Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2000 Dec 4;20(9):795–798. doi: 10.1016/0145-2126(95)00150-6

Adhesion molecules in acute myeloid leukemia

Elisabeth Paietta 1,
PMCID: PMC7173254  PMID: 8947591

Abstract

That adhesion molecules play a major role in the regulation of normal hematopoiesis is suggested by the abundance of these molecules present on early bone marrow progenitor cells and their differential pattern of expression at discrete stages of differentiation along the various cell lineages. In particular, precursor cell matrix/endothelial interactions determine retainment or release of hematopoietic cells from the bone marrow microenvironment. Consequently, changes in the affinity or quantitative expression of adhesion molecules on either the bone marrow stroma or the blood cell precursor component —during normal development or due to activation or a malignant process —will affect cell attachment. Adhesion molecules, therefore, are modulator molecules which alter the biological behavior of normal or leukemic hematopoietic cells, primarily in terms of migration and localization properties, although they also participate in many other cell functions such as cytotoxicity, antigen presentation and binding of viruses or cancer cells. Several membrane-bound adhesion molecules and, in some instances, their soluble counterparts which may be biologically active, have been described in acute myeloid leukemia. The potential diagnostic or physiological significance of leukocyte antigens with adhesive properties will be addressed in this comment.

Keywords: Adhesion molecules, acute myeloid leukemia

Footnotes

Comment on: Kawada H., Fukuda R., Yoshida M., Takei M., Kobayashi N., Masumoto A., Ogawa Y., Sasao T., Kubota N., Watanabe S., Umeda Y., Yamauchi K., Yonekura S. & Ichikawa Y. (1995) Clinical significance of LFA-1 expression in adult acute myeloid leukemia. Leukemia Res.20, 327.

