Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2002 Dec 10;36(3):185–220. doi: 10.1016/0168-1656(94)90152-X

The blind watchmaker and rational protein engineering

Henrik W Anthonsen 1, António Baptista 1, Finn Drabløs 1, Paulo Martel 1, Steffen B Petersen 1,
PMCID: PMC7173218  PMID: 7765263

Abstract

In the present review some scientific areas of key importance for protein engineering are discussed, such as problems involved in deducting protein sequence from DNA sequence (due to posttranscriptional editing, splicing and posttranslational modifications), modelling of protein structures by homology, NMR of large proteins (including probing the molecular surface with relaxation agents), simulation of protein structures by molecular dynamics and simulation of electrostatic effects in proteins (including pH-dependent effects). It is argued that all of these areas could be of key importance in most protein engineering projects, because they give access to increased and often unique information. In the last part of the review some potential areas for future applications of protein engineering approaches are discussed, such as non-conventional media, de novo design and nanotechnology.

Keywords: Protein engineering, Protein sequence, Homology, NMR, Molecular dynamics, Protein electrostatics

References

  1. Abola E., Bernstein F.C., Bryant S.H., Koetzle T.F., Weng J. Crystallographic databases — Information content, software systems, scientific applications. Data Commission of the International Union of Crystallography; Bonn/Cambridge/Chester: 1987. Protein Data Bank; pp. 107–132. [Google Scholar]
  2. Adler B.K., Harris M.E., Bertrand K.I., Hajduk S.L. Modification of Trypanosoma brucei mitochondrial rRNA by posttranscriptional 3′ polyuridine tail formation. Mol. Cell Biol. 1991;11(12):5878–5884. doi: 10.1128/mcb.11.12.5878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Alberts B., Bray D., Lewis J., Raff M., Roberts K., Watson J.D. Garland Publ. Inc; New York: 1983. Molecular Biology of the Cell. [Google Scholar]
  4. Alexandrov N., Go N. Abstracts of the 5th annual meeting of the Protein Engineering Society of Japan. Vol. 6. 1993. Significance of similarities in protein structures; pp. 1003–1029. (Protein Eng.). 8. [Google Scholar]
  5. Amrein M., Gross H. Scanning tunneling microscopy of biological macromolecular structures coated with a conducting film. Scanning Microsc. 1992;6(2):335–343. [PubMed] [Google Scholar]
  6. Argos P. An investigation of oligopeptides linking domains in protein tertiary structures and possible candidates for general gene fusion. J. Mol. Biol. 1990;211:943–958. doi: 10.1016/0022-2836(90)90085-Z. [DOI] [PubMed] [Google Scholar]
  7. Arnold F.H. Engineering proteins for nonnatural environments. FASEB J. 1993;7(9):744–749. doi: 10.1096/fasebj.7.9.8330682. [DOI] [PubMed] [Google Scholar]
  8. Auger M., McDermott A.E., Robinson V., Castelhano A.L., Billedeau R.J., Pliura D.H., Krantz A., Griffin R.G. Solid-state 13C NMR study of a transglutaminase - inhibitor adduct. Biochemistry. 1993;32:3930–3934. doi: 10.1021/bi00066a012. [DOI] [PubMed] [Google Scholar]
  9. Baca M., Alewood P.F., Kent S.B. Structural engineering of the HIV-1 protease molecule with a β-turn mimic of fixed geometry. Protein Sci. 1993;2(7):1085–1091. doi: 10.1002/pro.5560020702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bairoch A., Boeckmann B. The SWISS-PROT protein sequence data bank. Nucleic Acids Res. 1992;20:2019–2022. doi: 10.1093/nar/20.suppl.2019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ball P. Polymers made to measure. Nature. 1994;367:323–324. doi: 10.1038/367323a0. [DOI] [PubMed] [Google Scholar]
  12. Barton G.J. ALSCRIPT: A tool to format multiple sequence alignments. Protein Eng. 1993;6(1):37–40. doi: 10.1093/protein/6.1.37. [DOI] [PubMed] [Google Scholar]
  13. Bashford D., Karplus M. pKa's of ionizable groups in proteins: atomic detail from a continuum electrostatic model. Biochemistry. 1990;29:10219–10225. doi: 10.1021/bi00496a010. [DOI] [PubMed] [Google Scholar]
  14. Bashford D., Karplus M. Multiple-site titration curves of proteins: An analysis of exact and approximate methods for their calculation. J. Phys. Chem. 1991;95:9556–9561. [Google Scholar]
  15. Bax A., Davis D.G. MLEV-17-based two-dimensional homonuclear magnetization transfer spectroscopy. J. Magn. Reson. 1985;65:355–360. [Google Scholar]
  16. Benner S.A., Gerloff D.L. Predicting the conformation of proteins. Man versus machine. FEBS Lett. 1993;325(1–2):29–33. doi: 10.1016/0014-5793(93)81408-r. [DOI] [PubMed] [Google Scholar]
  17. Berg O.G., von Hippel P.H. Diffusion-controlled macromolecular interactions. Annu. Rev. Biophys. Biophys. Chem. 1985;14:131–160. doi: 10.1146/annurev.bb.14.060185.001023. [DOI] [PubMed] [Google Scholar]
  18. Bernstein F.C., Koetzle T.F., Williams G.J.B., Meyer E.F., Brice M.D., Rodgers J.R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: A computer-based archival file for macromolecular structures. J. Mol. Biol. 1977;112:535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  19. Beroza P., Fredkin D.R., Okamura M.Y., Feher G. Vol. 88. 1991. Protonation of interacting residues in a protein by a Monte Carlo method: Application to lysozyme and the photosynthetic reaction center of Rhodobacter sphaeroides; pp. 5804–5808. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Beveridge D.L., Dicapua F.M. Free energy via molecular simulation: Application to chemical and biomolecular systems. Annu. Rev. Biophys. Biophys. Chem. 1989;18:431–492. doi: 10.1146/annurev.bb.18.060189.002243. [DOI] [PubMed] [Google Scholar]
  21. Birge R. Molecular electronics. In: Crandall B.C., Lewis J., editors. Nanotechnology. Research and Perspectives. MIT Press; Cambridge, MA: 1992. [Google Scholar]
  22. Blundell T.L., Johnson M.S. Catching a common fold. Protein Sci. 1993;2(6):877–883. doi: 10.1002/pro.5560020602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Böck A., Forschhammer K., Heider J., Baron C. Seleno protein synthesis: An expansion of the genetic code. Trends Biochem. Sci. 1991;16:463–467. doi: 10.1016/0968-0004(91)90180-4. [DOI] [PubMed] [Google Scholar]
  24. Bohr J., Bohr H., Brunak S., Cotterill R.M.J., Fredholm H., Lautrup B., Petersen S.B. Protein structures from distance inequalities. J. Mol. Biol. 1993;231:861–869. doi: 10.1006/jmbi.1993.1332. [DOI] [PubMed] [Google Scholar]
  25. Boscott P.E., Barton G.J., Richards W.G. Secondary structure prediction for modelling by homology. Protein Eng. 1993;6(3):261–266. doi: 10.1093/protein/6.3.261. [DOI] [PubMed] [Google Scholar]
  26. Bowie J.U., Eisenberg D. Inverted protein structure prediction. Curr. Opin. Struct. Biol. 1993;3:437–444. [Google Scholar]
