Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Dec 6;194(2):425–432. doi: 10.1016/0003-2697(91)90252-O

Analytical detection of 9(4)-O-acetylated sialoglycoproteins and gangliosides using influenza C virus

Jean-Claude Manuguerra ∗,1, Catherine DuBois †,, Claude Hannoun
PMCID: PMC7173335  PMID: 1713751

Abstract

The unique glycoprotein of influenza C virus, designated hemagglutinin (HEF), exhibits three functions: hemagglutination, esterase activity, and fusion factor. As the virus uses 9-O-acetylated sialic acid as a high-affinity receptor determinant for attachment to cells, its binding activity was used to reveal O-acetylated sialic acid residues after polyacrylamide gel electrophoresis and transfer onto nitrocellulose sheets of proteins and thin-layer chromatography of lipids. The specificity of the binding for O-acetylated sialoglycoconjugates was investigated. Our results showed that influenza C virus could detect the different forms of the two murine glycophorins which are known to be O-acetylated sialoglycoconjugates. The virus also bound to O-acetylated gangliosides isolated from embryonic chicken brain such as purified O-acetylated NeuAcα(2–8)NeuAcα(2–8)NeuAcα(2–3)Galβ(1–4)Glcβ(1-1)ceramide (GT3). The esterase activity of the HEF protein of influenza C virus was used to unmask the sialic acid. After its deacetylation by the virus enzyme, the O-acetylated GT3 was recognized by a monoclonal antibody which binds only to the nonacetylated derivative. The results presented here show that influenza C virus is a discriminating analytical probe for identifying O-acetylated sialoglycoconjugates directly after Western blotting of proteins and thin-layer chromatography of lipids, thus providing a new analytical tool.

