Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2003 Jan 16;60(3):241–260. doi: 10.1016/0079-6107(93)90016-D

Distinctive features of foot-and-mouth disease virus, a member of the picornavirus family; aspects of virus protein synthesis, protein processing and structure

Graham J Belsham 1
PMCID: PMC7173301  PMID: 8396787

The content is available as a PDF (1.7 MB).

References

  1. Acharya R., Fry E., Stuart D.I., Fox G., Rowlands D., Brown F. The three-dimensional structure of foot and mouth disease virus at 2.9 åA. Nature. 1989;337:709–716. doi: 10.1038/337709a0. [DOI] [PubMed] [Google Scholar]
  2. Alonso M.A., Carrasco L. Reversion by hypotonic medium of the shutoff of protein synthesis induced by encephalomyocarditis virus. J. Virol. 1981;37:535–540. doi: 10.1128/jvi.37.2.535-540.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Andino R., Rieckhof G.E., Baltimore D. A functional ribonucleoprotein complex forms around the 5′ end of poliovirus RNA. Cell. 1990;63:369–380. doi: 10.1016/0092-8674(90)90170-j. [DOI] [PubMed] [Google Scholar]
  4. Ansardi D.C., Porter D.C., Morrow C.D. Myristoylation of poliovirus capsid precursor-P1 is required for assembly of subviral particles. J. Virol. 1992;66:4556–4563. doi: 10.1128/jvi.66.7.4556-4563.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Belsham G.J. Dual initiation sites of protein synthesis on foot-and-mouth disease virus RNA are selceted following internal entry and scanning of ribosomes in vivo. EMBO J. 1992;11:1105–1110. doi: 10.1002/j.1460-2075.1992.tb05150.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Belsham G.J., Abrams C.C., King A.M.Q., Roosien J., Vlak J.M. Myristoylation of foot-and-mouth disease virus capsid protein precursors is independent of other viral proteins and occurs in both mammalian and insect cells. J. gen. Virol. 1991;72:747–751. doi: 10.1099/0022-1317-72-3-747. [DOI] [PubMed] [Google Scholar]
  7. Belsham G.J., Brangwyn J.K. A region of the 5′ noncoding region of foot-and-mouth disease virus RNA directs efficient internal initiation of protein synthesis within cells: involvement with the role of L protease in translational control. J. Virol. 1990;64:5389–5395. doi: 10.1128/jvi.64.11.5389-5395.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Belsham G.J., Brangwyn J.K., Ryan M.D., Abrams C.C., King A.M.Q. Intracellular expression and processing of foot-and-mouth disease virus capsid precursors using vaccinia virus vectors: influence of the L protease. Virology. 1990;176:524–530. doi: 10.1016/0042-6822(90)90022-j. [DOI] [PubMed] [Google Scholar]
  9. Bergelson J.M., Shepley M.P., Chan B.M.C., Hemler M.E., Finberg R.W. Identification of the integrin VLA-2 as a receptor for echovirus 1. Science. 1992;255:1718–1720. doi: 10.1126/science.1553561. [DOI] [PubMed] [Google Scholar]
  10. Brown E.A., Day S.P., Jansen R.W., Lemon S.M. The 5′ nontranslated region of hepatitis A virus RNA—secondary structure and elements required for translation in vitro. J. Virol. 1991;65:5828–5838. doi: 10.1128/jvi.65.11.5828-5838.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chow M., Newman J.F.E., Filman D., Hogle J.M., Rowlands D., Brown F. Myristoylation of picornavirus capsid protein VP4 and its structural significance. Nature. 1987;327:482–486. doi: 10.1038/327482a0. [DOI] [PubMed] [Google Scholar]
