol. Chem. 1988;263:9557–9560. [PubMed] [Google Scholar]
- Drickamer K., Mamon J.F., Binns G., Leung J.O. Primary structure of the rat liver asialoglycoprotein receptor. J. Biol. Chem. 1984;259:770–778. [PubMed] [Google Scholar]
- DubÉ S., Fisher J.W., Powell J.S. Glycosylation at specific sites of erythropoietin is essential for biosynthesis, secretion, and biological function. J. Biol. Chem. 1988;263:17516–17521. [PubMed] [Google Scholar]
- Editorial Drug information: Strategies and Efficacy. Lancet. 1988;i:1043. 1988. [Google Scholar]
- Editorial Fibroblast growth factors: Time to take note. Lancet. 1990;336:777–778. [PubMed] [Google Scholar]
- Eggens I., Fenderson B., Toyokuni T., Dean B., Stroud M., Hakomori S. Specific interaction between Lex and Lex determinants. J. Biol. Chem. 1989;264:9476–9484. [PubMed] [Google Scholar]
- Elbein A.D. Inhibitors of the biosynthesis and processing of N-linked oligosaccharide chains. Annu. Rev. Biochem. 1987;56:497–534. doi: 10.1146/annurev.bi.56.070187.002433. [DOI] [PubMed] [Google Scholar]
- Enerback S., Larsson A.-C., Leffler H., Lundell A., De Man P., Nilsson B., Svanborg-Eden C. Binding to galactose α->4 galactose ß-containing receptors as potential diagnostic tool in urinary tract infection. J. Clin. Microbiol. 1987;25:407–411. doi: 10.1128/jcm.25.2.407-411.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Favaron M., Manev H., Alho H., Bertolino M., Ferret B., Guidotti A., Costa E. Gangliosides prevent glutamate and kainate neurotoxicity in primary neuronal cultures of neonatal rat cerebellum and cortex. Proc. Natl. Acad. Sci. U. S. A. 1988;85:7351–7355. doi: 10.1073/pnas.85.19.7351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fedarko N.S., Conrad H.E. A unique heparan sulfate in the nuclei of hepatocytes: Structural changes with the growth state of cells. J. Cell Biol. 1986;102:587–599. doi: 10.1083/jcb.102.2.587. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fedarko N.S., Ishihara M., Conrad H.E. Control of cell division in hepatoma cells by exogenous heparan sulfate proteoglycan. J. Cell Physiol. 1989;139:287–294. doi: 10.1002/jcp.1041390210. [DOI] [PubMed] [Google Scholar]
- Ferreira A., Busciglio J., Landa C., Caceres A. Ganglioside-enhanced neurite growth: Evidence for a selective induction of high-molecular-weight MAP-2. J. Neurosci. 1990;10:293–302. doi: 10.1523/JNEUROSCI.10-01-00293.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferrier R.J. Synthetic carbohydrate chemistry of the 1980s. Carbohydr. Res. 1990;202:ix-xiff. [Google Scholar]
- Finne J. Structural and biological properties of the carbohydrate units of nervous tissue glycoproteins. Ciba Found. Symp. 1989;145:173–183. doi: 10.1002/9780470513828.ch11. [DOI] [PubMed] [Google Scholar]
- Fukuda M., Spooncer E., Oates J.E., Dell A., Klock J.C. Structure of sialylated fucosyl lactosaminoglycan isolated from human granulocytes. J. Biol. Chem. 1984;259:10925–10935. [PubMed] [Google Scholar]
- Fukuda M.N., Dell A., Tiller P.R., Varki A., Klock J.C., Fukuda M. Structure of a novel sialylated fucosyl lacto-N-nor-hexaosylceramide isolated from chronic myelogenous leukemia cells. J. Biol. Chem. 1986;261:2376–2383. [PubMed] [Google Scholar]
- Goldenring J.R., Otis L.C., Yu R.K., Delorenzo R.J. Calcium/gangliosidedependent protein kinase activity in rat brain membranes. J. Neurochem. 1985;44:1229–1234. doi: 10.1111/j.1471-4159.1985.tb08748.x. [DOI] [PubMed] [Google Scholar]
- Gordon P.B., Choi H.U., Conn G., Ahmed A., Ehrmann B., Rosenberg L., Hatcher V.B. Extracellular matrix heparan sulfate proteoglycans modulate the mitogenic capacity of acidic fibroblast growth factor. J. Cell. Physiol. 1989;140:584–592. doi: 10.1002/jcp.1041400325. [DOI] [PubMed] [Google Scholar]
- Green E.D., Baenziger J.U. Asparagine-linked oligosaccharides on lutropin, follitropin, and thyrotropin. I. Structural elucidation of the sulfated and sialylated oligosaccharides on bovine, ovine, and human pituitry glycoprotein hormones. J. Biol. Chem. 1988;263:25–35. [PubMed] [Google Scholar]
- Green E.D., Baenziger J.U. Asparagine-linked oligosaccharides on lutropin, follitropin, and thyrotropin. II. Distributions of sulfated and sialylated oligosaccharides on bovine, ovine, and human pituitary glycoprotein hormones. J. Biol. Chem. 1988;263:36–44. [PubMed] [Google Scholar]
- Green E.D., Baenziger J.U. Characterization of oligosaccharides by lectin affinity high-performance liquid chromatography. Trends Biochem. Sci. 1989;14:168–172. doi: 10.1016/0968-0004(89)90267-3. [DOI] [PubMed] [Google Scholar]
- Habermann E., Dreyer F. Clostridial neurotoxins: Handling and action at the cellular and molecular level. Curr. Top. Microbiol. Immunol. 1986;129:93–179. doi: 10.1007/978-3-642-71399-6_2. [DOI] [PubMed] [Google Scholar]
- Hakomori S. Glycosphingolipids in cellular interaction, differentiation, and oncogenesis. Annu. Rev. Biochem. 1981;50:733–764. doi: 10.1146/annurev.bi.50.070181.003505. [DOI] [PubMed] [Google Scholar]
- Hakomori S. In: “Sphingolipid Biochemistry”. Kanfer J.N., Hakomori S., editors. Plenum; New York: 1983. Chemistry of glycosphingolipids; pp. 1–165. [Google Scholar]
- Hakomori S. In: “Sphingolipid Biochemistry”. Kanfer J.N., Hakomori S., editors. Plenum; New York: 1983. Glycosphingolipids in cellular interaction, differentiation, and oncogenesis; pp. 327–379. [Google Scholar]
- Hakomori S. Tumor-associated glycolipid antigens, their metabolism and organization. Chem. Phys. Lipids. 1986;42:209–233. doi: 10.1016/0009-3084(86)90054-x. [DOI] [PubMed] [Google Scholar]
- Hakomori S. Bifunctional role of glycosphingolipids: Modulators for transmembrane signaling and mediators for cellular interactions. J. Biol. Chem. 1990;265:18713–18716. [PubMed] [Google Scholar]
