Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Apr 16;56(5):801–813. doi: 10.1016/0092-8674(89)90685-5

Rapid redistribution of Golgi proteins into the ER in cells treated with brefeldin A: Evidence for membrane cycling from Golgi to ER

Jennifer Lippincott-Schwartz 1, Lydia C Yuan 1, Juan S Bonifacino 1, Richard D Klausner 1
PMCID: PMC7173269  PMID: 2647301

Abstract

In cells treated with brefeldin A (BFA), movement of newly synthesized membrane proteins from the endoplasmic reticulum (ER) to the Golgi apparatus was blocked. Surprisingly, the glycoproteins retained in the ER were rapidly processed by cis/medial Golgi enzymes but not by trans Golgi enzymes. An explanation for these observations was provided from morphological studies at both the light and electron microscopic levels using markers for the cis/medial and trans Golgi. They revealed a rapid and dramatic redistribution to the ER of components of the cis/medial but not the trans Golgi in response to treatment with BFA. Upon removal of BFA, the morphology of the Golgi apparatus was rapidly reestablished and proteins normally transported out of the ER were efficiently and rapidly sorted to their final destinations. These results suggest that BFA disrupts a dynamic membrane-recycling pathway between the ER and cis/medial Golgi, effectively blocking membrane transport out of but not back to the ER.