  12. Clarke B.E., Brown A.L., Currey K.M., Newton S.E., Rowlands D.J., Carroll A.R. Potential secondary and tertiary structure in the genomic RNA of foot-and-mouth disease virus. Nucleic Acids Res. 1987;15:7067–7079. doi: 10.1093/nar/15.17.7067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Davies M.V., Kaufman R.J. The sequence context of the initiation codon in the encephalomyocarditis virus leader modulated efficiency of internal translation initiation. J. Virol. 1992;66:1924–1932. doi: 10.1128/jvi.66.4.1924-1932.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. De la Torre J.C., Martinez-Salas E., Diez J., Villaverde A., Gebauer F., Rocha E., Davila M., Domingo E. Coevolution of cells and viruses in a persistent infection of foot-and-mouth disease virus in cell culture. J. Virol. 1988;62:2050–2058. doi: 10.1128/jvi.62.6.2050-2058.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Devaney M.A., Vakharia V.N., Lloyd R.E., Ehrenfeld E., Grubman M.J. Leader protein of foot-and-mouth disease virus is required for cleavage of the p220 component of the cap binding protein complex. J. Virol. 1988;62:4407–4409. doi: 10.1128/jvi.62.11.4407-4409.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Diez J., Hofner M., Domingo E., Donaldson A.I. Foot-and-mouth disease virus strains isolated from persistently infected cell cultures are attenuated for mice and cattle. Virus Res. 1991;18:3–8. doi: 10.1016/0168-1702(90)90084-o. [DOI] [PubMed] [Google Scholar]
  17. Di Marchi R., Brooke G., Gale C., Cracknell V., Doel T., Mowat N. Protection of cattle against foot-and-mouth disease by a synthetic peptide. Science. 1986;232:639–641. doi: 10.1126/science.3008333. [DOI] [PubMed] [Google Scholar]
  18. Duke G.M., Osorio J.E., Palmenberg A.C. Attenuation of mengovirus through genetic engineering of the 5′ noncodingpoly(C) tract. Nature (Lond.) 1990;343:474–476. doi: 10.1038/343474a0. [DOI] [PubMed] [Google Scholar]
  19. Duke G.M., Hoffman M., Palmenberg A.C. Sequence and structural elements that contribute to efficient encephalomyocarditis virus RNA translation. J. Virol. 1992;66:1602–1609. doi: 10.1128/jvi.66.3.1602-1609.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Earle J.A.P., Skuce R.A., Fleming C.S., Hoey E.M., Martin S.J. The complete nucleotide sequence of a bovine enterovirus. J. gen. Virol. 1988;69:253–263. doi: 10.1099/0022-1317-69-2-253. [DOI] [PubMed] [Google Scholar]
  21. Etchison D., Milburn S., Edery I., Sonenberg N., Hershey J.W.B. Inhibition of HeLa cell protein synthesis following poliovirus infection correlates with the proteolysis of a 220,000 dalton polypeptide associated with eukaryotic initiation factor 3 and a cap-binding complex. J. biol. Chem. 1982;257:14806–14810. [PubMed] [Google Scholar]
  22. Escarmis E., Toja M., Medina M., Domingo E. Modifications of the 5′ untranslated region of foot-and-mouth disease virus after prolonged persistence in cell culture. Virus Res. 1992;26:113–125. doi: 10.1016/0168-1702(92)90151-x. [DOI] [PubMed] [Google Scholar]
  23. Evstafieva A.G., Ugarova T.Y., Chernov B.K., Shatsky I.N. A complex RNA sequence determines the internal initiation of encephalomyocarditis RNA translation. Nucleic Acids Res. 1990;19:665–671. doi: 10.1093/nar/19.3.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Falk M.M., Sobrino F., Beck E. VPg gene amplification correlates with infective particle formation in foot-and-mouth disease virus. J. Virol. 1992;66:2251–2260. doi: 10.1128/jvi.66.4.2251-2260.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Forss S., Strebel K., Beck E., Schaller H. Nucleotide sequence and genome organization of foot-and-mouth disease virus. Nucleic Acids Res. 1984;12:6587–6601. doi: 10.1093/nar/12.16.6587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Fox G., Parry N.R., Barnett P.V., McGinn B., Rowlands D., Brown F. The cell attachment site on foot and mouth disease virus includes the sequence RGD. J. gen. Virol. 1989;70:625–637. doi: 10.1099/0022-1317-70-3-625. [DOI] [PubMed] [Google Scholar]