  27. Bowie J.U., Lüthy R., Eisenberg D. A method to identify protein sequences that fold into a known three-dimensional structure. Science. 1991;253:164–170. doi: 10.1126/science.1853201. [DOI] [PubMed] [Google Scholar]
  28. Bradley D. Will future computers be all wet? Science. 1993;259:890–892. [Google Scholar]
  29. Braunschweiler L., Ernst R.R. Coherence transfer by isotropic mixing: Application to proton correlation spectroscopy. J. Magn. Reson. 1983;53:521–528. [Google Scholar]
  30. Broadhurst R.W., Dobson C.M., Hore P.J., Radford S.E., Rees M.L. A photochemically induced dynamic nuclear polarization study of denatured states of lysozyme. Biochemistry. 1991;30:405–412. doi: 10.1021/bi00216a015. [DOI] [PubMed] [Google Scholar]
  31. Brown J.H., Jardetzky T.S., Gorga J.C., Stern L.J., Urban R.G., Strominger J.L., Wiley D.C. Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature. 1993;364(6432):33–39. doi: 10.1038/364033a0. [DOI] [PubMed] [Google Scholar]
  32. Bryant S.H., Lawrence C.E. An empirical energy function for threading protein sequence through the folding motif. Proteins. 1993;16(1):92–112. doi: 10.1002/prot.340160110. [DOI] [PubMed] [Google Scholar]
  33. Bulow L. Vol. 57. 1990. Preparation of artificial bifunctional enzymes by gene fusion; pp. 123–133. (Biochem. Soc. Symp.). [PubMed] [Google Scholar]
  34. Burke P.A., Griffin R.G., Klibanov A.M. Solidstate NMR assessment of enzyme active center structure under nonaqueous conditions. J. Biol. Chem. 1992;267:20057–20064. [PubMed] [Google Scholar]
  35. Burley S.K. Forward to the fundamentals. Struct. Biol. 1994;1(1):8–10. doi: 10.1038/nsb0194-8. [DOI] [PubMed] [Google Scholar]
  36. Cassels R., Dobson C.M., Poulsen F.M., Williams R.J.P. Study of the tryptophan residues of lysozyme using 1H nuclear magnetic resonance. Eur. J. Biochem. 1978;95:81–97. doi: 10.1111/j.1432-1033.1978.tb12725.x. [DOI] [PubMed] [Google Scholar]
  37. Cattaneo R. RNA duplexes guide base conversions. Curr. Biol. 1994;4:134–136. doi: 10.1016/s0960-9822(94)00030-8. [DOI] [PubMed] [Google Scholar]
  38. Chang C.A., Brittain H.G., Telser J., Tweedle M.F. pH dependence of relaxivities and hydration numbers of Gadolinium(III) complexes of linear amino carboxylates. Inorg. Chem. 1990;29:4468–4473. [Google Scholar]
  39. Chazin W.J., Hugli T.E., Wright P.E. 1H NMR studies of human C3a anaphylatoxin in solution: Sequential resonance assignments, secondary structure, and global fold. Biochemistry. 1988;27:9139–9148. doi: 10.1021/bi00426a011. [DOI] [PubMed] [Google Scholar]
  40. Chen K., Arnold F.H. Vol. 90. 1993. Tuning the activity of an enzyme for unusual environments: Sequential random mutagenesis of subtilisin E for catalysis in dimethylformamide; pp. 5618–5622. (Proc. Natl. Acad. Sci. USA). 12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Chothia C. Proteins. One thousand families for the molecular biologist. Nature. 1992;357(6379):543–544. doi: 10.1038/357543a0. [DOI] [PubMed] [Google Scholar]
  42. Chou K.C., Zhang C.T. A correlation-coefficient method to predicting protein-structural classes from amino acid compositions. Eur. J. Biochem. 1992;207(2):429–433. doi: 10.1111/j.1432-1033.1992.tb17067.x. [DOI] [PubMed] [Google Scholar]
  43. Christensen A.M., Schaefer J. Solid-state NMR determination of intra- and intermolecular 31P-13C distances for shikimate 3-phosphate and [1-13C]glyphosate bound to enolpyruvylshikimate-3-phosphate synthase. Biochemistry. 1993;32:2868–2873. doi: 10.1021/bi00062a018. [DOI] [PubMed] [Google Scholar]
  44. Clore G., Kay L., Bax A., Gronenborn A. Four-dimensional 13C/13C-edited nuclear Overhauser enhancement spectroscopy of a protein in solution: Application to interleukin 1β. Biochemistry. 1991;30:12–18. doi: 10.1021/bi00215a002. [DOI] [PubMed] [Google Scholar]
  45. Clore G.M., Wingfield P.T., Gronenborn A.M. High-resolution three-dimensional structure of interleukin 1β in solution by three- and four-dimensional nuclear magnetic resonance spectroscopy. Biochemistry. 1991;30(9):2315–2323. doi: 10.1021/bi00223a005. [DOI] [PubMed] [Google Scholar]
  46. Cohen B.I., Presnell S.R., Cohen F.E. Origins of structural diversity within sequentially identical hexapeptides. Protein Sci. 1993;2:2134–2145. doi: 10.1002/pro.5560021213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Colloc'h N., Etchebest C., Thoreau E., Henrissat B., Mornon J.P. Comparison of three algorithms for the assignment of secondary structure in proteins: The advantages of a consensus assignment. Protein Eng. 1993;6(4):377–382. doi: 10.1093/protein/6.4.377. [DOI] [PubMed] [Google Scholar]
  48. Coulson A. Extracting the information — Sequence analysis software design evolves. Trends Biotechnol. 1993;11:223–227. doi: 10.1016/0167-7799(93)90132-s. [DOI] [PubMed] [Google Scholar]
  49. Covell D.G., Jernigan R.L. Conformations of folded proteins in restricted spaces. Biochemistry. 1990;29(13):3287–3294. doi: 10.1021/bi00465a020. [DOI] [PubMed] [Google Scholar]
  50. Crippen G.M. Prediction of protein folding from amino acid sequence over discrete conformation spaces. Biochemistry. 1991;30(17):4232–4237. doi: 10.1021/bi00231a018. [DOI] [PubMed] [Google Scholar]
  51. Cunningham B.C., Wells J.A. Comparison of a structural and a functional epitope. J. Mol. Biol. 1993;233:554–563. doi: 10.1006/jmbi.1993.1611. [DOI] [PubMed] [Google Scholar]
  52. Davies M.E., McCammon J.A. Electrostatics in biomolecular structure and dynamics. Chem. Rev. 1990;90:509–521. [Google Scholar]
  53. Dell K.A., Frost J.W. Identification and removal of impediments to biocatalytic synthesis of aromatics from d-glucose: Rate-limiting enzymes in the common pathway of aromatic amino acid biosynthesis. J. Am. Chem. Soc. 1994 in press. [Google Scholar]
  54. Derewenda Z.S., Derewenda U., Dodson G.G. The crystal and molecular structure of the Rhizomucor miehei triacylglyceride lipase at 1.9 Å resolution. J. Mol. Biol. 1992;227(3):818–839. doi: 10.1016/0022-2836(92)90225-9. [DOI] [PubMed] [Google Scholar]
  55. Diamond R. Real-space refinement of the structure of hen egg white lysozyme. J. Mol. Biol. 1974;82:371. doi: 10.1016/0022-2836(74)90598-1. [DOI] [PubMed] [Google Scholar]
  56. Dill K.A. Dominant forces in protein folding. Biochemistry. 1990;29:7133–7155. doi: 10.1021/bi00483a001. [DOI] [PubMed] [Google Scholar]
  57. Dobson C.M., Ferguson S.J., Poulsen F.M., Williams R.J.P. Complete assignment of aromatic 1H nuclear magnetic resonances of the tyrosine residues of hen lysozyme. Eur. J. Biochem. 1978;92:99–103. doi: 10.1111/j.1432-1033.1978.tb12726.x. [DOI] [PubMed] [Google Scholar]