- Hakomori S., Young W.W., Jr. In: “Sphingolipid Biochemistry”. Kanfer J.N., Hakomori S., editors. Plenum; New York: 1983. Glycolipid antigens and genetic markers; pp. 381–436. [Google Scholar]
- Hallett M., Flood T., Slater N., Dambrosia J. Trial of ganglioside therapy for diabetic neuropathy. Muscle Nerve. 1987;10:822–825. doi: 10.1002/mus.880100907. [DOI] [PubMed] [Google Scholar]
- Haltiwanger R.S., Hill R.L. The ligand binding specificity and tissue localization of a rat alveolar macrophage lectin. J. Biol. Chem. 1986;261:15696–15702. [PubMed] [Google Scholar]
- Hanai N., Dohi T., Nores G.A., Hakomori S. A novel ganglioside, de-N-acetyl-GM3, acting as a strong promoter for epidermal growth factor receptor kinase as a stimulator for cell growth. J. Biol. Chem. 1988;263:6296–6301. [PubMed] [Google Scholar]
- Hansson G.C., Karlsson K.A., Larson G., Stromberg N., Thurin J. Carbohydrate-specific adhesion of bacteria to thin-layer chromatograms: a rationalized approach to the study of glycolipid receptors. Anal. Biochem. 1985;146:158–163. doi: 10.1016/0003-2697(85)90410-5. [DOI] [PubMed] [Google Scholar]
- Hansson H.A., Holmgren J., Svennerholm L. Ultrastructural localization of cell membrane GM1 ganglioside by cholera toxin. Proc. Natl. Acad. Sci. U. S. A. 1977;74:3782–3786. doi: 10.1073/pnas.74.9.3782. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hardy M.R., Townsend R.R., Parkhurst S.M., Lee Y.C. Different modes of ligand binding to the hepatic galactose/N-acetylgalactosamine lectin on the surface of rabbit hepatocytes. Biochemistry. 1985;24:22–28. doi: 10.1021/bi00322a004. [DOI] [PubMed] [Google Scholar]
- Hart G.W., Haltiwanger R.S., Holt G.D., Kelly W.G. Glycosylation in the nucleus and cytoplasm. Annu. Rev. Biochem. 1989;58:841–874. doi: 10.1146/annurev.bi.58.070189.004205. [DOI] [PubMed] [Google Scholar]
- Higa H.H., Rogers G.N., Paulson J.C. Influenza virus hemagglutinins differentiate between receptor determinants bearing N-acetyl-, N-glycolyl-, and N,O-diacetylneuraminic acids. Virology. 1985;144:279–282. doi: 10.1016/0042-6822(85)90325-3. [DOI] [PubMed] [Google Scholar]
- Holmgren J. Comparison of the tissue receptors for Vibrio cholerae Escherichia coli enterotoxins by means of gangliosides and natural cholera toxoid. Infect. Immun. 1973;8:851–859. doi: 10.1128/iai.8.6.851-859.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holmgren J., Lonnroth I. In: “43rd Nobel Symposium. Cholera and Related Diarrheas. Molecular Aspects of a Global Health Problem”. Ouchterlony O., Holmgren J., editors. Karger; Basel: 1980. Structure and function of enterotoxins and their receptors; pp. 88–103. [Google Scholar]
- Holmgren J., Lonnroth I., Svennerholm L. Tissue receptor for cholera toxin: Postulated structure from studies with GM1-ganglioside and related glycoplipids. Infect. Immun. 1973;8:208–214. doi: 10.1128/iai.8.2.208-214.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holmgren J., Svennerholm L., Elwing H., Fredman P., Strannegard O. Sendai virus receptor: Proposed recognition structure based on binding to plasticadsorbed gangliosides. Proc. Natl. Acad. Sci. U. S. A. 1980;77:1947–1950. doi: 10.1073/pnas.77.4.1947. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holmgren J., Elwing P., Fredman P., Svennerholm L. Polystyrene-adsorbed gangliosides for investigation of the structure of the tetanus-toxin receptor. Eur. J. Biochem. 1980;106:371–379. doi: 10.1111/j.1432-1033.1980.tb04583.x. [DOI] [PubMed] [Google Scholar]
- Homans S.W., Dwek R.A., Rademacher T.W. Solution conformations of N-linked oligosaccharides. Biochemistry. 1987;26:6571–6577. doi: 10.1021/bi00395a001. [DOI] [PubMed] [Google Scholar]
- Hook M., Kjellen L., Johansson S., Robinson J. Cell surface glycosaminoglycans. Annu. Rev. Biochem. 1984;53:847–869. doi: 10.1146/annurev.bi.53.070184.004215. [DOI] [PubMed] [Google Scholar]
- Ishihara M., Fedarko N.S., Conrad H.E. Transport of heparan sulfate into the nuclei of hepatocytes. J. Biol. Chem. 1986;261:13575–13580. [PubMed] [Google Scholar]
- Iupac-Iub Commission On Biochemical Nomenclature The nomenclature of lipids (Recommendations 1976) Biochem. J. 1978;171:21–35. doi: 10.1042/bj1710021. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iupac-Iub Joint Commission On Biochemical Nomenclature Nomenclature of glycoproteins, glycopeptides, and peptidoglycans. J. Biol. Chem. 1987;262:13–18. doi: 10.1111/j.1432-1033.1986.tb09825.x. [DOI] [PubMed] [Google Scholar]
- Jackson P. The use of polyacrylamide-gel electrophoresis for the high-resolution separation of reducing saccharides labelled with the flurophore 8-aminonaphthalene-1,3,6-trisulphonic acid. Biochem. J. 1990;270:705–713. doi: 10.1042/bj2700705. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jalkanen S., Bargatze R.F., Toyos J., Butcher E.C. Lymphocyte recognition of high endothelium: Antibodies to distinct epitopes of an 85–95-kD glycoprotein antigen differentially inhibit lymphocyte binding to lymph node, mucosal, or synovial endothelial cells. J. Cell Biol. 1987;105:983–990. doi: 10.1083/jcb.105.2.983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jaques L.B. Addendum: The discovery of heparin. Semin. Thromb. Hemostasis. 1978;4:350–353. doi: 10.1055/s-0028-1087140. [DOI] [PubMed] [Google Scholar]
- Jaques L.B. Heparin: A unique misunderstood drug. Trends Pharmacol. Sci. 1982;3:289–291. [Google Scholar]
- Jentoft N. Why are proteins O-glycosylated? Trends Biochem. Sci. 1990;15:291–294. doi: 10.1016/0968-0004(90)90014-3. [DOI] [PubMed] [Google Scholar]
- Jessell T.M., Hynes M.A., Dodd J. Carbohydrates and carbohydrate-binding proteins in the nervous system. Annu. Rev. Neurosci. 1990;13:227–255. doi: 10.1146/annurev.ne.13.030190.001303. [DOI] [PubMed] [Google Scholar]