  27. Fry E., Logan D., Acharya R., Fox G., Rowlands D., Brown F., Stuart D.I. Architecture and topography of an aphthovirus. Semin. Virol. 1990;1:439–451. [Google Scholar]
  28. Garciablanco M.A., Jamison S.F., Sharp P.A. Identification and purification of a 62,000-dalton protein that binds specifically to the polypyrimidine tract of introns. Gene Dev. 1989;3:1874–1886. doi: 10.1101/gad.3.12a.1874. [DOI] [PubMed] [Google Scholar]
  29. Gorbalenya A.E., Koonin E.V., Lai M.M.-C. Putative papain-related thiol protease of positive-strand RNA viruses: Identification of rubi-and aphthovirus proteases and delineation of a novel conserved domain associated with proteases of rubi-, alpha- and coronaviruses. FEBS Lett. 1991;288:201–205. doi: 10.1016/0014-5793(91)81034-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Greve J.M., Davis G., Meyer A.M., Forte C.P., Yost S.C., Marlor C.W., Kamarck M.E., McClelland A. The major human rhinovirus receptor is ICAM-1. Cell. 1989;56:839–847. doi: 10.1016/0092-8674(89)90688-0. [DOI] [PubMed] [Google Scholar]
  31. Hambidge S.J., Sarnow P. Translational enhancement of the poliovirus 5′ non-coding region mediated by virus-encoded polypeptide 2A. Proc. natl. Acad. Sci. U.S.A. 1992;89:10272–10276. doi: 10.1073/pnas.89.21.10272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Harber J.J., Bradley J., Anderson C.W., Wimmer E. Catalysis of poliovirus VP0 maturation cleavage is not mediated by serine 10 of VP2. J. Virol. 1991;65:326–334. doi: 10.1128/jvi.65.1.326-334.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Harris T.J.R., Brown F. Biochemical analysis of a virulent and an avirulent strain of foot-and-mouth disease virus. J. gen. Virol. 1977;34:87–105. doi: 10.1099/0022-1317-34-1-87. [DOI] [PubMed] [Google Scholar]
  34. Hershey J.W.B. Translational control in mammalian cells. A. Rev. Biochem. 1991;60:717–755. doi: 10.1146/annurev.bi.60.070191.003441. [DOI] [PubMed] [Google Scholar]
  35. Hogle J.M., Chow M., Filman D.J. The three dimensional structure of poliovirus at 2.9 åA resolution. In: Semler B.L., Enrenfeld E., editors. Science. Molecular Aspects of Picornavirus Infection and Detection. Vol. 229. 1985. 1989. pp. 1358–1365.pp. 51–71. [DOI] [PubMed] [Google Scholar]
  36. Jackson R.J., Howell M.T., Kaminski A. The novel mechanism of picornavirus translation. TIBS. 1990;15:477–483. doi: 10.1016/0968-0004(90)90302-r. [DOI] [PubMed] [Google Scholar]
  37. Jang S.K., Krausslich H.-G., Nicklin M.J.H., Duke G.M., Palmenberg A.C., Wimmer E. A segment of the 5′ non-translated region of encephaloymyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J. Virol. 1988;62:2636–2643. doi: 10.1128/jvi.62.8.2636-2643.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Jang S.K., Wimmer E. Cap-dependent translation of encephalomyocarditis virus RNA: structural elements of the internal ribosomal entry site and involvement of a cellular 57-kD RNA binding protein. Gene Dev. 1990;4:1560–1572. doi: 10.1101/gad.4.9.1560. [DOI] [PubMed] [Google Scholar]
  39. Jang S.K., Pestova T.V., Hellen C.U.T., Witherell G.W., Wimmer E. Cap-independent translation of picornavirus RNAs—structure and function of the internal ribosome entry site. Enzyme. 1990;44:292–309. doi: 10.1159/000468766. [DOI] [PubMed] [Google Scholar]