  58. Doolittle R.F. Stein and Moore Award address. Reconstructing history with amino acid sequences. Protein Sci. 1992;1(2):191–200. doi: 10.1002/pro.5560010201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Doolittle R.F. Vol. 90. 1993. The comings and goings of homing endonucleases and mobile introns; pp. 5379–5381. (Proc. Natl. Acad. Sci. USA). 12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Drabløs F., Petersen S.B. 1994. Multim — Tools for multiple sequence analysis. In preparation. [Google Scholar]
  61. Draths K.M., Frost J.W. Genomic direction of synthesis during plasmid-based biocatalysis. J. Am. Chem. Soc. 1990;112:9630–9632. [Google Scholar]
  62. Drayney D., Kingsbury C.A. Free radical induced nuclear magnetic resonance shifts: Comments on contact shift mechanism. J. Am. Chem. Soc. 1981;103:1041–1047. [Google Scholar]
  63. Dubchak I., Holbrook S.R., Kim S.H. Prediction of protein folding class from amino acid composition. Proteins Struct. Func. Genet. 1993;16(1):79–91. doi: 10.1002/prot.340160109. [DOI] [PubMed] [Google Scholar]
  64. Durell S.R., Labanowski J.K., Gross E.L. Modeling of the electrostatic potential field of plastocyanin. Arch. Biochem. Biophys. 1990;277:241–254. doi: 10.1016/0003-9861(90)90575-j. [DOI] [PubMed] [Google Scholar]
  65. Eisenberg D., Bowie J.U., Luthy R., Choe S. Three-dimensional profiles for analysing protein sequence — structure relationships. Faraday Discuss. 1992;1992(93):25–34. [PubMed] [Google Scholar]
  66. Eisenmenger F., Argos P., Abagyan R. A method to configure protein side-chains from the main-chain trace in homology modelling. J. Mol. Biol. 1993;231(3):849–860. doi: 10.1006/jmbi.1993.1331. [DOI] [PubMed] [Google Scholar]
  67. Emsley J., White H.E., O'Hara B.P., Oliva G., Srinivasan N., Tickle I.J., Blundell T.L., Pepys M.B., Wood S.P. Structure of pentameric human serum amyloid P component. Nature. 1994;367:338–345. doi: 10.1038/367338a0. [DOI] [PubMed] [Google Scholar]
  68. Ernst R.R. Nuclear magnetic resonance fourier transform spectroscopy (Nobel lecture) Angew. Chem. 1992;31:805–930. doi: 10.1007/BF01121787. [DOI] [PubMed] [Google Scholar]
  69. Esposito G., Lesk A.M., Molinari H., Motta A., Niccolai N., Pastore A. Probing protein structure by solvent pertubation of nuclear magnetic resonance spectra. J. Mol. Biol. 1992;224:659–670. doi: 10.1016/0022-2836(92)90551-t. [DOI] [PubMed] [Google Scholar]
  70. Fahy G.M. Molecular nanotechnology. Clin. Chem. 1993;39(9):2011–2016. [PubMed] [Google Scholar]
  71. Fairbrother W.J., Gippert G.P., Reizer J., Saier M.J., Wright P.E. Low resolution solution structure of the Bacillus subtilis glucose permease IIA domain derived from heteronuclear three-dimensional NMR spectroscopy. FEBS Lett. 1992;296(2):148–152. doi: 10.1016/0014-5793(92)80367-p. [DOI] [PubMed] [Google Scholar]
  72. Farabaugh P.J. Alternative readings of the genetic code. Cell. 1993;74(4):591–596. doi: 10.1016/0092-8674(93)90507-M. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Fersht A. Freeman; New York: 1985. Enzyme Structure and Mechanism. [Google Scholar]
  74. Fersht A., Winter G. Protein engineering. Trends Biochem. Sci. 1992;17(8):292–295. doi: 10.1016/0968-0004(92)90438-f. [DOI] [PubMed] [Google Scholar]
  75. Fitzpatrick P.A., Steinmetz A.C., Ringe D., Klibanov A.M. Vol. 90. 1993. Enzyme crystal structure in a neat organic solvent; pp. 8653–8657. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Foght R.H., Schipper D., Boelens R., Kaptein R. 1H, 13C and 15N NMR backbone assignments of the 269-residue serine protease PB92 from Bacillus alcalophilus. J. Biomol. NMR. 1994;4:123–128. doi: 10.1007/BF00178340. [DOI] [PubMed] [Google Scholar]
  77. Frey M.H., Wagner G., Vasak M., Sørensen O.W., Neuhaus D., Worgotter E., Kagi J.H.R., Ernst R.R., Wüthrich K. Polypeptide — metal cluster connectivities in metallothionein 2 by novel 1H-113Cd heteronuclear two-dimensional NMR experiments. J. Am. Chem. Soc. 1985;107:6847–6851. [Google Scholar]
  78. Frost J.W. Design and use of heterologous microbes for conversion of d-glucose into aromatic chemicals. Enzyme engineering. 1993;XII Deauville, France, September 19–24, 1993. [Google Scholar]
  79. Gaill F., Wiedemann H., Mann K., Kuhn K., Timpl R., Engel J. Molecular characterization of the cuticle and interstial collagens from worms collected at deep sea hydrothermal vents. J. Mol. Biol. 1991;221:209–223. doi: 10.1016/0022-2836(91)80215-g. [DOI] [PubMed] [Google Scholar]
  80. George D.G., Barker W.C., Hunt L.T. The protein identification resource (PIR) Nucleic Acids Res. 1986;14(1):11–15. doi: 10.1093/nar/14.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Getzoff E.D., Cabelli D.E., Fisher C.L., Parge H.E., Viezzoli M.S., Banci L., Hallewell R.A. Faster superoxide dismutase mutants designed by enhancing electrostatic guidance. Nature. 1992;358(6384):347–351. doi: 10.1038/358347a0. [DOI] [PubMed] [Google Scholar]
  82. Ghadiri M.R., Granja J.R., Milligan R.A., McRee D.E., Khazanovich N. Self-assembling organic nanotubes based on a cyclic peptide architecture. Nature. 1993;366:324–327. doi: 10.1038/366324a0. [DOI] [PubMed] [Google Scholar]
  83. Gilson M.K. Multiple-site titration and molecular modeling: Two rapid methods for computing energies and forces for ionizable groups in proteins. Proteins. 1993;15:266–282. doi: 10.1002/prot.340150305. [DOI] [PubMed] [Google Scholar]
  84. Gilson M.K., Honig B. Calculation of the total electrostatic energy of a macromolecular system: Solvation energies, binding energies, and conformational analysis. Proteins Struct. Funct. Genet. 1988;4:7–18. doi: 10.1002/prot.340040104. [DOI] [PubMed] [Google Scholar]
  85. Gilson M.K., Honig B. The inclusion of electrostatic hydration energies in molecular mechanics calculations. J. Computer-Aided Mol. Design. 1991;5:5–20. doi: 10.1007/BF00173467. [DOI] [PubMed] [Google Scholar]
  86. Gilson M.K., Honig B.H. Calculations of electrostatic potentials in an enzyme active site. Nature. 1987;330:84–86. doi: 10.1038/330084a0. [DOI] [PubMed] [Google Scholar]
  87. Gilson M.K., Sharp K.A., Honig B.H. Calculating the electrostatic potential of molecules in solution: Method and error assessment. J. Comp. Chem. 1987;9:327–335. [Google Scholar]
  88. Gracy J., Chiche L., Sallantin J. Improved alignment of weakly homologous protein sequences using structural information. Protein Eng. 1993;6(8):821–829. doi: 10.1093/protein/6.8.821. [DOI] [PubMed] [Google Scholar]
  89. Gray M.W., Covello P.S. RNA editing in plant mitochondria and chloroplasts. FASEB J. 1993;7(1):64–71. doi: 10.1096/fasebj.7.1.8422976. [DOI] [PubMed] [Google Scholar]
  90. Green H. Human genetic diseases due to codon reiteration: Relationship to an evolutionary mechanism. Cell. 1993;74:955–956. doi: 10.1016/0092-8674(93)90718-6. [DOI] [PubMed] [Google Scholar]