- Johnston G.I., Cook R.G., Mcever R.P. Cloning of GMP-140, a granule membrane protein of platelets and endothelium: Sequence similarity to proteins involved in cell adhesion and inflammation. Cell (Cambridge, Mass.) 1989;56:1033–1044. doi: 10.1016/0092-8674(89)90636-3. [DOI] [PubMed] [Google Scholar]
- Kannagi R., Watanabe K., Hakomori S. Vol. 138. Academic Press; Orlando, Florida: 1987. Isolation and purification of glycosphingolipids by high-performance liquid chromatography; pp. 3–12. (“Methods in Enzymology”). [DOI] [PubMed] [Google Scholar]
- Karlsson K.A. Animal glycosphingolipids as membrane attachment sites for bacteria. Annu. Rev. Biochem. 1989;58:309–350. doi: 10.1146/annurev.bi.58.070189.001521. [DOI] [PubMed] [Google Scholar]
- Karnovsky M.J., Wright T.C., Jr., Castellot J.J., Jr., Choay J., Lormeau J.-C., Petitou M. Heparin, heparan sulfate, smooth muscle cells, and atherosclerosis. Ann. N. Y. Acad. Sci. 1989;556:268–281. doi: 10.1111/j.1749-6632.1989.tb22509.x. [DOI] [PubMed] [Google Scholar]
- Kiefer M.C., Stephans J.C., Crawford K., Okino K., Barr P.J. Ligandaffinity cloning and structure of a cell surface heparan sulfate proteoglycan that binds basic fibroblast growth factor. Proc. Nad. Acad. Sci. U. S. A. 1990;87:6985–6989. doi: 10.1073/pnas.87.18.6985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klagsbrun M. The affinity of fibroblast growth factors (FGFs) for heparin; FGF-heparan sulfate interactions in cells and extracellular matrix. Curr. Opin. Cell Biol. 1990;2:857–863. doi: 10.1016/0955-0674(90)90084-r. [DOI] [PubMed] [Google Scholar]
- Kobata A. In: Ginsburg V., Robbins P.W., editors. Vol. 2. Wiley; New York: 1984. The carbohydrates of glycoproteins; pp. 87–161. (“Biology of Carbohydrates”). [Google Scholar]
- Kohriyama T., Kusunoki S., Ariga T., Yoshino J.E., Devries G.H., Latov N., Yu R.K. Subcellular localization of sulfated glucuronic acid-containing glycolipids reacting with anti-myelin-associated glycoprotein antibody. J. Neurochem. 1987;48:1516–1522. doi: 10.1111/j.1471-4159.1987.tb05694.x. [DOI] [PubMed] [Google Scholar]
- Kohriyama T., Ariga T., Yu R.K. Preparation and characterization of antibodies against a sulfated glucuronic acid-containing glycosphingolipid. J. Neurochem. 1988;51:869–877. doi: 10.1111/j.1471-4159.1988.tb01823.x. [DOI] [PubMed] [Google Scholar]
- Kojima N., Hakomori S. Specific interaction between gangliotriaosylceramide (Gg3) and sialosyllactosylceramide (GM3) as a basis for specific cellular recognition between lymphoma and melanoma cells. J. Biol. Chem. 1989;264:20159–20162. [PubMed] [Google Scholar]
- Kornfeld R., Kornfeld S. Comparative aspects of glycoprotein structure. Annu. Rev. Biochem. 1976;45:217–240. doi: 10.1146/annurev.bi.45.070176.001245. [DOI] [PubMed] [Google Scholar]
- Kornfeld R., Kornfeld S. Assembly of asparagine-linked oligosaccharides. Annu. Rev. Biochem. 1985;54:631–664. doi: 10.1146/annurev.bi.54.070185.003215. [DOI] [PubMed] [Google Scholar]
- Kornfeld S. Lysosomal enzyme targeting. Biochem. Soc. Trans. 1990;18:367–374. doi: 10.1042/bst0180367. [DOI] [PubMed] [Google Scholar]
- Kozarsky K., Kingsley D., Krieger M. Use of a mutant cell line to study the kinetics and function of O-linked glycosylation of low density lipoprotein receptors. Proc. Natl. Acad. Sci. U. S. A. 1988;85:4335–4339. doi: 10.1073/pnas.85.12.4335. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kracun I., Rösner H., ĆOsoviĆ C., StavljeniĆ A. Topographical atlas of the gangliosides of the adult human brain. J. Neurochem. 1984;43:979–989. doi: 10.1111/j.1471-4159.1984.tb12833.x. [DOI] [PubMed] [Google Scholar]
- Kreutter D., Kim J.Y.H., Goldenring J.R., Rasmussen H., Ukomadu C., Delorenzo R.J., Yu R.K. Regulation of protein kinase C activity by gangliosides. J. Biol. Chem. 1987;262:1633–1637. [PubMed] [Google Scholar]
- Kunemund V., Jungalwala F.B., Fischer G., Chou D.K.H., Keilhauer G., Schachner M. The L2/HNK-1 carbohydrate of neural cell adhesion molecules is involved in cell interactions. J. Cell Biol. 1988;106:213–223. doi: 10.1083/jcb.106.1.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lacomblez L., Bouche P., Bensimon G., Meininger V. A double-blind, placebo-controlled trial of high doses of gangliosides in amyotrophic lateral sclerosis. Neurology. 1989;39:1635–1637. doi: 10.1212/wnl.39.12.1635. [DOI] [PubMed] [Google Scholar]
- Laine R.A. Vol. 179. Academic Press; San Diego, California: 1989. Tandem mass spectrometry of oligosaccharides; pp. 157–164. (“Methods in Enzymology”). [DOI] [PubMed] [Google Scholar]
- Lam L.H., Silbert J.E., Rosenberg R.D. The separation of active and inactive forms of heparin. Biochem. Biophys. Res. Commun. 1976;69:570–577. doi: 10.1016/0006-291x(76)90558-1. [DOI] [PubMed] [Google Scholar]
- Lankes W., Griesmacher A., Grunwald J., Schwartz-Albiez R., Keller R. A heparin-binding protein involved in inhibition of smooth-muscle cell proliferation. Biochem. J. 1988;251:831–842. doi: 10.1042/bj2510831. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Larsen E., Palabrica T., Sajer S., Gilbert G.E., Wagner D.D., Furie B.C., Furie B. PADGEM-dependent adhesion of plaetelets to monocytes and neutrophils is mediated by a lineage-specific carbohydrate, LNF III (CD15) Cell (Cambridge, Mass.) 1990;63:467–474. doi: 10.1016/0092-8674(90)90443-i. [DOI] [PubMed] [Google Scholar]
- Lasky L.A., Singer M.S., Yednock T.A., Dowbenko D., Fennie C., Rodriguez H., Nguyen T., Stachel S., Rosen S.D. Cloning of a lymphocyte homing receptor reveals a lectin domain. Cell (Cambridge, Mass.) 1989;56:1045–1055. doi: 10.1016/0092-8674(89)90637-5. [DOI] [PubMed] [Google Scholar]
- Law H., Itkonnen O., Lingwood C.A. Sulfogalactolipid binding protein SLIP1: A conserved function for a conserved protein. J. Cell. Physiol. 1988;137:462–468. doi: 10.1002/jcp.1041370310. [DOI] [PubMed] [Google Scholar]