References

  1. Bonifacino J.S., Chen C., Lippincott-Schwartz J., Klausner R.D. Vol. 85. 1988. Subunit interactions within the T cell antigen receptor: clues from the study of partial complexes; pp. 6929–6933. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brands R., Snider M., Yukinobu H., Park S., Gelboin H., Rothman J. Retention of membrane proteins by the endoplasmic reticulum. J. Cell Biol. 1985;101:1724–1734. doi: 10.1083/jcb.101.5.1724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Deutscher S., Creek K., Merion M., Hirschberg C. Vol. 80. 1983. Subfractionation of rat liver Golgi apparatus: separation of enzyme activities involved in the biosynthesis of the phosphomannosyl recognition marker in lysosomal enzymes; pp. 3938–3942. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dunphy W.G., Rothman J.E. Compartmentation of asparagine-linked oligosaccharide processing in the Golgi apparatus. J. Cell Biol. 1983;97:270–275. doi: 10.1083/jcb.97.1.270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Elbein A., Solf R., Dorling P., Vosbeck K. Vol. 78. 1981. Swainsonine: an inhibitor of glycoprotein processing; pp. 7393–7397. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Farquhar M.G. Progress in unraveling pathways of Golgi traffic. Annu. Rev. Cell Biol. 1985;1:447–488. doi: 10.1146/annurev.cb.01.110185.002311. [DOI] [PubMed] [Google Scholar]
  7. Harri E., Loeffler W., Sigg H.P., Stahelin H., Tamm H. Die Konstitution von Brefeldin A. Helv. Chim. Acta. 1963;46:1235–1243. [Google Scholar]
  8. Hedrick S.M., Matis L.A., Hecht T.T., Samelson K.E., Longo D.L., Heber-Katz E., Schwartz R.H. The fine specificity of antigen and la determinant recognition by T cell hybridoma clones specific for pigeon cytochrome C. Cell. 1982;30:141–152. doi: 10.1016/0092-8674(82)90020-4. [DOI] [PubMed] [Google Scholar]
  9. Kornfeld R., Kornfeld S. Assembly of asparagine-linked oligosaccharides. Annu. Rev. Biochem. 1985;54:631–664. doi: 10.1146/annurev.bi.54.070185.003215. [DOI] [PubMed] [Google Scholar]
  10. Leo O., Foo M., Sachs D.H., Samelson L.E., Bluestone J.A. Vol. 84. 1987. Identification of a monoclonal antibody specific for a murine T3 polypeptide; pp. 1374–1378. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lewis M.J., Mazzarella R.A., Green M. Structure and assembly of the endoplasmic reticulum. The synthesis of three major endoplasmic reticulum proteins during a lipopolysaccharide-induced differentiation of murine lymphocytesJ. Biol. Chem. 1985;260:3050–3057. [PubMed] [Google Scholar]
  12. Lippincott-Schwartz J., Bonifacino J.S., Yuan L.C., Klausner R.D. Degradation from the endoplasmic reticulum: disposing of newly synthesized proteins. Cell. 1988;54:209–220. doi: 10.1016/0092-8674(88)90553-3. [DOI] [PubMed] [Google Scholar]
  13. Louvard D., Reggio H., Warren G. Antibodies to the Golgi complex and the rough endoplasmic reticulum. J. Cell Biol. 1982;92:92–106. doi: 10.1083/jcb.92.1.92. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. McLean I.W., Nakane P.K. Periodate-lysine-paraformal-dehyde fixative. A new fixative for immunoelectron microscopyJ. Histochem. Cytochem. 1974;22:1077–1083. doi: 10.1177/22.12.1077. [DOI] [PubMed] [Google Scholar]
  15. Minami Y., Weissman A.M., Samelson L.E., Klausner R.D. Vol. 84. 1987. Building a multichain receptor: synthesis, degradation and assembly of the T cell antigen receptor; pp. 2688–2692. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Misumi Y., Misumi Y., Miki K., Takatsuki A., Tamura G., Ikehara Y. Novel blockade by brefeldin A of intracellular transport of secretory proteins in cultured rat hepatocytes. J. Biol. Chem. 1986;261:11398–11403. [PubMed] [Google Scholar]
  17. Moremen K., Touster O. Biosynthesis and modification of Golgi mannosidase II in HeLa and 3T3 cells. J. Biol. Chem. 1985;260:6654–6662. [PubMed] [Google Scholar]
  18. Oda K., Hirose S., Takami N., Misumi Y., Takatsuki A., Ikehara Y. Brefeldin A arrests the intracellular transport of a precursor of complement C3 before its conversion site in rat hepatocytes. FEBS Lett. 1987;214:135–138. doi: 10.1016/0014-5793(87)80028-5. [DOI] [PubMed] [Google Scholar]
  19. Pelham H.R.B. Evidence that luminal ER proteins are sorted from secreted proteins in a post-ER compartment. EMBO J. 1988;7:913–918. doi: 10.1002/j.1460-2075.1988.tb02896.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Perkel V., Liu A., Miura Y., Magner J. The effects of brefeldin A on the high mannose oligosaccharides of mouse thysotropin, free α-subunits and total glycoproteins. Endocrinology. 1988;123:310–318. doi: 10.1210/endo-123-1-310. [DOI] [PubMed] [Google Scholar]
  21. Rothman J.E. The Golgi apparatus: two organelles in tandem. Science. 1981;213:1212–1219. doi: 10.1126/science.7268428. [DOI] [PubMed] [Google Scholar]
  22. Samelson L.E., Schwartz R.H. T cell clone-specific alloantisera that inhibit or stimulate antigen-induced T cell activation. J. Immunol. 1983;131:2645–2650. [PubMed] [Google Scholar]
  23. Samelson L.E., Germain R., Schwartz R.H. Vol. 80. 1983. Monoclonal antibodies against the antigen receptor on a cloned T cell hybrid; pp. 6972–6976. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Samelson L.E., Harford J.B., Klausner R.D. Identification of the components of a murine T cell antigen receptor complex. Cell. 1985;43:223–231. doi: 10.1016/0092-8674(85)90027-3. [DOI] [PubMed] [Google Scholar]
  25. Saraste J., Kuismanen E. Pre- and post-Golgi vacuoles operate in the transport of Semliki forest virus membrane glycoproteins to the cell surface. Cell. 1984;38:535–549. doi: 10.1016/0092-8674(84)90508-7. [DOI] [PubMed] [Google Scholar]
  26. Saraste J., Palade G.E., Farquhar M.G. Vol. 83. 1986. Temperature-sensitive steps in the transport of secretory proteins through the Golgi complex in exocrine pancreatic cells; pp. 6425–6429. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Schweizer A., Fransen J., Bachi T., Ginsel L., Hauri H. Identification, by a monoclonal antibody, of a 53 kD protein associated with a tubulo-vesicular compartment at the cis-side of the Golgi apparatus. J. Cell Biol. 1988;107:1643–1653. doi: 10.1083/jcb.107.5.1643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Snider M., Rogers O. Membrane traffic in animal cells: cellular glycoproteins return to the site of Golgi mannosidase I. J. Cell Biol. 1986;103:265–275. doi: 10.1083/jcb.103.1.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sussman J.J., Bonifacino J.S., Lippincott-Schwartz J., Weissman A.M., Saito T., Klausner R.D., Ashwell J.D. Failure to synthesize the T cell CD3-ζ chain: structure and function of a partial T cell receptor complex. Cell. 1988;52:85–95. doi: 10.1016/0092-8674(88)90533-8. [DOI] [PubMed] [Google Scholar]
  30. Takatsuki A., Tamura G. Brefeldin A, a specific inhibitor of intracellular translocation of vesicular stomatitis virus G protein: intracellular accumulation of high mannose type G protein and inhibition of its cell surface expression. Agric. Biol. Chem. 1985;49:899–902. [Google Scholar]
  31. Tarentino A.L., Maley F. Purification and properties of an endo-β-acetylglucosaminidase from Streptomyces griseus. J. Biol. Chem. 1974;249:811–816. [PubMed] [Google Scholar]
  32. Tartakoff A., Vassalli P. Lectin-binding sites as markers of Golgi subcompartment: proximal-to-distal maturation of oligosaccharides. J. Cell Biol. 1983;97:1243–1248. doi: 10.1083/jcb.97.4.1243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Tooze S., Tooze J., Warren G. Site of addition of N-acetylgalactosamine to the E1 glycoprotein of mouse hepatitis virus-A59. J. Cell Biol. 1988;106:1475–1487. doi: 10.1083/jcb.106.5.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Tulsiani D.R.P., Harris T., Touster O. Swainsonine inhibits the biosynthesis of complex glycoproteins by inhibition of Golgi mannosidase II. J. Biol. Chem. 1982;257:7936–7939. [PubMed] [Google Scholar]
  35. Virtanen I., Ekblom P., Laurila P. Subcellular compartmentalization of saccharide moieties in cultured normal and malignant cells. J. Cell Biol. 1980;85:429–434. doi: 10.1083/jcb.85.2.429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Warren G. Signals and salvage sequences. Nature. 1987;327:17–18. doi: 10.1038/327017a0. [DOI] [PubMed] [Google Scholar]
  37. Wieland F.T., Gleason M.L., Serafini T.A., Rothman J.E. The rate of bulk flow from the endoplasmic reticulum to the cell surface. Cell. 1987;50:289–300. doi: 10.1016/0092-8674(87)90224-8. [DOI] [PubMed] [Google Scholar]
  38. Yuan L.C., Barriocanal J.G., Bonifacino J.S., Sandoval I.V. Two integral membrane proteins located in the cis-middle and trans-part of the Golgi system acquire sialylated N-linked carbohydrates and display different turnovers and sensitivity to cAMP-dependent phosphorylation. J. Cell Biol. 1987;105:215–227. doi: 10.1083/jcb.105.1.215. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Cell are provided here courtesy of Elsevier

RESOURCES