  91. Gregory R.B., Gangoda M., Gilpin R.K., Su W. The influence of hydration on the conformation of lysozyme studied by solid-state 13C-NMR spectroscopy. Biopolymers. 1993;33:513–519. doi: 10.1002/bip.360330402. [DOI] [PubMed] [Google Scholar]
  92. Griesinger C., Sørensen O.W., Ernst R.R. Three-dimensional fourier spectroscopy. Application to high-resolution NMR. J. Magn. Reson. 1989;84:14–63. [Google Scholar]
  93. Grivell L.A. Invasive introns. Curr. Biol. 1994;4:161–164. doi: 10.1016/s0960-9822(94)00039-4. [DOI] [PubMed] [Google Scholar]
  94. Gupta M.N. Enzyme function in organic solvents. Eur. J. Biochem. 1992;203(1–2):25–32. doi: 10.1111/j.1432-1033.1992.tb19823.x. [DOI] [PubMed] [Google Scholar]
  95. Haggerty L., Lenhoff A.M. Analysis of ordered arrays of adsorbed lysozyme by scanning tunneling microscopy. Biophys. J. 1993;64(3):886–895. doi: 10.1016/S0006-3495(93)81448-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Harris M., Decker C., Sollner W.B., Hajduk S. Specific cleavage of pre-edited mRNAs in trypanosome mitochondrial extracts. Mol. Cell Biol. 1992;12(6):2591–2598. doi: 10.1128/mcb.12.6.2591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. Harvey S.C. Treatment of electrostatic effects in macromolecular modeling. Proteins Struct. Func. Genet. 1989;5:78–92. doi: 10.1002/prot.340050109. [DOI] [PubMed] [Google Scholar]
  98. Hecht M.H., Richardson J.S., Richardson D.C., Odgen R.C. De novo design, expression and characterization of Felix: A four-helix bundle protein of native like sequence. Science. 1990;249:884–891. doi: 10.1126/science.2392678. [DOI] [PubMed] [Google Scholar]
  99. Hedstrom L., Szilagyi L., Rutter W.J. Converting trypsin to chymotrypsin: The role of surface loops. Science. 1992;255(5049):1249–1253. doi: 10.1126/science.1546324. [DOI] [PubMed] [Google Scholar]
  100. Hendlich M., Lackner P., Weitckus S., Floeckner H., Froschauer R., Gottsbacher K., Casari G., Sippl M.J. Identification of native protein folds amongst a large number of incorrect models. The calculation of low energy conformations from potentials of mean force. J. Mol. Biol. 1990;216(1):167–180. doi: 10.1016/S0022-2836(05)80068-3. [DOI] [PubMed] [Google Scholar]
  101. Hernandez G., Brittain H.G., Tweddle M.F., Bryant R.G. Nuclear magnetic relaxation in aqueous solutions of the Gd(HEDTA) complex. Inorg. Chem. 1990;29:985–988. [Google Scholar]
  102. Hernandez G., Tweedle M.F., Bryant R.G. Proton magnetic relaxation dispersion in aqueous glycerol solutions of Gd(DTPA)2− and Gd(DOTA)−. Inorg. Chem. 1990;29:5109–5113. [Google Scholar]
  103. Higaki J.N., Fletterick R.J., Craik C.S. Engineered metalloregulation in enzymes. Trends Biochem. Sci. 1992;17(3):100–104. doi: 10.1016/0968-0004(92)90245-5. [DOI] [PubMed] [Google Scholar]
  104. Higuchi M., Single F.N., Köhler M., Sommer B., Sprengel R., Seeburg P.H. RNA editing of AMPA receptor subunit GluR-B: A base-paired intron-exon structure determines position and efficiency. Cell. 1993;75:1361–1370. doi: 10.1016/0092-8674(93)90622-w. [DOI] [PubMed] [Google Scholar]
  105. Hodges R.A., Perler F.B., Noren C.J., Jack W.E. Protein splicing removes intervening sequences in an archaea DNA polymerase. Nucleic Acids Res. 1992;20(23):6153–6157. doi: 10.1093/nar/20.23.6153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  106. Hol W.G.J. The role of the α-helix dipole in protein function and structure. Prog. Biophys. Mol. Biol. 1985;45:149–195. doi: 10.1016/0079-6107(85)90001-x. [DOI] [PubMed] [Google Scholar]
  107. Holliger P., Prospero T., Winter G. Vol. 90. 1993. ‘Diabodies’: small bivalent and bispecific antibody fragments; pp. 6444–6448. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. Holm L., Sander C. Globin fold in a bacterial toxin. Nature. 1993;361(6410):309. doi: 10.1038/361309a0. [DOI] [PubMed] [Google Scholar]
  109. Holm L., Ouzounis C., Sander C., Tuparev G., Vriend G. A database of protein structure families with common folding motifs. Protein Sci. 1992;1(12):1691–1698. doi: 10.1002/pro.5560011217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Hore P.J., Kaptein R. Proton nuclear magnetic resonance assignment and surface accessibility of tryptophan residues in lysozyme using photochemically induced dynamic nuclear polarization spectroscopy. Biochemistry. 1983;22:1906–1911. doi: 10.1021/bi00277a026. [DOI] [PubMed] [Google Scholar]
  111. Hummel U., Nuoffer C., Zanolari B., Erni B. A functional protein hybrid between the glucose transporter and the N-acetylglucosamine transporter of Escherichia coli. Protein Sci. 1992;1:356–362. doi: 10.1002/pro.5560010307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Jackson J.D. John Wiley & Sons; New York: 1975. Classical electrodynamics. [Google Scholar]
  113. Johnsson K., Allemann R.K., Widmer H., Benner S.A. Synthesis, structure and activity of artificial, rationally designed catalytic polypeptides. Nature. 1993;365(6446):530–532. doi: 10.1038/365530a0. [DOI] [PubMed] [Google Scholar]
  114. Jones D.T., Taylor W.R., Thornton J.M. A new approach to protein fold recognition. Nature. 1992;358(6381):86–89. doi: 10.1038/358086a0. [DOI] [PubMed] [Google Scholar]
  115. Kaarsholm N.C., Norris K., Jorgensen R.J., Mikkelsen J., Ludvigsen S., Olsen O.H., Sorensen A.R., Havelund S. Engineering stability of the insulin monomer fold with application to structure-activity relationships. Biochemistry. 1993;32(40):10773–10778. doi: 10.1021/bi00091a031. [DOI] [PubMed] [Google Scholar]
  116. Kabsch W., Sander C. Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983;22:2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
  117. Kamtekar S., Schiffer J.M., Xiong H., Babik J.M., Hecht M.H. Protein design by binary patterning of polar and nonpolar amino acids. Science. 1993;262:1680–1685. doi: 10.1126/science.8259512. [DOI] [PubMed] [Google Scholar]
  118. Kanaya S., Nakai C., Konishi A., Inoue H., Ohtsuka E., Ikehara M. A hybrid ribonuclease H. A novel RNA cleaving enzyme with sequence-specific recognition. J. Biol. Chem. 1992;267:8492–8498. [PubMed] [Google Scholar]
  119. Kay E.L., Clore G.M., Bax A., Gronenborg A.M. Four-dimensional heteronuclear triple-resonance NMR spectroscopy of interleukin-1β in solution. Science. 1990;249:411–414. doi: 10.1126/science.2377896. [DOI] [PubMed] [Google Scholar]
  120. Kessler H., Gehrke M., Griesinger C. Two-dimensional spectroscopy: Background and overview of the experiments. Angew. Chem. Int. Ed. Engl. 1988;27:490–536. [Google Scholar]
  121. Killian J.A., Taylor M.J., Koeppe R.E. Orientation of the valine-1 side chain of the gramicidin transmembrane channel and implications for channel functioning. A 2H NMR study. Biochemistry. 1992;31:11283–11290. doi: 10.1021/bi00161a004. [DOI] [PubMed] [Google Scholar]