- Ledeen R.W. In: “Complex Carbohydrates of Nervous Tissue”. Margolis R.U., Margolis R.K., editors. Plenum; New York: 1979. Structure and distribution of gangliosides; pp. 1–23. [Google Scholar]
- Lee K.B., Loganathan D., Merchant Z.M., Linhardt R.J. Carbohydrate analysis of glycoproteins. Appl. Biochem. Biotechnol. 1990;23:53–80. doi: 10.1007/BF02942052. [DOI] [PubMed] [Google Scholar]
- Lee R.T., Lee Y.C. Preparation of cluster glycosides of N-acetylgalactosamine that have subnanomolar binding constants towards the mammalian hepatic Gal/GalNAc-specific receptor. Glycoconjugate J. 1987;4:317–328. [Google Scholar]
- Lee Y.C. High-performance anion-exchange chromatography for carbohydrate analysis. Anal. Biochem. 1990;189:151–162. doi: 10.1016/0003-2697(90)90099-u. [DOI] [PubMed] [Google Scholar]; Drug information in Italy. Lancet. 1988;i:1342. Letter, 1988. [PubMed] [Google Scholar]
- Leyton L., Saling P. Evidence that aggregation of mouse sperm receptors by ZP3 triggers the acrosome reaction. J. Cell Biol. 1989;108:2163–2168. doi: 10.1083/jcb.108.6.2163. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lindahl U., Feingold D.S., Rodén L. Biosynthesis of heparin. Trends Biochem. Sci. 1986;11:221–225. [Google Scholar]
- Lindahl U., Kusche M., Lidholt K., Oscarsson L.-G. Biosynthesis of heparin and heparan sulfate. Ann. N. Y. Acad. Sci. 1989;556:36–50. doi: 10.1111/j.1749-6632.1989.tb22488.x. [DOI] [PubMed] [Google Scholar]
- Lingwood C., Schramayr S., Quinn P. Male germ cell specific sulfogalactoglycerolipid is recognized and degraded by mycoplasmas associated with male infertility. J. Cell. Physiol. 1990;142:170–176. doi: 10.1002/jcp.1041420121. [DOI] [PubMed] [Google Scholar]
- Lis H., Sharon N. In: Ginsburg V., Robbins P.W., editors. Vol. 2. Wiley; New York: 1984. Lectins: Properties and applications to the study of complex carbohydrates in solution and on cell surfaces; pp. 1–85. (“Biology of Carbohydrates”). [Google Scholar]
- Lobel P., Dahms N.M., Breitmeyer J., Chirgwin J.M., Kornfeld S. Cloning of the bovine 215-kDa cation-independent mannose 6-phosphate receptor. Proc. Natl. Acad. Sci. U. S. A. 1987;84:2233–2237. doi: 10.1073/pnas.84.8.2233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lopez L.C., Bayna E.M., Litoff D., Shaper N.L., Shaper J.H., Shur B.D. Receptor function of mouse sperm surface galactosyltransferase during fertilization. J. Cell Biol. 1985;101:1501–1510. doi: 10.1083/jcb.101.4.1501. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lowe J.B., Stoolman L.M., Nair R.P., Larsen R.D., Berhend T.L., Marks R.M. ELAM-1-dependent cell adhesion to vascular endothelium determined by a transfected human fucosyltransferase cDNA. Cell (Cambridge, Mass.) 1990;63:475–484. doi: 10.1016/0092-8674(90)90444-j. [DOI] [PubMed] [Google Scholar]
- Lucore C.L., Fry E.T.A., Nachowiak D.A., Sobel B.E. Biochemical determinants of clearance of tissue-type plasminogen activator from the circulation. Circulation. 1988;77:906–914. doi: 10.1161/01.cir.77.4.906. [DOI] [PubMed] [Google Scholar]
- Magnani J.L. Vol. 138. Academic Press; Orlando, Florida: 1987. Mouse and rat monoclonal antibodies directed against carbohydrates; pp. 484–491. (“Methods in Enzymology”). [DOI] [PubMed] [Google Scholar]
- Magnani J.L., Smith D.F., Ginsburg V. Detection of gangliosides that bind cholera toxin: Direct binding of 125I-labeled toxin to thin-layer chromatography plates. Anal. Biochem. 1980;109:399–402. doi: 10.1016/0003-2697(80)90667-3. [DOI] [PubMed] [Google Scholar]
- Manev H., Favaron M., Vicini S., Guidotti A., Costa E. Glutamate-induced neuronal death in primary cultures of cerebellar granule cells: Protection by synthetic derivatives of endogenous sphingolipids. J. Pharmacol. Exp. Ther. 1990;252:419–427. [PubMed] [Google Scholar]
- Manzi A.E., Diaz S., Varki A. High-pressure liquid chromatography of sialic acids on a pellicular resin anion-exchange column with pulsed amperometric detection: A comparison with six other systems. Anal. Biochem. 1990;188:20–32. doi: 10.1016/0003-2697(90)90523-c. [DOI] [PubMed] [Google Scholar]
- Marcum J.A., Atha D.H., Fritze L.M.S., Nawroth P., Stern D., Rosenberg R.D. Cloned bovine aortic endothelial cells synthesize anticoagulantly active heparan sulfate proteoglycan. J. Biol. Chem. 1986;261:7507–7517. [PubMed] [Google Scholar]
- Marcum J.A., Reilly C.F., Rosenberg R.D. In: “Biology of Proteoglycans”. Wight T.N., Mecham R.P., editors. Academic Press; Orlando, Florida: 1987. Heparan sulfate species and blood vessel wall function; pp. 301–343. [Google Scholar]
- Matrosovich M.N., Mochalova L.V., Marinina V.P., Byramova N.E., Bovin N.V. Synthetic polymeric sialoside inhibitors of influenza virus receptor-binding activity. FEBS Lett. 1990;272:209–212. doi: 10.1016/0014-5793(90)80486-3. [DOI] [PubMed] [Google Scholar]
- Merkle R.K., Cummings R.D. Vol. 138. Academic Press; Orlando, Florida: 1987. Lectin affinity chromatography of glycopeptides; pp. 232–259. (“Methods in Enzymology”). [DOI] [PubMed] [Google Scholar]
- Middlebrook J.L., Dorland R.B. Bacterial toxins: Cellular mechanisms of action. Microbiol. Rev. 1984;48:199–221. doi: 10.1128/mr.48.3.199-221.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Montecucco C. How do tetanus and botulinum toxins bind to neuronal membranes? Trends Biochem. Sci. 1986;11:314–317. [Google Scholar]
- Morell A.G., Irvine R.A., Sternlieb I., Scheinberg I.H., Ashwell G. Physical and chemical studies on ceruloplasmin. Metabolic studies on sialic acid-free ceruloplasmin in vivo. J. Biol. Chem. 1968;243:155–159. [PubMed] [Google Scholar]
- Moscatelli D. High and low affinity binding sites for basic fibroblast growth factor on cultured cells: Absence of a role for low affinity binding in the stimulation of plasminogen activator production by bovine capillary endothelial cells. J. Cell. Physiol. 1987;131:123–130. doi: 10.1002/jcp.1041310118. [DOI] [PubMed] [Google Scholar]