  40. Jen G., Thach R.E. Inhibition of host translation in encephalomyocarditis virus-infected cells: a novel mechanism. J. Virol. 1982;43:250–261. doi: 10.1128/jvi.43.1.250-261.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Jore J., De Geus B., Jackson R.J., Pouwels P.H., Enger-Valk B.E. Poliovirus 3CD is the active protease for processing of the precursor protein P1 in vitro. J. gen. Virol. 1988;69:1627–1636. doi: 10.1099/0022-1317-69-7-1627. [DOI] [PubMed] [Google Scholar]
  42. Kaminski A., Howell M., Jackson R. Initiation of encephalomyocarditis virus RNA translation: te. EMBO J. 1990;9:3753–3759. doi: 10.1002/j.1460-2075.1990.tb07588.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. King A.M.Q., Sangar D.V., Harris T.J.R., Brown F. Heterogeneity of the genome-linked protein of foot-and-mouth disease virus. J. Virol. 1980;34:627–634. doi: 10.1128/jvi.34.3.627-634.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Kitson J.D.A., McCahon D., Belsham G.J. Sequence analysis of monoclonal antibody resistant mutants of type O foot-and-mouth disease virus: evidence for the involvement of the three surface exposed capsid proteins in four antigenic sites. Virology. 1990;179:26–34. doi: 10.1016/0042-6822(90)90269-w. [DOI] [PubMed] [Google Scholar]
  45. Kitson J.D.A., Burke K.L., Pullen L.A., Belsham G.J., Almond J.W. Chimeric polioviruses that include sequences derived from two independent antigenic sites of foot-and-mouth disease virus (FMDV) induce neutralizing antibodies against FMDV in guinea pigs. J. Virol. 1991;65:3068–3075. doi: 10.1128/jvi.65.6.3068-3075.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Kleina L.G., Grubman M.J. Antiviral effects of a thiol protease inhibitor on foot-and-mouth disease virus. J. Virol. 1992;66:7168–7175. doi: 10.1128/jvi.66.12.7168-7175.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Kozak M. The scanning model for translation: An update. J. Cell Biol. 1989;108:229–241. doi: 10.1083/jcb.108.2.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Kuge S., Kawamura N., Nomoto A. Genetic variation occurring on the genome of an in vitro insertion mutant of poliovirus type-1. J. Virol. 1989;63:1069–1075. doi: 10.1128/jvi.63.3.1069-1075.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Kuhn R., Luz N., Beck E. Functional analysis of the internal initiation site of foot-and-mouth disease virus. J. Virol. 1990;65:4625–4631. doi: 10.1128/jvi.64.10.4625-4631.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Krausslich H.-G., Holscher C., Reuer Q., Harber J., Wimmer E. Myristoylation of the poliovirus polyprotein is required for proteolytic processing of the capsid and for viral infectivity. J. Virol. 1990;64:2433–2436. doi: 10.1128/jvi.64.5.2433-2436.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Krausslich H.-G., Nicklin M.J., Toyoda H., Etchison D., Wimmer E. Poliovirus protease 2A induces cleavage of eucaryotic initiation factor 4F polypeptide p220. J. Virol. 1987;61:2711–2718. doi: 10.1128/jvi.61.9.2711-2718.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Lawson M.A., Semler B.L. Alternate poliovirus nonstructural protein processing cascades generated by primary sites of 3C proteinase cleavage. Virology. 1992;191:309–320. doi: 10.1016/0042-6822(92)90193-s. [DOI] [PubMed] [Google Scholar]
  53. Lewis S.A., Morgan D.O., Grubman M.J. Expression, processing and assembly of foot-and-mouth disease virus capsid structures in heterologous systems: induction of a neutralizing antibody response in guinea pigs. J. Virol. 1991;65:6572–6580. doi: 10.1128/jvi.65.12.6572-6580.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Lloyd R.E., Toyoda H., Etchison D., Wimmer E., Ehrenfeld E. Cleavage of the cap binding protein complex polypeptide p220 is not effected by the second poliovirus protease 2A. Virology. 1986;150:229–303. doi: 10.1016/0042-6822(86)90291-6. [DOI] [PubMed] [Google Scholar]