  122. Kim J.L., Nikolov D.B., Burley S.K. Co-crystal structure of TBP recognizing the minor groove of a TATA element. Nature. 1993;365:520–527. doi: 10.1038/365520a0. [DOI] [PubMed] [Google Scholar]
  123. Kim Y., Geiger J.H., Hahn S., Sigler P.B. Crystal structure of a yeast TBP/TATA-box complex. Nature. 1993;365:512–520. doi: 10.1038/365512a0. [DOI] [PubMed] [Google Scholar]
  124. Klevit R.E., Waygood E.B. Two-dimensional 1H NMR studies of histidine-containing protein from Escherichia coli. Secondary and tertiary structure as determined by NMR. Biochemistry. 1986;25:7774–7781. doi: 10.1021/bi00371a073. [DOI] [PubMed] [Google Scholar]
  125. Klimasauskas S., Kumar S., Roberts R.J., Cheng X. HhaI methyltransferase flips its target base out of the DNA helix. Cell. 1994;76:357–369. doi: 10.1016/0092-8674(94)90342-5. [DOI] [PubMed] [Google Scholar]
  126. Knegtel R.M., Katahira M., Schilthuis J.G., Bonvin A.M., Boelens R., Eib D., van der Saag P.T., Kaptein R. The solution structure of the human retinoic acid receptor-β DNA-binding domain. J. Biomol. NMR. 1993;3(1):1–17. doi: 10.1007/BF00242472. [DOI] [PubMed] [Google Scholar]
  127. Kobe B., Deisenhofer J. Crystal structure of porcine ribonuclease inhibitor, a protein with leucine-rich repeats. Nature. 1993;366:751–756. doi: 10.1038/366751a0. [DOI] [PubMed] [Google Scholar]
  128. Kogure K., Shinohara Y., Terada H. Evolution of the type II hexokinase gene by duplication and fusion of the glucokinase gene with conservation of its organization. J. Biol. Chem. 1993;268(12):8422–8424. [PubMed] [Google Scholar]
  129. Köhler M., Burnashev N., Sakmann B., Seeburg P.H. Determinants of Ca2+ permeability in both TM1 and TM2 of high affinity kainate receptor channels: diversity by RNA editing. Neuron. 1993;10(3):491–500. doi: 10.1016/0896-6273(93)90336-p. [DOI] [PubMed] [Google Scholar]
  130. Kohlstaedt L.A., Wang J., Friedman J.M., Rice P.A., Steitz T.A. Crystal structure at 3.5 Å resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science. 1992;256(5065):1783–1790. doi: 10.1126/science.1377403. [DOI] [PubMed] [Google Scholar]
  131. Koppenol W.H., Margoliash E. The asymmetric distribution of charges on the surface of horse cytochrome c. J. Biol. Chem. 1982;257:4426–4437. [PubMed] [Google Scholar]
  132. Kraulis P.J. Molscript: A program to produce both detailed and schematic plots of protein structures. J. Appl. Cryst. 1991;24:946–950. [Google Scholar]
  133. Kühlbrandt W., Wang D.N., Fujiyoshi Y. Atomic model of plant light-harvesting complex by electron crystallography. Nature. 1994;367:614–621. doi: 10.1038/367614a0. [DOI] [PubMed] [Google Scholar]
  134. Lamare S., Legoy M.-D. Biocatalysis in the gas phase. Trends Biotechnol. 1993;11:413–418. doi: 10.1016/0167-7799(93)90004-S. [DOI] [PubMed] [Google Scholar]
  135. Laskowski R.A., MacArthur M.W., Moss D.S., Thornton J.M. PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Cryst. 1993;26:283–291. [Google Scholar]
  136. Lessel U., Schomburg D. A new procedure for the detection and evaluation of similar substructures in proteins. Protein Eng. 1993;6(8):1003–1029. in Abstracts of the 5th annual meeting of the Protein Engineering Society of Japan. [Google Scholar]
  137. Levin J.M., Pascarella S., Argos P., Garnier J. Quantification of secondary structure prediction improvement using multiple alignments. Protein Eng. 1993;6(8):849–854. doi: 10.1093/protein/6.8.849. [DOI] [PubMed] [Google Scholar]
  138. Levitt M. Molecular dynamics of macromolecules in water. Chemica Scripta. 1989;29A:197–203. [Google Scholar]
  139. Lewerenz H.J., Jungblut H., Campbell S.A., Giersig M., Müller D.J. Direct observation of reverse transcriptases by scanning tunneling microscopy. Aids Res. Hum. Retroviruses. 1992;8(9):1663–1667. doi: 10.1089/aid.1992.8.1663. [DOI] [PubMed] [Google Scholar]
  140. Linderstrøm-Lang K. On the ionization of proteins. C.R. Trav. Lab. Carlberg. 1924;15:1–29. [Google Scholar]
  141. Loewenthal R., Sancho J., Reinikainen T., Fersht A. Long-range surface charge-charge interactions in proteins. J. Mol. Biol. 1993;232:574–583. doi: 10.1006/jmbi.1993.1412. [DOI] [PubMed] [Google Scholar]
  142. Lüthy R., Bowie J.U., Eisenberg D. Assessment of protein models with three-dimensional profiles. Nature. 1992;356:83–85. doi: 10.1038/356083a0. [DOI] [PubMed] [Google Scholar]
  143. Lüthy R., Xenarios I., Bucher P. Improving the sensitivity of the sequence profile method. Protein Sci. 1994;3:139–146. doi: 10.1002/pro.5560030118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  144. Luty B.A., Wade R.C., Madura J.D., Davis M.E., Briggs J.M., McCammon J.A. Brownian dynamics simulations of diffusional encounters between triosephosphate isomerase and glyceraldehyde phosphate: electrostatic steering of glyceraldehyde phosphate. J. Phys. Chem. 1993;97:233–237. [Google Scholar]
  145. Mark A.E., Berendsen H.J.C., van Gunsteren W.F. Conformational flexibility of aqueous monomeric and dimeric insulin: a molecular dynamics study. Biochemistry. 1991;30:10866–10872. doi: 10.1021/bi00109a009. [DOI] [PubMed] [Google Scholar]
  146. Martin J.L., Bardwell J.C., Kuriyan J. Crystal structure of the DsbA protein required for disulphide bond formation in vivo. Nature. 1993;365(6445):464–468. doi: 10.1038/365464a0. [DOI] [PubMed] [Google Scholar]
  147. Matthew J.B. Electrostatic effects in proteins. Annu. Rev. Biophys. Biophys. Chem. 1985;14:387–417. doi: 10.1146/annurev.bb.14.060185.002131. [DOI] [PubMed] [Google Scholar]
  148. McCammon J.A., Harvey S.C. Cambridge University Press; Cambridge, UK: 1987. Dynamics of Proteins and Nucleic Acids. [Google Scholar]
  149. McDowell L.M., Holl S.M., Qian S.J., Li E., Schaefer J. Inter-tryptophan distances in rat cellular retinol binding protein II by solid-state NMR. Biochemistry. 1993;32:4560–4563. doi: 10.1021/bi00068a011. [DOI] [PubMed] [Google Scholar]
  150. McKie J.H., Jaouhari R., Douglas K.T., Goffner D., Feuillet C., Grima P.J., Boudet A.M., Baltas M., Gorrichon L. A molecular model for cinnamyl alcohol dehydrogenase, a plant aromatic alcohol dehydrogenase involved in lignification. Biochim. Biophys. Acta. 1993;1202(1):61–69. doi: 10.1016/0167-4838(93)90063-w. [DOI] [PubMed] [Google Scholar]
  151. Moxon E.R., Rainey P.B., Nowak M.A., Lenski R.E. Adaptive evolution of highly mutable loci in pathogenic bacteria. Curr. Biol. 1994;4(1):24–33. doi: 10.1016/s0960-9822(00)00005-1. [DOI] [PubMed] [Google Scholar]
  152. Namboodiri K., Pattabiraman N., Lowrey A., Gaber B.P. Automated protein structure data bank similarity searches and their use in molecular modeling with MIDAS. J. Mol. Graphics. 1988;6:211–212. [Google Scholar]
  153. Nishikawa K., Matsuo Y. Development of pseudoenergy potentials for assessing protein 3-D-1-D compatability and detecting weak homologies. Protein Eng. 1993;6(8):811–820. doi: 10.1093/protein/6.8.811. [DOI] [PubMed] [Google Scholar]