- Moss J., Fishman P.H., Manganiello V.C., Vaughan M., Brady R.O. Functional incorporation of ganglioside into intact cells: Induction of choleragen responsiveness. Proc. Natl. Acad. Sci. U. S. A. 1976;73:1034–1037. doi: 10.1073/pnas.73.4.1034. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mueller S.N., Thomas K.A., Di Salvo J., Levine E.M. Stabilization by heparin of acidic fibroblast growth factor mitogenicily for human endothelial cells in vitro. J. Cell. Physiol. 1989;140:439–448. doi: 10.1002/jcp.1041400306. [DOI] [PubMed] [Google Scholar]
- Nagai Y., Tsuji S. Bioactive ganglioside-mediated carbohydrate recognition in coupling with ecto-protein phosphorylation. Ciba Found. Symp. 1989;145:119–134. doi: 10.1002/9780470513828.ch8. [DOI] [PubMed] [Google Scholar]
- Nakamura M., Ogino H., Nojiri H., Kitagawa S., Saito M. Characteristic incorporation of ganglioside GM3, which induces monocytic differentiation in human myelogenous leukemia HL-60 cells. Biochem. Biophys. Res. Commun. 1989;161:782–789. doi: 10.1016/0006-291x(89)92668-5. [DOI] [PubMed] [Google Scholar]
- Nalin D.R. Intraluminal binding of cholera toxin. Lancet. 1981;i:153. doi: 10.1016/s0140-6736(81)90735-2. 1981. [DOI] [PubMed] [Google Scholar]
- Needham L.K., Schnaar R.L. Adhesion of primary Schwann cells to HNK-1 reactive glycolipids. Ann. N. Y. Acad. Sci. 1990;605:416–419. doi: 10.1111/j.1749-6632.1991.tb15658.x. [DOI] [PubMed] [Google Scholar]
- Neufeld E.F., Ashwell G. In: “Biochemistry of Glycoproteins and Proteoglycans”. Lennarz W.J., editor. Plenum; New York: 1980. Carbohydrate recognition systems for receptormediated pinocytosis; pp. 241–266. [Google Scholar]
- Nojiri H., Takaku F., Terui Y., Miura Y., Saito M. Ganglioside GM3: An acidic membrane component that increases during macrophage-Hke differentiation can induce monocytic differentiation of human myeloid and monocytoid leukemic cell lines HL-60 and U937. Proc. Natl. Acad. Sci. U. S. A. 1986;83:782–786. doi: 10.1073/pnas.83.3.782. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nojiri H., Kitagawa S., Nakamura M., Kirito K., Enomoto Y., Saito M. Neolacto-series gangliosides induce granulocytic differentiation of human promyelocytic leukemia cell line HL-60. J. Biol. Chem. 1988;263:7443–7446. [PubMed] [Google Scholar]
- Ofek I., Sharon N. Lectinophagocytes: A molecular mechanism of recognition between cell surface sugars and lectins in the phagocytosis of bacteria. Infect, Immun. 1988;56:539–547. doi: 10.1128/iai.56.3.539-547.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ofek I., Sharon N. Adhesins as lectins: Specificity and role in infection. Curr. Top. Microbiol. Immunol. 1990;151:91–113. doi: 10.1007/978-3-642-74703-8_5. [DOI] [PubMed] [Google Scholar]
- Ong R.L., Yu R.K. 1H-NMR assignments of GM1-oligosaccharide in deuterated water at 500 MHz by two-dimensional spin-echo J-correlated spectroscopy. Arch. Biochem. Biophys. 1986;245:157–166. doi: 10.1016/0003-9861(86)90200-6. [DOI] [PubMed] [Google Scholar]
- O'Reilly R.A. In: “The Pharmacological Basis of Therapeutics”, 7th ed. Oilman A.G., Goodman L.S., Rail T.W., Murad F., editors. Macmillan; New York: 1985. Anticoagulant, antithrombotic, and thrombolytic drugs; pp. 1338–1359. [Google Scholar]
- Pacuszka T., Fishman P.H. Generation of cell surface neoganglioproteins: GM1-neoganglioproteins are non-functional receptors for cholera toxin. J. Biol. Chem. 1990;265:7673–7678. [PubMed] [Google Scholar]
- Parekh R.B., Dwek R.A., Thomas J.R., Opdenakker G., Rademacher T.W. Cell-type-specific and site-specific N-glycosylation of type I and type II human tissue plasminogen activator. Biochemistry. 1989;28:7644–7662. doi: 10.1021/bi00445a021. [DOI] [PubMed] [Google Scholar]
- Parekh R.B., Dwek R.A., Rudd P.M., Thomas J.R., Rademacher T.W., Warren T., Wun T.-C., Hebert B., Reitz B., Palmier M., Ramabhadran T., Tiemeier T.W. N-Glycosylation and in vitro enzymatic activity of human recombinant tissue plasminogen activator expressed in Chinese hamster ovary cells and a murine cell line. Biochemistry. 1989;28:7670–7679. doi: 10.1021/bi00445a023. [DOI] [PubMed] [Google Scholar]
- Paruchuri D., Seifert H.S., Ajioka R.S., Karlsson K.-A., So M. Identification and characterization of a Neisseria gonorrhoeae gene encoding a glycolipid-binding adhesin. Proc. Natl. Acad. Sci. U. S. A. 1990;87:333–337. doi: 10.1073/pnas.87.1.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paulsen H. Syntheses, conformations and x-ray structure analyses of the saccharide chains from the core regions of glycoproteins. Angew. Chem., Int. Ed. Engl. 1990;29:823–938. [Google Scholar]
- Paulson J.C. In: Conn P.M., editor. Vol. 2. Academic Press; New York: 1987. Interactions of animal viruses with cell surface receptors; pp. 131–219. (“The Receptors”). [Google Scholar]
- Paulson J.C. Glycoproteins: What are the sugar chains for? Trends Biochem. Sci. 1989;14:272–276. doi: 10.1016/0968-0004(89)90062-5. [DOI] [PubMed] [Google Scholar]
- Paulson J.C., Colley K.J. Glycosyltransferases: Structure, localization, and control of cell type-specific glycosylation. J. Biol. Chem. 1989;264:17615–17618. [PubMed] [Google Scholar]
- Penner R., Neher E., Dreyer F. Intracellulary injected tetanus toxin inhibits exocytosis in bovine adrenal chromaffin cells. Nature (London) 1986;324:76–78. doi: 10.1038/324076a0. [DOI] [PubMed] [Google Scholar]
- Phillips M.L., Nudelman E., Gaeta F.C.A., Perez M., Singhal A.K., Hakomori S., Paulson J.C. ELAM-1 mediates cell adhesion by recognition of a carbohydrate ligand sialyl-Lex. Science. 1990;250:1130–1132. doi: 10.1126/science.1701274. [DOI] [PubMed] [Google Scholar]
- Pritchett T.J., Paulson J.C. Basis for the potent inhibition of influenza virus infection by equine and guinea pig macroglobulin. J. Biol. Chem. 1989;264:9850–9858. [PubMed] [Google Scholar]