  55. Lloyd R.E., Grubman M., Ehrenfeld E. Relationship of p220 cleavage during picornavirus infection to 2A protease sequences. J. Virol. 1988;62:4216–4223. doi: 10.1128/jvi.62.11.4216-4223.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Logan D., Abu-Ghazaleh R., Blakemore W., Curry S., Jackson T., King A., Lea S., Lewis R., Newman J., Parry N., Rowlands D., Stuart D., Fry E. The structure of a major immunogenic site on foot-and-mouth disease virus. Nature. 1993;362:566–568. doi: 10.1038/362566a0. [DOI] [PubMed] [Google Scholar]
  57. Luo M., Vriend G., Kamer G., Minor I., Arnold E., Rossmann M.G., Boege U., Scraba D.G., Duke G.M., Palmenberg A.C. The atomic structure of mengovirus at 3.0 Å resolution. Science. 1987;235:182–191. doi: 10.1126/science.3026048. [DOI] [PubMed] [Google Scholar]
  58. Luz N., Beck E. A cellular 57 kDa protein binds to two regions of the internal translation initiation site of foot-and-mouth disease virus. FEBS Lett. 1990;269:311–314. doi: 10.1016/0014-5793(90)81182-n. [DOI] [PubMed] [Google Scholar]
  59. Luz N., Beck E. Interaction of a cellular 57-kilodalton protein with the internal initiation site of foot-and-mouth disease virus. J. Virol. 1991;65:6486–6494. doi: 10.1128/jvi.65.12.6486-6494.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Macejak D.G., Sarnow P. Internal initiation of translation mediated by the 5′ leader of a cellular mRNA. Nature. 1991;353:90–94. doi: 10.1038/353090a0. [DOI] [PubMed] [Google Scholar]
  61. Maynell L.A., Kirkegaard K., Klymkowsky M.W. Inhibition of poliovirus RNA synthesis by brefeldin A. J. Virol. 1992;66:1985–1994. doi: 10.1128/jvi.66.4.1985-1994.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Marc D., Drugeon G., Haenni A.-L., Girard M., van der Werf S. Role of myristoylation of poliovirus capsid protein VP4 as determined by site-directed mutagenesis of its N-terminal sequence. EMBO J. 1989;8:2661–2668. doi: 10.1002/j.1460-2075.1989.tb08406.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Marc D., Masson G., Girard M., van der Werf S. Lack of myristoylation of poliovirus capsid polypeptide VP0 prevents the formation of virions or results in the assembly of noninfectious particles. J. Virol. 1990;64:4099–4107. doi: 10.1128/jvi.64.9.4099-4107.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Medina M., Domingo E., Brangwyn J.K., Belsham G.J. The two species of the foot-and-mouth disease virus leader protein, expressed individually, exhibit the same activities. Virology. 1993;194:355–359. doi: 10.1006/viro.1993.1267. [DOI] [PubMed] [Google Scholar]
  65. Meerovitch K., Pelletier J., Sonenberg N. A cellular protein that binds to the 5′ non-coding region of poliovirus RNA: implications for internal translation initiation. Gene Dev. 1989;3:1026–1034. doi: 10.1101/gad.3.7.1026. [DOI] [PubMed] [Google Scholar]
  66. Mendelsohn C.L., Wimmer E., Racaniello V.R. Cellular receptor for poliovirus: molecular cloning, nucleotide sequence and expression of a new member of the immunoglobulin superfamily. Cell. 1989;56:855–865. doi: 10.1016/0092-8674(89)90690-9. [DOI] [PubMed] [Google Scholar]
  67. Minor P.D. The antigenic structure of picornaviruses. Curr. Top. Microbiol. Immun. 1990;161:122–154. doi: 10.1007/978-3-642-75602-3_5. [DOI] [PubMed] [Google Scholar]