  154. Northrup S.H., Boles J.O., Reynolds J.C.L. Brownian dynamics of cytochrome c and cytochrome c peroxidase electron transfer proteins. Science. 1988;241:67–70. doi: 10.1126/science.2838904. [DOI] [PubMed] [Google Scholar]
  155. Northrup S.H., Pear M.R., Morgan J.D., McCammon J.A., Karplus M. Molecular dynamics of ferrocytochrome c. Magnitude and anisotropy of atomic displacements. J. Mol. Biol. 1981;153:1087–1109. doi: 10.1016/0022-2836(81)90469-1. [DOI] [PubMed] [Google Scholar]
  156. Novotny J., Bruccoleri R., Karplus M. An analysis of incorrectly folded protein models. Implications for structure predictions. J. Mol. Biol. 1984;177(4):787–818. doi: 10.1016/0022-2836(84)90049-4. [DOI] [PubMed] [Google Scholar]
  157. Omer C.A., Kral A.M., Diehl R.E., Prendergast G.C., Powers S., Allen C.M., Gibbs J.B., Kohl N.E. Characterization of recombinant human farnesyl-protein transferase: Cloning, expression, farnesyl diphosphate binding, and functional homology with yeast prenyl-protein transferases. Biochemistry. 1993;32:5167–5176. doi: 10.1021/bi00070a028. [DOI] [PubMed] [Google Scholar]
  158. Orengo C.A., Brown N.P., Taylor W.R. Fast structure alignment for protein databank searching. Proteins. 1992;14(2):139–167. doi: 10.1002/prot.340140203. [DOI] [PubMed] [Google Scholar]
  159. Orengo C.A., Flores T.P., Taylor W.R., Thornton J.M. Identification and classification of protein fold families. Protein Eng. 1993;6(5):485–500. doi: 10.1093/protein/6.5.485. [DOI] [PubMed] [Google Scholar]
  160. Orttung W.H. Direct solution of the Poisson equation for biomolecules of arbitrary shape, polarizability density, and charge distribution. Ann. NY Acad. Sci. 1977;303:22–37. [Google Scholar]
  161. Ouzounis C., Sander C., Scharf M., Schneider R. Prediction of protein structure by evaluation of sequence-structure fitness. Aligning sequences to contact profiles derived from three-dimensional structures. J. Mol. Biol. 1993;232(3):805–825. doi: 10.1006/jmbi.1993.1433. [DOI] [PubMed] [Google Scholar]
  162. Overington J., Donnelly D., Johnson M.S., Šali A., Blundell T.L. Environment-specific amino acid substitution tables: Tertiary templates and prediction of protein folds. Protein Sci. 1992;1(2):216–226. doi: 10.1002/pro.5560010203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  163. Pawson T. SH2 and SH3 domains. Curr. Opin. Struct. Biol. 1992;2:432–437. [Google Scholar]
  164. Pearson W.R. Rapid and sensitive sequence comparison with FASTP and FASTA. Methods Enzymol. 1990;183(63):63–98. doi: 10.1016/0076-6879(90)83007-v. [DOI] [PubMed] [Google Scholar]
  165. Pearson W.R., Lipman D.J. Vol. 85. 1988. Improved tools for biological sequence comparison; pp. 2444–2448. (Proc. Natl. Acad. Sci. USA). 8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  166. Petersen S.B., Hough E., Baptista A. 1994. Gene duplication and the origin of trypsin. In preparation. [DOI] [PubMed] [Google Scholar]
  167. Petersen S.B., Martel P. Protein Engineering — New or Improved Proteins for Mankind. In: Cabral J., Best D., Boross L., Tramper J., editors. Applied Biocatalysis. Harwood Academic Publishers; 1994. In press. [Google Scholar]
  168. Petros A.M., Mueller L., Kopple K.D. NMR identification of protein surfaces using paramagnetic probes. Biochemistry. 1990;29:10041–10048. doi: 10.1021/bi00495a005. [DOI] [PubMed] [Google Scholar]
  169. Pitts J.E., Dhanaraj V., Dealwis C.G., Mantafounis D., Nugent P., Orprayoon P., Cooper J.B., Newman M., Blundell T.L. Multidisciplinary cycles for protein engineering: Site-directed mutagenesis and X-ray structural studies of aspartic proteinases. Scand. J. Clin. Lab. Invest. Suppl. 1992;210(39):39–50. [PubMed] [Google Scholar]
  170. Rao S., Zhu Q.L., Vajda S., Smith T. The local information content of the protein structural database. FEBS Lett. 1993;322(2):143–146. doi: 10.1016/0014-5793(93)81555-e. [DOI] [PubMed] [Google Scholar]
  171. Rayment I., Holden H.M., Whittaker M., Yohn C.B., Lorenz M., Holmes K.C., Milligan R.A. Structure of the actin — myosin complex and its implications for muscle contraction. Science. 1993;261(5117):58–65. doi: 10.1126/science.8316858. [DOI] [PubMed] [Google Scholar]
  172. Read L.K., Myler P.J., Stuart K. Extensive editing of both processed and preprocessed maxicircle CR6 transcripts in Trypanosoma brucei. J. Biol. Chem. 1992;267(2):1123–1128. [PubMed] [Google Scholar]
  173. Redfield C., Dobson C.M. Sequential 1H-NMR assignments and secondary structure of hen egg white lysozyme in solution. Biochemistry. 1988;27:122–136. doi: 10.1021/bi00401a020. [DOI] [PubMed] [Google Scholar]
  174. Reynolds J.C.L., Cooke K.F., Northrup S.H. Electrostatics and diffusional dynamics in the carbonic anhydrase active site channel. J. Phys. Chem. 1990;94:985–991. [Google Scholar]
  175. Richards F.M., Kundrot C.E. Identification of structural motifs from protein coordinate data: Secondary structure and first-level supersecondary structure. Proteins. 1988;3(2):71–84. doi: 10.1002/prot.340030202. [DOI] [PubMed] [Google Scholar]
  176. Ring C.S., Cohen F.E. Modeling protein structures: Construction and their applications. FASEB J. 1993;7(9):783–790. doi: 10.1096/fasebj.7.9.8330685. [DOI] [PubMed] [Google Scholar]
  177. Roberts G.C.K. NMR of macromolecules. A practical approach. In: Rickwood D., Hames B.D., editors. Vol. 134. Oxford University Press Inc; New York: 1993. (The Practical Approach Series). [Google Scholar]
  178. Rogers N.K. The modelling of electrostatic interactions in the function of globular proteins. Prog. Biophys. Mol. Biol. 1986;48:37–66. doi: 10.1016/0079-6107(86)90009-x. [DOI] [PubMed] [Google Scholar]
  179. Rogers N.K., Moore G.R., Sternberg M.J.E. Electrostatic interactions in globular proteins: Calculation of the pH dependence of the redox potential of cytochrome C551. J. Mol. Biol. 1985;182:613–616. doi: 10.1016/0022-2836(85)90248-7. [DOI] [PubMed] [Google Scholar]
  180. Rooman M.J., Wodak S.J. Extracting information on folding from the amino acid sequence: Consensus regions with preferred conformation in homologous proteins. Biochemistry. 1992;31(42):10239–10249. doi: 10.1021/bi00157a010. [DOI] [PubMed] [Google Scholar]
  181. Rost B., Sander C. Prediction of protein secondary structure at better than 70% accuracy. J. Mol. Biol. 1993;232(2):584–599. doi: 10.1006/jmbi.1993.1413. [DOI] [PubMed] [Google Scholar]
  182. Rost B., Sander C. Secondary structure prediction of all-helical proteins in two states. Protein Eng. 1993;(8):831–836. doi: 10.1093/protein/6.8.831. [DOI] [PubMed] [Google Scholar]