- Quarles R.H. Vol. 179. Academic Press; San Diego, California: 1989. Human monoclonal antibodies associated with neuropathy; pp. 291–299. (“Methods in Enzymology”). [DOI] [PubMed] [Google Scholar]
- Quarles R.H., Llyas A.A., Willison H.J. Antibodies to glycolipids in demyelinating diseases of the human peripheral nervous system. Chem. Phys. Lipids. 1986;42:235–248. doi: 10.1016/0009-3084(86)90055-1. [DOI] [PubMed] [Google Scholar]
- Quiocho F.A. Carbohydrate-binding proteins: Tertiary structures and protein-sugar interactions. Annu. Rev. Biochem. 1986;55:287–315. doi: 10.1146/annurev.bi.55.070186.001443. [DOI] [PubMed] [Google Scholar]
- Rademacher T.W., Dwek R.A. The role of oligosaccharides in modifying protein function. Ciba Found. Symp. 1989;145:241–256. doi: 10.1002/9780470513828.ch14. [DOI] [PubMed] [Google Scholar]
- Rademacher T.W., Parekh R.B., Dwek R.A. Glycobiology. Annu. Rev. Biochem. 1988;57:785–838. doi: 10.1146/annurev.bi.57.070188.004033. [DOI] [PubMed] [Google Scholar]
- Regan L.J., Dodd J., Barondes S.H., Jessell T.M. Selective expression of endogenous lactose-binding lectins and lactoseries glycoconjugates in subsets of rat sensory neurons. Proc. Natl. Acad. Sci. U. S. A. 1986;83:2248–2252. doi: 10.1073/pnas.83.7.2248. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rodén L. In: “The Biochemistry of Glycoproteins and Proteoglycans”. Lennarz W.J., editor. Plenum; New York: 1980. Structure and metabolism of connective tissue proteoglycans; pp. 267–371. [Google Scholar]
- Rogers G.N., Herrler G., Paulson J.C., Klenk H.-D. Influenza C virus uses 9-O-acetyl-N-acetylneuraminic acid as a high affinity receptor determinant for attachment to cells. J. Biol. Chem. 1986;261:5947–5951. [PubMed] [Google Scholar]
- Rogers T.B., Snyder S.H. High affinity binding of tetanus toxin to mammalian brain membranes. J. Biol. Chem. 1981;256:2402–2407. [PubMed] [Google Scholar]
- Roseman S. The synthesis of complex carbohydrates by multiglycosyltransferase systems and their potential function in intercellular adhesions. Chem. Phys. Lipids. 1970;5:270–297. doi: 10.1016/0009-3084(70)90024-1. [DOI] [PubMed] [Google Scholar]
- Rosen S.D., Singer M.S., Yednock T.A., Stoolman L.M. Involvement of sialic acid on endothelial cells in organ-specific lymphocyte recirculation. Science. 1985;228:1005–1007. doi: 10.1126/science.4001928. [DOI] [PubMed] [Google Scholar]
- Saksela O., Moscatelli D., Sommer A., Rifkin D.B. Endothelial cell-derived heparan sulfate binds basic fibroblast growth factor and protects it from proteolytic degradation. J. Cell Biol. 1988;107:743–751. doi: 10.1083/jcb.107.2.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schachner M. Families of neural adhesion molecules. Ciba Found. Symp. 1989;145:156–172. doi: 10.1002/9780470513828.ch10. [DOI] [PubMed] [Google Scholar]
- Schachter H., Brockhausen I. The biosynthesis of branched O-glycans. Symp. Soc. Exp. Biol. 1989;43:1–26. [PubMed] [Google Scholar]
- Schachter H., Brockhausen I., Hull E. Vol. 179. Academic Press; San Diego, California: 1989. High-performance liquid chromatography assays for N-acetylglucosaminyltransferases involved in N-and O-glycan synthesis; pp. 351–397. (“Methods in Enzymology”). [DOI] [PubMed] [Google Scholar]
- Schengrund C.-L., Ringler N.J. Binding of Vibrio cholera toxin and the heat-labile enterotoxin of Escherichia coli to GMI, derivatives of GMI, and nonlipid oligosaccharide polyvalent ligands. J. Biol. Chem. 1989;264:13233–13237. [PubMed] [Google Scholar]
- Schreiber A.B., Kenney J., Kowalski W.J., Friesel R., Mehlman T., Maciag T. Interaction of endothelial cell growth factor with heparin: Characterization by receptor and antibody recognition. Proc. Natl. Acad. Sci. U. S. A. 1985;82:6138–6142. doi: 10.1073/pnas.82.18.6138. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwarzmann G., Sandhoff K. Metabolism and intracellular transport of glycosphingolipids. Biochemistry. 1990;29:10865–10871. doi: 10.1021/bi00501a001. [DOI] [PubMed] [Google Scholar]
- Sell S. Cancer-associated carbohydrates identified by monoclonal antibodies. Hum. Pathol. 1990;21:1003–1019. doi: 10.1016/0046-8177(90)90250-9. [DOI] [PubMed] [Google Scholar]
- Seyfried T.N., Yu R.K., Miyazawa N. Differential cellular enrichment of gangliosides in the mouse cerebellum: Analysis using neurological mutants. J. Neurochem. 1982;38:551–559. doi: 10.1111/j.1471-4159.1982.tb08662.x. [DOI] [PubMed] [Google Scholar]
- Shaper N.L., Hollis G.F., Douglas J.G., Kirsch I.R., Shaper J.H. Characterization of the full length cDNA for murine ß-1, 4-galactosyltransferase. J. Biol. Chem. 1988;263:10420–10428. [PubMed] [Google Scholar]
- Sharon N. Bacterial lectins, cell-cell recognition and infectious disease. FEBS Lett. 1987;217:145–157. doi: 10.1016/0014-5793(87)80654-3. [DOI] [PubMed] [Google Scholar]
- Sharon N., Lis H. Glycoproteins: Research booming on long-ignored, ubiquitous compounds. Chem. Eng. News. 1981;59:21–42. doi: 10.1007/BF00238511. [DOI] [PubMed] [Google Scholar]
- Sharon N., Lis H. Lectins as cell recognition molecules. Science. 1989;246:227–234. doi: 10.1126/science.2552581. [DOI] [PubMed] [Google Scholar]
- Sherman W.H., Olarte M.R., Mckiernan G., Sweeney K., Latov N., Hays A.P. Plasma exchange treatment of peripheral neuropathy associated with plasma cell dyscrasia. J. Neurol., Neurosurg. Psychiatry. 1984;47:813–819. doi: 10.1136/jnnp.47.8.813. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siegelman M.H., Van De Rijn M., Weissman I.L. Mouse lymph node homing receptor cDNA clone encodes a glycoprotein revealing tandem interaction domains. Science. 1989;243:1165–1172. doi: 10.1126/science.2646713. [DOI] [PubMed] [Google Scholar]