  68. Mosenkis J., Daniels-Mcqueen S., Janovec S., Duncan R., Hershey J.W.B., Grifo J.A., Merrick W.C., Thach R.E. Shutoff of host translation by encephalomyocarditis virus infection does not involve cleavage of the eukaryotic initiation factor 4F polypeptide that accompanies poliovirus infection. J. Virol. 1985;54:643–645. doi: 10.1128/jvi.54.2.643-645.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Nicholson R., Pelletier J., Le S.-Y., Sonenberg N. Structural and functional analysis of the ribosome landing pad of poliovirus type 2: in vivo translation studies. J. Virol. 1991;65:5886–5894. doi: 10.1128/jvi.65.11.5886-5894.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Palmenberg A.C. Proteolytic processing of picornaviral polyproteins. A. Rev. Microbiol. 1990;44:603–623. doi: 10.1146/annurev.mi.44.100190.003131. [DOI] [PubMed] [Google Scholar]
  71. Palmenberg A.C., Parks G.D., Hall D.J., Ingraham R.H., Seng T.W., Pallai P.V. Proteolytic processing of the cardiovirus P2 region: primary 2A/2B cleavage in clone derived precursors. Virology. 1992;190:754–762. doi: 10.1016/0042-6822(92)90913-a. [DOI] [PubMed] [Google Scholar]
  72. Parry N.P., Fox G., Rowlands D., Brown F., Fry E., Acharya R., Logan D., Stuart D. Structural and serological evidence for a novel mechanism of antigenic variation in foot and mouth disease virus. Nature. 1990;347:569–572. doi: 10.1038/347569a0. [DOI] [PubMed] [Google Scholar]
  73. Percy N., Belsham G.J., Brangwyn J.K., Sullivan M., Stone D.M., Almond J.W. Intracellular modifications induced by poliovirus reduce the requirements for structural motifs in the 5′ non-coding region of the genome involved in internal initiation of protein synthesis. J. Virol. 1992;66:1695–1701. doi: 10.1128/jvi.66.3.1695-1701.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Pelletier J., Sonenberg N. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature (Lond.) 1988;334:320–325. doi: 10.1038/334320a0. [DOI] [PubMed] [Google Scholar]
  75. Pilipenko E.V., Blinov V.M., Chernov B.K., Dmitrieva T.M., Agol V.I. Conservation of the secondary structure elements of the 5′ untranslated region of cardio and aphthovirus RNAs. Nucleic Acids Res. 1989;17:5701–5711. doi: 10.1093/nar/17.14.5701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Pleij C.W.A. Pseudoknots—a new motif in the RNA game. TIBS. 1990;15:143–147. doi: 10.1016/0968-0004(90)90214-v. [DOI] [PubMed] [Google Scholar]
  77. Racaniello V.R., Baltimore D. Cloned poliovirus complementary DNA is infectious in mammalian cells. Science. 1981;214:916–918. doi: 10.1126/science.6272391. [DOI] [PubMed] [Google Scholar]
  78. Rossman M.G., Arnold E., Erickson J.W., Frankenberger E.A., Griffiths J.P., Hecht H.-J., Johnson J.E., Kamer G., Luo M., Mosser A.G., Rueckert R.R., Sherry B., Vriend G. The structure of a human common cold virus (rhinovirus 14) and its functional relationship to other picornaviruses. Nature. 1985;317:145–153. doi: 10.1038/317145a0. [DOI] [PubMed] [Google Scholar]
  79. Rueckert R.R. Picornaviridae and their replication. In: Fields B.N., Knipe D.M., Chanock R.M., Hirsch M.S., Melnick J.L., Monath T.P., Roizman B., editors. Virology. 2nd edn. Raven Press; New York: 1990. pp. 507–548. [Google Scholar]
  80. Ryan M.D., Belsham G.J., King A.M.Q. Specificity of enzyme-substrate interactions in foot-and-mouth disease virus polyprotein processing. Virology. 1989;173:35–45. doi: 10.1016/0042-6822(89)90219-5. [DOI] [PubMed] [Google Scholar]
  81. Ryan M.D., King A.M.Q., Thomas G.P. Cleavage of the FMDV polyprotein is mediated by residues located within a 19 amino acid sequence. J. gen. Virol. 1991;72:2727–2732. doi: 10.1099/0022-1317-72-11-2727. [DOI] [PubMed] [Google Scholar]