  183. Rost B., Sander C., Schneider R. PHD — An automatic mail server for protein secondary structure prediction. Comput. Appl. Biosci. 1994;10(1):53. doi: 10.1093/bioinformatics/10.1.53. [DOI] [PubMed] [Google Scholar]
  184. Rost B., Schneider R., Sander C. Progress in protein structure prediction? Trends Biochem. Sci. 1993;18(4):120–123. doi: 10.1016/0968-0004(93)90017-h. [DOI] [PubMed] [Google Scholar]
  185. Salzberg S., Cost S. Predicting protein secondary structure with a nearest-neighbor algorithm. J. Mol. Biol. 1992;227(2):371–374. doi: 10.1016/0022-2836(92)90892-n. [DOI] [PubMed] [Google Scholar]
  186. Sander C., Schneider R. Database of homology-derived protein structures and the structural meaning of sequence alignment. Proteins Struct. Funct. Genet. 1991;9:56–68. doi: 10.1002/prot.340090107. [DOI] [PubMed] [Google Scholar]
  187. Scheffler J.E., Cottrell C.E., Berliner L.J. An winexpensive, versatile sample illuminator for photo-CIDNP on any NMR spectrometer. J. Magn. Reson. 1985;63:199–201. [Google Scholar]
  188. Schrag J.D., Winkler F.K., Cygler M. Pancreatic lipases: Evolutionary intermediates in a positional change of catalytic carboxylates? J. Biol. Chem. 1992;267(7):4300–4303. [PubMed] [Google Scholar]
  189. Schuler G.D., Altschul S.F., Lipman D.J. A workbench for multiple alignment construction and analysis. Proteins. 1991;9(3):180–190. doi: 10.1002/prot.340090304. [DOI] [PubMed] [Google Scholar]
  190. Shakhnovich E.I., Gutin A.M. A new approach to the design of stable proteins. Protein Eng. 1993;6(8):793–800. doi: 10.1093/protein/6.8.793. [DOI] [PubMed] [Google Scholar]
  191. Sharp K.A., Honig B. Electrostatic interactions in macromolecules: Theory and applications. Annu. Rev. Biophys. Biophys. Chem. 1990;19:301–332. doi: 10.1146/annurev.bb.19.060190.001505. [DOI] [PubMed] [Google Scholar]
  192. Sheridan R.P., Allen L.C. The electrostatic potential of the alpha helix. Biophys. Chem. 1980;11:133–136. doi: 10.1016/0301-4622(80)80015-9. [DOI] [PubMed] [Google Scholar]
  193. Shire S.J., Hanania G.I.H., Gurd F.R.N. Electrostatic effects in myoglobin. Hydrogen ion equilibria in sperm whale ferrimyoglobin. Biochemistry. 1974;13:2967–2974. doi: 10.1021/bi00711a028. [DOI] [PubMed] [Google Scholar]
  194. Sines J.J., Allison S.A., McCammon J.A. Point charge distributions and electrostatic steering in enzyme/substrate encounter: Brownian Dynamics of modified copper/zinc superoxide dismutases. Biochemistry. 1990;29:9403–9412. doi: 10.1021/bi00492a014. [DOI] [PubMed] [Google Scholar]
  195. Sippl M.J. Boltzmann's principle, knowledge based mean fields and protein folding. J. Computer-aided Mol. Design. 1993;7:473–501. doi: 10.1007/BF02337562. [DOI] [PubMed] [Google Scholar]
  196. Sippl M.J. Recognition of errors in three-dimensional structures of proteins. Proteins Struct. Funct. Genet. 1993;17:355–362. doi: 10.1002/prot.340170404. [DOI] [PubMed] [Google Scholar]
  197. Sklenar H., Etchebest C., Lavery R. Describing protein structure: A general algorithm yielding complete helicoidal parameters and a unique overall axis. Proteins Struct. Funct. Genet. 1989;6(1):46–60. doi: 10.1002/prot.340060105. [DOI] [PubMed] [Google Scholar]
  198. Solmajer T., Mehler E.L. Electrostatic screening in molecular dynamics simulations. Protein Eng. 1991;4:911–917. doi: 10.1093/protein/4.8.911. [DOI] [PubMed] [Google Scholar]
  199. Soman K., Yang A.S., Honig B., Fletterick R. Electrical potentials in trypsin isozymes. Biochemistry. 1989;28:9918–9926. doi: 10.1021/bi00452a007. [DOI] [PubMed] [Google Scholar]
  200. Sommer B., Köhler M., Sprengel R., Seeburg P.H. RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell. 1991;67(1):11–19. doi: 10.1016/0092-8674(91)90568-j. [DOI] [PubMed] [Google Scholar]
  201. Spera S., Bax A. Empirical correlation between protein backbone conformation and Cα and Cβ13C nuclear magnetic resonance chemical shifts. J. Am. Chem. Soc. 1991;113:5490–5492. [Google Scholar]
  202. Srinivasan S., March C.J., Sudarsanam S. An automated method for modeling proteins on known templates using distance geometry. Protein Sci. 1993;2(2):277–289. doi: 10.1002/pro.5560020216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  203. States D.J., Karplus M. A model for electrostatic effects in proteins. J. Mol. Biol. 1987;197:122–130. doi: 10.1016/0022-2836(87)90613-9. [DOI] [PubMed] [Google Scholar]
  204. Stewart P.L., Fuller S.D., Burnett R.M. Difference imaging of adenovirus: Bridging the resolution gap between X-ray crystallography and electron microscopy. EMBO J. 1993;12(7):2589–2599. doi: 10.1002/j.1460-2075.1993.tb05919.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  205. Still W.C., Tempczyk A., Hawley R.C., Hendrickson T. Semianalytical treatment of solvation for molecular mechanics and dynamics. J. Am. Chem. Soc. 1990;112:6127–6129. [Google Scholar]
  206. Stockman B.J., Nirmala N.R., Wagner G., Delcamp T.J., DeYarman M.T., Freisheim J.H. Sequence-specific 1H and 15N resonance assignment for human dihydrofolate reductase in solution. Biochemistry. 1992;31:218–229. doi: 10.1021/bi00116a031. [DOI] [PubMed] [Google Scholar]
  207. Suiko M, Fernando P.H., Sakakibara Y., Nakajima H., Liu M.C., Abe S., Nakatsu S. 1992. Posttranslational modification of protein by tyrosine sulfation: Active sulfate PAPS is the essential substrate for this modification; pp. 183–184. (Nucleic Acids Symp. Ser.). [PubMed] [Google Scholar]
  208. Swindells M.B. Finding your fold (Commentary) Protein Eng. 1994;7(1):1–3. doi: 10.1093/protein/7.1.1. [DOI] [PubMed] [Google Scholar]
  209. Tanford C., Kirkwood J.G. Theory of protein titration curves. I. General equations for impenetrable spheres. J. Am. Chem. Soc. 1957;79:5333–5339. [Google Scholar]
  210. Tanford C., Roxby R. Interpretation of protein titration curves. Application to lysozyme. Biochemistry. 1972;11:2192–2198. doi: 10.1021/bi00761a029. [DOI] [PubMed] [Google Scholar]
  211. Teng B., Burant C.F., Davidson N.O. Molecular cloning of an apolipoprotein B messenger RNA editing protein. Science. 1993;260(5115):1816–1819. doi: 10.1126/science.8511591. [DOI] [PubMed] [Google Scholar]
  212. Topham C.M., McLeod A., Eisenmenger F., Overington J.P., Johnson M.S., Blundell T.L. Fragment ranking in modelling of protein structure. Conformationally constrained environmental amino acid substitution tables. J. Mol. Biol. 1993;229(1):194–220. doi: 10.1006/jmbi.1993.1018. [DOI] [PubMed] [Google Scholar]
  213. Toyoshima C., Sasabe H., Stokes D.L. Three-dimensional cryo-electron microscopy of the calcium ion pump in the sarcoplasmic reticulum membrane. Nature. 1993;362(6419):467–471. doi: 10.1038/362469a0. [DOI] [PubMed] [Google Scholar]
  214. Tramper J., Vermuë M.H., Beeftink H.H., van Stockar U., editors. Biocatalysis in Non-conventional Media; Noordwijkerhout, The Netherlands, 26–29 April 1992; Amsterdam: Elsevier; 1992. [Google Scholar]