References

  • 1.Paietta E. Immunobiology of acute leukemia. In: Wiernik P.H., Canellos G.P., Kyle R.A., Dutcher J.P., editors. Neoplastic Diseases of the Blood. 3rd Edition. Churchill Livingstone; New York: 1995. pp. 211–247. [Google Scholar]
  • 2.Schlossman S.F., Boumsell L., Gilks W., Harlan J.M., Kishimoto T., Morimoto C., Ritz J., Shaw S., Silverstein R., Springer T., Tedder T.F., Todd R.F. Oxford University Press; Oxford, U.K: 1995. (Leucocyte Typing V.). [Google Scholar]
  • 3.Freeman S.D., Kelm S., Barber E.K., Cracker P.R. Characterization of CD33 as a new member of the sialoadhesin family of cellular interaction molecules. Blood. 1995;85:2005. [PubMed] [Google Scholar]
  • 4.Kawada H., Fukuda R., Yoshida M., Takei M., Kobayashi N., Masumoto A., Ogawa Y., Sasao T., Kubota N., Watanabe S., Umeda Y., Yamauchi K., Yonekura S., Ichikawa Y. Clinical significance of LFA-1 expression in adult acute myeloid leukemia. Leukemia Res. 1995;20:327. doi: 10.1016/0145-2126(95)00113-1. [DOI] [PubMed] [Google Scholar]
  • 5.Tallman M.S., Hakimian D., Shaw J.M., Lissner G.S., Russell E.J., Variakojis D. Granulocytic sarcoma is associated with the 8;21 translocation in acute myeloid leukemia. J. Clin. Oncol. 1993;11:690. doi: 10.1200/JCO.1993.11.4.690. [DOI] [PubMed] [Google Scholar]
  • 6.Reuss-Borst M.A., Ning Y., Klein G., Müller C.A. The vascular cell adhesion molecule (VCAM-1) is expressed on a subset of lymphoid and myeloid leukemias. Br. J. Haematol. 1995;89:299. doi: 10.1111/j.1365-2141.1995.tb03304.x. [DOI] [PubMed] [Google Scholar]
  • 7.Cavenagh J.D., Gordon-Smith E.C., Gibson F.M., Gordon M.Y. Acute myeloid leukemia blast cells bind to human endothelium in vitro utilizing E-selectin and vascular cell adhesion molecule-1 (VCAM-1) Br. J. Haematol. 1993;85:285. doi: 10.1111/j.1365-2141.1993.tb03168.x. [DOI] [PubMed] [Google Scholar]
  • 8.Scott A.A., Head D.R., Kopecky K.J., Appelbaum F.R., Theil K.S., Grever M.R., Chen I.-M., Whittaker M.H., Griffith B.B., Licht J.D., Waxman S., Whalen M.M., Bankhurst A.D., Richter L.C., Grogan T.M., Willman C.L. HLA-DR−, CD33+, CD56+, CD16− myeloid/natural killer cell acute leukemia: a previously unrecognized form of acute leukemia potentially misdiagnosed as French-American-British acute myeloid leukemia-M3. Blood. 1994;84:244. [PubMed] [Google Scholar]
  • 9.Paietta E., Gallagher R.E., Wiernik P.H. Myeloid/natural killer cell acute leukemia: a previously unrecognized form of acute leukemia potentially misdiagnosed as FAB-M3 acute myeloid leukemia. Blood. 1994;84:2824. [PubMed] [Google Scholar]
  • 10.Reuss-Borst M.A., Klein G., Waller H.D., Müller C.A. Differential expression of adhesion molecules in acute leukemia. Leukemia. 1995;9:869. [PubMed] [Google Scholar]
  • 11.Carlos T.M., Harlan J.M. Leukocyte-endothelial adhesion molecules. Blood. 1994;84:2068. [PubMed] [Google Scholar]
  • 12.Di Noto R., Schiavone E.M., Ferrara F., Manzo C., Lo Pardo C., Del Vecchio L. Expression and ATRA-driven modulation of adhesion molecules in acute promyelocytic leukemia. Leukemia. 1994;8:1900. [PubMed] [Google Scholar]
  • 13.Grignani F., Ferrucci P.F., Testa U., Talamo G., Fagioli M., Alcalay M., Mencarelli A., Grignani F., Peschle C., Nicoletti I., Pelicci P.G. The acute promyelocytic leukemia-specific PML-RARα fusion protein inhibits differentiation and promotes survival of myeloid precursor cells. Cell. 1993;74:423. doi: 10.1016/0092-8674(93)80044-f. [DOI] [PubMed] [Google Scholar]
  • 14.Shipp M.A., Look A.T. Hematopoietic differentiation antigens that are membrane-associated enzymes: cutting is the key? Blood. 1993;82:1052. [PubMed] [Google Scholar]
  • 15.Menrad A., Speicher D., Wacker J., Herlyn M. Biochemical and functional characterization of aminopeptidase N expressed by human melanoma cells. Cancer Res. 1993;53:1450. [PubMed] [Google Scholar]