  82. Sangar D.V., Newton S.E., Rowlands D.J., Clarke B.E. All FMDV serotypes initiate protein synthesis at two separate AUGs. Nucleic Acids Res. 1987;15:3305–3315. doi: 10.1093/nar/15.8.3305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Sarnow P., Bernstein H.D., Baltimore D. Vol. 83. 1986. A poliovirus temperature-sensitive RNA synthesis mutant located in a noncoding region of the genome; pp. 571–575. (Proc. natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Sarnow P. Translation of a glucose-regulated protein 78/immunoglobulin heavy-chain binding protein mRNA is increased in poliovirus-infected cells at a time when cap-dependent translation of cellular mRNAs is inhibited. Proc. natl. Acad. Sci. U.S.A. 1989;86:5795–5799. doi: 10.1073/pnas.86.15.5795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Sherry B., Mosser A.G., Colonno R.J., Rueckert R.R. Use of monoclonal antibodies to identify four neutralization immunogens on a common cold picornavirus, human rhinovirus 14. J. Virol. 1986;57:246–257. doi: 10.1128/jvi.57.1.246-257.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Stanway G. Structure, function and evolution of picornaviruses. J. gen. Virol. 1990;71:2483–2501. doi: 10.1099/0022-1317-71-11-2483. [DOI] [PubMed] [Google Scholar]
  87. Strebel K., Beck E. A second protease of foot-and-mouth disease virus. J. Virol. 1986;58:893–899. doi: 10.1128/jvi.58.3.893-899.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Ten Dam E.B., Pleij C.W.A., Bosch L. RNA pseudoknots: translational frameshifting and read through on viral RNAs. Virus Genes. 1990;4:121–136. doi: 10.1007/BF00678404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Tesar M., Harmon S.A., Summers D.F., Ehrenfeld E. Hepatitis A virus polyprotein synthesis initiates from two alternative AUG codons. Virology. 1992;186:609–618. doi: 10.1016/0042-6822(92)90027-m. [DOI] [PubMed] [Google Scholar]
  90. Thomas A.A.M., Woortmeijer R.J., Barteling S.J., Meloen R.H. Antigenic sites of foot-and-mouth disease virus type A10. J. Virol. 1988;62:2782–2789. doi: 10.1128/jvi.62.8.2782-2789.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Vakharia V.N., Devaney M.A., Moore D.M., Dunn J.J., Grubman M.J. Proteolytic processing of foot-and-mouth disease virus polyproteins expressed in a cell-free system from clone-derived transcripts. J. Virol. 1987;61:3199–3207. doi: 10.1128/jvi.61.10.3199-3207.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Wyckoff E.E., Lloyd R.E., Ehrenfeld E. Relationship of eukaryotic factor 3 to poliovirus-induced p220 cleavage. J. Virol. 1992;66:2943–2951. doi: 10.1128/jvi.66.5.2943-2951.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Xie Q.-C., McCahon D., Crowther J.R., Belsham G.J., McCullough K.C. Neutralization of foot-and-mouth disease virus can be mediated through any of at least three separate antigenic sites. J. gen. Virol. 1987;68:1637–1647. doi: 10.1099/0022-1317-68-6-1637. [DOI] [PubMed] [Google Scholar]
  94. Ypma-Wong M.F., Dewalt P.G., Johnson V.H., Lamb J.G., Semler B.L. Protein 3CD is the major poliovirus proteinase responsible for cleavage of the P1 capsid precursor. Virology. 1988;166:265–270. doi: 10.1016/0042-6822(88)90172-9. [DOI] [PubMed] [Google Scholar]
  95. Zibert A., Maass G., Strebel K., Falk M.M., Beck E. Infectious foot-and-mouth disease virus derived from a cloned full-length cDNA. J. Virol. 1990;64:2467–2473. doi: 10.1128/jvi.64.6.2467-2473.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Progress in Biophysics and Molecular Biology are provided here courtesy of Elsevier

RESOURCES