  215. Tuchscherer G., Servis C., Corradin G., Blum U., Rivier J., Mutter M. Total chemical synthesis, characterization, and immunological properties of an MHC class I model using the TASP concept for protein de novo design. Protein Sci. 1992;1(10):1377–1386. doi: 10.1002/pro.5560011017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  216. Thunnissen A.-M.W.H., Dijkstra A.J., Kalk K.H., Rozeboom H.J., Engel H., Keck W., Dijkstra B.W. Doughnut-shaped structure of a bacterial muramidase revealed by X-ray crystallography. Nature. 1994;367:750–753. doi: 10.1038/367750a0. [DOI] [PubMed] [Google Scholar]
  217. Ulrich A.S., Heyn M.P., Watts A. Structure determination of the cyclohexene ring of retinal in bacteriorhodopsin by solid-state deuterium NMR. Biochemistry. 1992;31:10390–10399. doi: 10.1021/bi00157a029. [DOI] [PubMed] [Google Scholar]
  218. Unwin N. Nicotinic acetylcholine receptor at 9 Å resolution. J. Mol. Biol. 1993;229(4):1101–1124. doi: 10.1006/jmbi.1993.1107. [DOI] [PubMed] [Google Scholar]
  219. Van Belle D., Couplet I., Prevost M., Wodak S.J. Calculations of electrostatic properties in proteins. J. Mol. Biol. 1987;198:721–735. doi: 10.1016/0022-2836(87)90213-0. [DOI] [PubMed] [Google Scholar]
  220. van Tilbeurgh H., Egloff M.-P., Martinez C., Rugani N., Verger R., Cambillau C. Interfacial activation of the lipase — procolipase complex by mixed micelles revealed by X-ray crystallography. Nature. 1993;363:814–820. doi: 10.1038/362814a0. [DOI] [PubMed] [Google Scholar]
  221. van Tilbeurgh H., Sarda L., Verger R., Cambillau C. Structure of the pancreatic lipase — colipase complex. Nature. 1992;359:159–162. doi: 10.1038/359159a0. [DOI] [PubMed] [Google Scholar]
  222. Vriend G., Sander C., Stouten P.F.W. A novel search method for protein sequence — structure relations using property profiles. Protein Eng. 1994;7(1):23–29. doi: 10.1093/protein/7.1.23. [DOI] [PubMed] [Google Scholar]
  223. Wagner G. NMR investigations of protein structure. Prog. NMR Spectrosc. 1990;22:101–139. [Google Scholar]
  224. Wagner G. Prospects for NMR of large proteins. J. Biomol. NMR. 1993;3:375–385. doi: 10.1007/BF00176005. [DOI] [PubMed] [Google Scholar]
  225. Wagner G., Braun W., Havel T., Schaumann T., Go N., Wüthrich K. Protein structures in solution by nuclear magnetic resonance and distance geometry. J. Mol. Biol. 1987;196:611–639. doi: 10.1016/0022-2836(87)90037-4. [DOI] [PubMed] [Google Scholar]
  226. Warshel A., Levitt M. Theoretical studies of enzymic reactions. J. Mol. Biol. 1976;103:227–249. doi: 10.1016/0022-2836(76)90311-9. [DOI] [PubMed] [Google Scholar]
  227. Warshel A., Russel S.T. Calculation of electrostatic interactions in biological systems and in solution. Q. Rev. Biophys. 1984;17:283–422. doi: 10.1017/s0033583500005333. [DOI] [PubMed] [Google Scholar]
  228. Warshel A., Naray-Szabo G., Sussman F., Hwang J.-K. How do serine proteases really work? Biochemistry. 1989;28:3629–3637. doi: 10.1021/bi00435a001. [DOI] [PubMed] [Google Scholar]
  229. Warwicker J., Watson H.C. Calculation of the electric potential in the active site cleft due to α-helix dipoles. J. Mol. Biol. 1982;157:671–679. doi: 10.1016/0022-2836(82)90505-8. [DOI] [PubMed] [Google Scholar]
  230. Wendoloski J.J., Matthew J.B. Molecular dynamics effects on protein electrostatics. Proteins Struct. Funct. Genet. 1989;5:313–321. doi: 10.1002/prot.340050407. [DOI] [PubMed] [Google Scholar]
  231. Wider G., Macura S., Kumar A., Ernst R.R., Wüthrich K. Homonuclear two-dimensional 1H NMR of proteins. Experimental procedures. J. Magn. Reson. 1984;56:207–234. [Google Scholar]
  232. Williamson M.P., Asakura T. Calculation of chemical shifts of protons on alpha carbons in proteins. J. Magn. Reson. 1991;94:557–562. [Google Scholar]
  233. Wilmanns M., Eisenberg D. Vol. 90. 1993. Three-dimensional profiles from residue-pair preferences: Identification of sequences with beta/alpha-barrel fold; pp. 1379–1383. (Proc. Natl. Acad. Sci. USA). 4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  234. Winkler F.K., D'Arcy A., Hunziker W. Structure of human pancreatic lipase. Nature. 1990;343(6260):771–774. doi: 10.1038/343771a0. [DOI] [PubMed] [Google Scholar]
  235. Wishart D.S., Sykes B.D., Richards F.M. The chemical shift index: A fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry. 1992;31:1647–1651. doi: 10.1021/bi00121a010. [DOI] [PubMed] [Google Scholar]
  236. Wishart D.S., Willard L., Sykes B.D. 1994. Vadar. In preparation. [Google Scholar]
  237. Witkowski A., Witkowska H.E., Smith S. Reengineering the specificity of a serine active-site enzyme. Two active-site mutations convert a hydrolase to a transferase. J. Biol. Chem. 1994;269(1):379. [PubMed] [Google Scholar]
  238. Woodcock S., Mornon J.P., Henrissat B. Detection of secondary structure elements in proteins by hydrophobic cluster analysis. Protein Eng. 1992;5(7):629–635. doi: 10.1093/protein/5.7.629. [DOI] [PubMed] [Google Scholar]
  239. Woolley G.A., Wallace B.A. Model ion channels: gramicidin and alamethicin. J. Membr. Biol. 1992;129:109–136. doi: 10.1007/BF00219508. [DOI] [PubMed] [Google Scholar]
  240. Wüthrich K. John Wiley & Sons; New York: 1986. NMR of Proteins and Nucleic Acids. [Google Scholar]
  241. Xu M.-Q., Southworth M.W., Mersha F.B., Hornstra L.J., Perler F.B. In vitro protein splicing of purified precursor and the identification of a branched intermediate. Cell. 1993;75:1371–1377. doi: 10.1016/0092-8674(93)90623-x. [DOI] [PubMed] [Google Scholar]
  242. Yang A.-S., Gunner M.R., Sampogna R., Sharp K., Honig B. On the calculation of pKa's in proteins. Proteins Struct. Funct. Genet. 1993;15:252–265. doi: 10.1002/prot.340150304. [DOI] [PubMed] [Google Scholar]
  243. Yoshimura S., Onozawa T., Mizoguchi J., Suemizu H., Moriuchi T., Watanabe K. Vol. 1990. 1990. Molecular cloning of cDNA coding for rat plasma glutathione peroxidase; pp. 71–72. (Nucleic Acids Symp. Ser.). 22. [PubMed] [Google Scholar]
  244. Zauhar R.J., Morgan R.S. A new method for computing the macromolecular electric potential. J. Mol. Biol. 1985;186:815–820. doi: 10.1016/0022-2836(85)90399-7. [DOI] [PubMed] [Google Scholar]
  245. Zhang C.T., Chou K.C. An optimization approach to predicting protein structural class from amino acid composition. Protein Sci. 1992;1(3):401–408. doi: 10.1002/pro.5560010312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  246. Zhou G., Xu X., Zhang C.T. A weighting method for predicting protein structural class from amino acid composition. Eur. J. Biochem. 1992;210(3):747–749. doi: 10.1111/j.1432-1033.1992.tb17476.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Biotechnology are provided here courtesy of Elsevier

RESOURCES