  • 16.Saiki I., Fujii H., Yoneda J., Abe F., Nakajima M., Tsuruo T., Azuma I. Role of aminopeptidase N (CD13) in tumor cell invasion and extracellular matrix degeneration. Intl J. Cancer. 1993;54:137. doi: 10.1002/ijc.2910540122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Vahdat L., Maslak P., Miller W.H., Jr, Eardley A., Heller G., Scheinberg D.A., Warrell R.P., Jr Early mortality and the retinoic acid syndrome in acute promyelocytic leukemia: impact of leukocytosis, low-dose chemotherapy, PML/RAR-α isoform, and CD13 expression in patients treated with all-trans retinoic acid. Blood. 1994;84:3843. [PubMed] [Google Scholar]
  • 18.Adriaansen H.J., Boekhorst P.A.W.te, Hagemeijer A.M., Schoot C.E., van der Delwel H.R., Dongen J.J.M.van. Acute myeloid leukemia M4 with bone marrow eosinophilia (M4Eo) and inv(16) (p13q22) exhibits a specific immunophenotype with CD2 expression. Blood. 1993;81:3043. [PubMed] [Google Scholar]
  • 19.Paietta E., Wiernik P.H., Andersen J., Bennett J., Yunis J. Acute myeloid leukemia M4 with inv(16) (p13q22) exhibits a specific immunophenotype with CD2 expression. Blood. 1993;82:2595. [PubMed] [Google Scholar]
  • 20.Beekhuizen H., Blokland I., Furth R.van. Cross-linking of CD14 molecules on monocytes results in a CD11/CD18- and ICAM-I-dependent adherence to cyto-kine-stimulated human endothelial cells. J. Immunol. 1993;150:950. [PubMed] [Google Scholar]
  • 21.Paietta E., Andersen J., Rowe J.M., Cassileth P.A., Wiernik P.H. Myeloid blast cell maturation determines response in adult de novo acute myeloid leukemia (AML): a response-driven antigen expression analysis in 382 Eastern Cooperative Oncology Group (ECOG) patients. Am. Soc. Clin. Oncol. 1995;14:86. [Google Scholar]
  • 22.Hakomori S. Lex and related structures as adhesion molecules. Histochem. J. 1992;24:771. doi: 10.1007/BF01046348. [DOI] [PubMed] [Google Scholar]
  • 23.Norgard K.E., Moore K.L., Diaz S., Stults N.L., Ushiyama S., McEver R.P., Cummings R.D., Varki A. Characterization of a specific ligand for P-selectin on myeloid cells. J. Biol. Chem. 1993;268:12764. [PubMed] [Google Scholar]
  • 24.Baumhueter S., Singer M.S., Henzel W., Hemmerich S., Renz M., Rosen S.D., Lasky L.A. Binding of l-selectin to the vascular sialomucin CD34. Science. 1993;262:436. doi: 10.1126/science.7692600. [DOI] [PubMed] [Google Scholar]
  • 25.Skacel P.O., Edwards A.J., Harrison C.T., Watkins W.M. Enzymic control of the expression of the X determinant (CD15) in human myeloid cells during maturation: the regulatory role of 6′-sialyltransferase. Blood. 1991;78:1452. [PubMed] [Google Scholar]
  • 26.Sueyoshi S., Tsuboi S., Sawada-Hirai R., Dang U.N., Lowe J.B., Fukuda M. Expression of distinct fucosylated oligosaccharides and carbohydrate-mediated adhesion efficiency directed by two different α-1, 3-fucosyltransferases. J. Biol. Chem. 1994;269:32342. [PubMed] [Google Scholar]
  • 27.Paietta E., Andersen J., Gallagher R., Bennett J., Yunis J., Cassileth P., Rowe J., Wiernik P.H. The immunophenotype of acute promyelocytic leukemia (APL): an ECOG study. Leukemia. 1994;8:1108. [PubMed] [Google Scholar]
  • 28.Majdic O., Stöckl J., Pickl W.F., Bohuslav J., Strobl H., Scheinecker C., Stockinger H., Knapp W. Signaling and induction of enhanced cytoadhesiveness via the hematopoietic progenitor cell surface molecule CD34. Blood. 1994;83:1226. [PubMed] [Google Scholar]
  • 29.Paietta E., Andersen A., Yunis J., Rowe J. M., Cassileth P. A. & Wiernik P. H. Expression of the multidrug-resistance gene product, P-glycoprotein, in adult acute myeloid leukemia: association with stem cell antigen CD34 and specific cytogenetic abnormalities. Proc. 9th Symp. Mol. Biol. Hematopoiesis (In press).
  • 30.Berman E., McBride M. Comparative cellular pharmacology of daunorubicin and idarubicin in human multidrug-resistant leukemia cells. Blood. 1992;79:3267. [PubMed] [Google Scholar]

Articles from Leukemia Research are provided here courtesy of Elsevier

RESOURCES