- Smith D.F., Torres B.V. Vol. 179. Academic Press; San Diego, California: 1989. Lectin affinity chromatography of glycolipids and glycolipid-derived oligosaccharides; pp. 30–45. (“Methods in Enzymology”). [DOI] [PubMed] [Google Scholar]
- Smith D.F., Larsen R.D., Mattox S., Lowe J.B., Cummings R.D. Transfer and expression of a murine UDP-Gal:beta-D-Gal-alpha 1,3-galactosyltransferase gene in transfected Chinese hamster ovary cells. Competition reactions between the alpha 1,3-galactosyltransferase and the endogenous alpha 2,3-sialyltransferase. J. Biol. Chem. 1990;265:6225–6234. [PubMed] [Google Scholar]
- Sommer A., Rifkin D.B. Interaction of heparin with human basic fibroblast growth factor: Protection of the angiogenic protein from proteolytic degradation by a glycosaminoglycan. J. Cell. Physiol. 1989;138:215–220. doi: 10.1002/jcp.1041380129. [DOI] [PubMed] [Google Scholar]
- Sparrow J.R., Barnstable C.J. A gradient molecule in developing rat retina: Expression of 9-0-acetyl GD3 in relation to cell type, developmental age, and GD3 ganglioside. J. Neurosci. Res. 1988;21:398–409. doi: 10.1002/jnr.490210231. [DOI] [PubMed] [Google Scholar]
- Spiess M. The asialoglycoprotein receptor: A model for endocytic transport receptors. Biochemistry. 1990;29:10009–10018. doi: 10.1021/bi00495a001. [DOI] [PubMed] [Google Scholar]
- Stahl P.D. The macrophage mannose receptor: Current status. Am. J. Respir. Cell. Mol. Biol. 1990;2:317–318. doi: 10.1165/ajrcmb/2.4.317. [DOI] [PubMed] [Google Scholar]
- Stanley P. Chinese hamster ovary cell mutants with multiple glycosylation defects for production of glycoproteins with minimal carbohydrate heterogeneity. Mol. Cell. Biol. 1989;9:377–383. doi: 10.1128/mcb.9.2.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stoll B.J., Holmgren J., Bardhan P.K., Huq I., Greenough W.B., III, Fredman P., Svennerholm L. Binding of intraluminal toxin in cholera: Trial of GMI ganglioside charcoal. Lancet. 1980;ii:888–891. doi: 10.1016/s0140-6736(80)92049-8. 1980. [DOI] [PubMed] [Google Scholar]
- Stoolman L.M. Adhesion molecules controlling lymphocyte migration. Cell (Cambridge. Mass.) 1989;56:907–910. doi: 10.1016/0092-8674(89)90620-x. [DOI] [PubMed] [Google Scholar]
- Stoolman L.M., Tenforde T.S., Rosen S.D. Phosphomannosyl receptors may participate in the adhesive interaction between lymphocytes and high endothelial venules. J. Cell Biol. 1984;99:1535–1540. doi: 10.1083/jcb.99.4.1535. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stromberg N., Deal C., Nyberg G., Normark S., So M., Karlsson K.-A. Identification of carbohydrate structures that are possible receptors for Neisseria gonorrhoeae. Proc. Natl. Acad. Sci. U. S. A. 1988;85:4902–4906. doi: 10.1073/pnas.85.13.4902. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stults C.L.M., Sweeley C.C., Macher B.A. Vol. 179. Academic Press; San Diego. California: 1989. Glycosphingolipids: Structure, biological source, and properties; pp. 167–214. (“Methods in Enzymology”). [DOI] [PubMed] [Google Scholar]
- Sudhalter J., Folkman J., Svahn C.M., Bergendal K., D'Amore P.A. Importance of size, sulfation, and anticoagulant activity in the potentiation of acidic fibroblast growth factor by heparin. J. Biol. Chem. 1989;264:6892–6897. [PubMed] [Google Scholar]
- Superti F., Hauttecoeur B., Morelec M.-J., Goldoni P., Bizzini B., Tsiang H. Involvement of gangliosides in rabies virus infection. J. Gen. Virol. 1986;67:47–56. doi: 10.1099/0022-1317-67-1-47. [DOI] [PubMed] [Google Scholar]
- Suzuki Y., Matsunaga M., Matsumoto M. N-Acetylneuraminyllactosylceramide, GM3-NeuAc, a new virus receptor which mediates the adsorption-fusion process of viral infection. J. Biol. Chem. 1985;260:1362–1365. [PubMed] [Google Scholar]
- Suzuki Y., Suzuki T., Matsunaga M., Matsumoto M. Gangliosides as paramyxovirus receptor. Structural requirement of sialo-oligosaccharides in receptors for hemagglutinating virus of Japan (Sendai virus) and Newcastle disease virus. J. Biochem. (Tokyo) 1985;97:1189–1199. doi: 10.1093/oxfordjournals.jbchem.a135164. [DOI] [PubMed] [Google Scholar]
- Svennerholm L. Sphingolipid changes during development. Mod. Prohl. Paediatr. 1974;13:104–115. [Google Scholar]
- Svennerholm L. Gangliosides and synaptic transmission. Adv. Exp. Med. Biol. 1980;125:533–544. doi: 10.1007/978-1-4684-7844-0_46. [DOI] [PubMed] [Google Scholar]
- Swank-Hill P., Needham L.K., Schnaar R.L. Carbohydrate-specific cell adhesion directly to glycosphingolipids separated on thin-layer chromatography plates. Anal. Biochem. 1987;163:27–35. doi: 10.1016/0003-2697(87)90088-1. [DOI] [PubMed] [Google Scholar]
- Swiedler S.J., Freed J.H., Tarentino A.L., Plummer T.H., Jr., Hart G.W. Oligosaccharide microheterogeneity of the murine major histocompatibility antigens. J. Biol. Chem. 1985;260:4046–4054. [PubMed] [Google Scholar]
- Takeuchi M., Takasaki S., Shimada M., Kobata A. Role of sugar chains in the in vitro biological activity of human erythropoietin produced in recombinant Chinese hamster ovary cells. J. Biol. Chem. 1990;265:12127–12130. [PubMed] [Google Scholar]
- Tarentino A.L., Trimble R.B., Plummer T.H., Jr. Enzymatic approaches for studying the structure, synthesis, and processing of glycoproteins. Methods Cell Biol. 1989;32:111–139. doi: 10.1016/s0091-679x(08)61169-3. [DOI] [PubMed] [Google Scholar]
- Teneberg S., Willemsen P., Degraaf F.K., Karlsson K.-A. Receptor-active glycolipids of epithelial cells of the small intestine of young and adult pigs in relation to susceptibility to infection with Escherichia coli K99. FEBS Lett. 1990;263:10–14. doi: 10.1016/0014-5793(90)80693-d. [DOI] [PubMed] [Google Scholar]
- Thomas J.R., Dwek R.A., Rademacher T.W. Structure, biosynthesis, and function of glycosylphosphatidylinositols. Biochemistry. 1990;29:5413–5422. doi: 10.1021/bi00475a001. [DOI] [PubMed] [Google Scholar]
- Tiemeyer M., Schnaar R.L. In: “Trophic Factors and the Nervous System”. Horrocks L.A., Neff N.H., Yates A.J., Hadjiconstantinou M., editors. Raven Press; New York: 1990. Receptors for gangliosides on rat brain membranes: Specificity, regional and subcellular distribution; pp. 119–133. [Google Scholar]
- Tiemeyer M., Yasuda Y., Schnaar R.L. Ganglioside-specific binding protein on rat brain membranes. J. Biol. Chem. 1989;264:1671–1681. [PubMed] [Google Scholar]
- Tiemeyer M., Swank-Hill P., Schnaar R.L. A membrane receptor for gangliosides is associated with central nervous system myelin. J. Biol. Chem. 1990;265:11990–11999. [PubMed] [Google Scholar]
- Tiemeyer M., Swiedler S.J., Ishihara M., Moreland M., Schweingruber H., Hirtzer P., Brandley B.K. Carbohydrate ligands for endothelial-leukocyte adhesion molecule 1. Proc. Natl. Acad. Sci. U. S. A. 1991;88:1138–1142. doi: 10.1073/pnas.88.4.1138. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Torres C.-R., Hart G.W. Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. J. Biol. Chem. 1984;259:3308–3317. [PubMed] [Google Scholar]
- Tsuji S., Yamashita T., Tanaka M., Nagai Y. Synthetic sialyl compounds as well as natural gangliosides induce neuritogenesis in a mouse neuroblastoma cell line (Neuro2a) J. Neurochem. 1988;50:414–423. doi: 10.1111/j.1471-4159.1988.tb02928.x. [DOI] [PubMed] [Google Scholar]
- Tsuji T., Honda T., Miwatani T., Wakabayashi S., Matsubara H. Analysis of receptor-binding site in Escherichia coli enterotoxin. J. Biol. Chem. 1985;260:8552–8558. [PubMed] [Google Scholar]
- Usuki S., Hoops P., Sweeley C.C. Growth control of human foreskin fibroblasts and inhibition of extracellular sialidase activity by 2-deoxy-2,3-dehydro-N-acetylneuraminic acid. J. Biol. Chem. 1988;263:10595–10599. [PubMed] [Google Scholar]
- Van Heyningen S. Cholera toxin: Interaction of subunits with ganglioside GMI. Science. 1974;183:656–657. doi: 10.1126/science.183.4125.656. [DOI] [PubMed] [Google Scholar]
- Van Heyningen S. Tetanus toxin. Pharmacol. Ther. 1980;11:141–157. doi: 10.1016/0163-7258(80)90070-4. [DOI] [PubMed] [Google Scholar]
- Varki A. Radioactive tracer techniques in the sequencing of glycoprotein oligosaccharides. FASEB J. 1991;5:226–235. doi: 10.1096/fasebj.5.2.2004668. [DOI] [PubMed] [Google Scholar]
- Vlasak R., Luytjes W., Spaan W., Palese P. Human and bovine coronaviruses recognize sialic acid-containing receptors similar to those of influenza C viruses. Proc. Natl. Acad. Sci. U. S. A. 1988;85:4526–4529. doi: 10.1073/pnas.85.12.4526. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waddell T., Cohen A., Lingwood C.A. Induction of verotoxin sensitivity in receptor-deficient cell lines using the receptor glycolipid globotriaosylceramide. Proc. Natl. Acad. Sci. U. S. A. 1990;87:7898–7901. doi: 10.1073/pnas.87.20.7898. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walz G., Aruffo A., Kolanus W., Bevilacqua M., Seed B. Recognition by ELAM-1 of the sialyl-Lex determinant on myeloid and tumor cells. Science. 1990;250:1132–1135. doi: 10.1126/science.1701275. [DOI] [PubMed] [Google Scholar]
- Wassarman P.M. Profile of a mammalian sperm receptor. Development (Cambridge, UK) 1990;108:1–17. doi: 10.1242/dev.108.Supplement.1. [DOI] [PubMed] [Google Scholar]
- Weigel P.H., Schnaar R.L., Kuhlenschmidt M.S., Schmell E., Lee R.T., Lee Y.C., Roseman S. Adhesion of hepatocytes to immobilized sugars. A threshold phenomenon. J. Biol. Chem. 1979;254:10830–10838. [PubMed] [Google Scholar]
- Weis F.M.B., Davis R.J. Regulation of epidermal growth factor receptor signal transduction. J. Biol. Chem. 1990;265:12059–12066. [PubMed] [Google Scholar]
- Weis W., Brown J.H., Cusack S., Paulson J.C., Skehel J.J., Wiley D.C. Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid. Nature (London) 1988;333:426–431. doi: 10.1038/333426a0. [DOI] [PubMed] [Google Scholar]
- Willoughby R.E., Yolken R.H., Schnaar R.L. Rotaviruses specifically bind to the neutral glycosphingolipid asialo-GMI. J. Virol. 1990;64:4830–4835. doi: 10.1128/jvi.64.10.4830-4835.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wright T.C., Jr., Castellot J.J., Jr., Petitou M., Lormeau J.-C., Choay J., Karnovsky M.J. Structural determination of heparin's growth inhibitory activity. J. Biol. Chem. 1989;264:1534–1542. [PubMed] [Google Scholar]
- Wright T.C., Jr., Pukac L.A., Castellot J.J., Jr., Karnovsky M.J., Levine R.A., Kim-Park H.-Y., Campisi J. Heparin suppresses the induction of c-fos and c-myc mRNA in murine fibroblasts by selective inhibition of a protein kinase C-dependent pathway. Proc. Natl. Acad. Sci. U. S. A. 1989;86:3199–3203. doi: 10.1073/pnas.86.9.3199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xia X., Gu X., Santorelli A.C., Yu R.K. Effects of inducers of differentiation on protein kinase C and CMP-N-acetylneuraminic acid: lactosylceramide sialyitransferase activities of HL-60 leukemia cells. J. Lipid Res. 1989;30:181–188. [PubMed] [Google Scholar]
- Yu R.K., Saito M. In: “Neurobiology of Glycoconjugates”. Margolis R.U., Margolis R.K., editors. Plenum; New York: 1989. Structure and localization of gangliosides; pp. 1–42. [Google Scholar]
- Yu R.K., Koerner T.A.W., Scarsdale J.N., Prestegard J.H. Elucidation of glycolipid structure by proton nuclear magnetic resonance spectroscopy. Chem. Phys. Lipids. 1986;42:27–48. doi: 10.1016/0009-3084(86)90041-1. [DOI] [PubMed] [Google Scholar]
- Yu R.K., Macala L.J., Taki T., Weinfeld H.M., Yu F.S. Developmental changes in ganglioside composition and synthesis in embryonic rat brain. J. Neurochem. 1988;50:1825–1829. doi: 10.1111/j.1471-4159.1988.tb02484.x. [DOI] [PubMed] [Google Scholar]
- Yu R.K., Ariga T., Kohriyama T., Kusunoki S., Maeda Y., Miyatani N. Autoimmune mechanisms in peripheral neuropathies. Ann. Neurol. 1990;27(Suppl):S30–S35. doi: 10.1002/ana.410270709. [DOI] [PubMed] [Google Scholar]