References

  • 1.Vlasak R., Krystal M., Nacht M., Palese P. Virology. 1987;160:419–425. doi: 10.1016/0042-6822(87)90013-4. [DOI] [PubMed] [Google Scholar]
  • 2.Herrler G., Duerkop H., Becht H., Klenk H.-D. J. Gen. Virol. 1988;69:839–846. doi: 10.1099/0022-1317-69-4-839. [DOI] [PubMed] [Google Scholar]
  • 3.Rogers G.N., Herrler G., Paulson J., Klenk H.-D. J. Biol. Chem. 1986;261:5947–5951. [PubMed] [Google Scholar]
  • 4.Herrler G., Klenk H.-D. Virology. 1987;159:102–108. doi: 10.1016/0042-6822(87)90352-7. [DOI] [PubMed] [Google Scholar]
  • 5.Herrler G., Reuter G., Rott R., Klenk H.-D., Schauer R. Biol. Chem. 1987;368:451–454. doi: 10.1515/bchm3.1987.368.1.451. [DOI] [PubMed] [Google Scholar]
  • 6.Herrler G., Rott R., Klenk H.-D., Mueller H.-P., Shukla A.K., Schauer R. EMBO J. 1985;4:1503–1506. doi: 10.1002/j.1460-2075.1985.tb03809.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Schauer R., Reuter G., Stoll S., Posadas Del Rio F., Herrler G., Klenk H.-D. Biol. Chem. 1988;369:1121–1130. doi: 10.1515/bchm3.1988.369.2.1121. [DOI] [PubMed] [Google Scholar]
  • 8.Wang W.-C., Cummings R.D. J. Biol. Chem. 1988;263:4576–4585. [PubMed] [Google Scholar]
  • 9.Hachinohe S., Sagawura K., Nishimura H., Kitame F., Nakamura K. J. Gen. Virol. 1989;70:1288–1292. doi: 10.1099/0022-1317-70-5-1287. [DOI] [PubMed] [Google Scholar]
  • 10.DuBois C., Magnani D.L., Grunwald G.B., Spitalnik S.L., Trisler G.D., Nirenberg M., Ginsburg V. J. Biol. Chem. 1986;261:3826–3830. [PubMed] [Google Scholar]
  • 11.DuBois C., Manuguerra J.-C., Hautecoeur B., Maze J. J. Biol. Chem. 1990;265:2797–2803. [PubMed] [Google Scholar]
  • 12.O'Callaghan R.J., Gohd R.S., Labat D.D. Infect. Immun. 1980;30:500–505. doi: 10.1128/iai.30.2.500-505.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Bradford M. Anal. Biochem. 1976;72:248. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  • 14.Markwell M.A.K., Fox C.F. Biochemistry. 1978;17:4807–4817. doi: 10.1021/bi00615a031. [DOI] [PubMed] [Google Scholar]
  • 15.Markwell M.A.K., Fox C.F. J. Virol. 1980;33:101–109. doi: 10.1128/jvi.33.1.152-166.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Laemmli U.K. Nature. 1970;227:680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  • 17.Andersen J.K. J. Biochem. Biophys. Methods. 1984;10:203–209. doi: 10.1016/0165-022x(84)90040-x. [DOI] [PubMed] [Google Scholar]
  • 18.Svennerholm L., Fredman P. Biochim. Biophys. Acta. 1980;617:97–109. doi: 10.1016/0005-2760(80)90227-1. [DOI] [PubMed] [Google Scholar]
  • 19.Folch J., Lees M., Sloane-Stanley G.H. J. Biol. Chem. 1957;226:497–509. [PubMed] [Google Scholar]
  • 20.Magnani J.L., Smith D.F., Ginsburg V. Anal. Biochem. 1980;109:399–402. doi: 10.1016/0003-2697(80)90667-3. [DOI] [PubMed] [Google Scholar]
  • 21.Hansson G., Karlsson K.-A., Larson G., Stroemberg N., Thurin J., Oervell C., Norrby E. FEBS Lett. 1984;170:15–18. doi: 10.1016/0014-5793(84)81359-9. [DOI] [PubMed] [Google Scholar]
  • 22.Chigorno V., Sonnino S., Ghidoni R., Toffano G., Venerando B., Tettamanti G. Neurochem. Int. 1984;6:191–197. doi: 10.1016/0197-0186(84)90092-5. [DOI] [PubMed] [Google Scholar]
  • 23.Gershoni J.M., Bayer E.A., Wilcher M. Anal. Biochem. 1985;146:59–63. doi: 10.1016/0003-2697(85)90395-1. [DOI] [PubMed] [Google Scholar]
  • 24.Morawiecki A. Biochim. Biophys. Acta. 1964;83:339–347. doi: 10.1016/0926-6526(64)90012-6. [DOI] [PubMed] [Google Scholar]
  • 25.Springer G.F. Biochem. Biophys. Res. Commun. 1967;28:510–513. doi: 10.1016/0006-291x(67)90342-7. [DOI] [PubMed] [Google Scholar]
  • 26.Furthmayr E. J. Supramol. Struct. 1978;9:79–95. doi: 10.1002/jss.400090109. [DOI] [PubMed] [Google Scholar]
  • 27.Sarris A.H., Palade G.E. J. Biol. Chem. 1979;254:6724–6731. [PubMed] [Google Scholar]
  • 28.Sarris A.H., Palade G.E. J. Cell. Biol. 1982;93:583–590. doi: 10.1083/jcb.93.3.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Ulmer J.B., Dolci E.D., Palade G.E. J. Cell Sci. 1989;92:163–171. doi: 10.1242/jcs.92.2.163. [DOI] [PubMed] [Google Scholar]
  • 30.Sarris A.H., Palade G.E. J. Cell Biol. 1982;93:591–603. doi: 10.1083/jcb.93.3.591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Reuter G., Vliegenthart J.F.G., Wember M., Schauer R., Howard R.J. Biochem. Biophys. Res. Commun. 1980;94:567–572. doi: 10.1016/0006-291x(80)91269-3. [DOI] [PubMed] [Google Scholar]
  • 32.Klimas N.G., Caldwell K.E., Whitney P.L., Fletcher M.A. Dev. Comp. Immunol. 1982;6:765–774. [PubMed] [Google Scholar]
  • 33.Hill J.D., Reynolds J.A., Hill R.L. J. Biol. Chem. 1977;252:3791–3798. [PubMed] [Google Scholar]
  • 34.Bhargava A.S., Gottschalk A. Biochim. Biophys. Acta. 1966;127:223–227. doi: 10.1016/0304-4165(66)90492-2. [DOI] [PubMed] [Google Scholar]
  • 35.Van-Den-Eijnden D.H., Schiphorst W.E.C.M., Berger E.G. Biochim. Biophys. Acta. 1983;755:32–36. doi: 10.1016/0304-4165(83)90269-6. [DOI] [PubMed] [Google Scholar]
  • 36.Reuter G., Pfeil R., Stoll S., Schauer R., Kamarling J.P., Versluis C., Vliegenhart J.F.G. Eur. J. Biochem. 1983;134:139–143. doi: 10.1111/j.1432-1033.1983.tb07542.x. [DOI] [PubMed] [Google Scholar]
  • 37.Schauer R. In: 4th ed. Ginsburg V., editor. Vol. 138. Academic Press; San Diego: 1987. pp. 132–137. (Methods in Enzymology). [Google Scholar]
  • 38.Muchmore E.A., Varki A. Science. 1987;236:1293–1295. doi: 10.1126/science.3589663. [DOI] [PubMed] [Google Scholar]
  • 39.Cheresh D.A., Reisfeld R.A., Varki A.P. Science. 1984;225:844–845. doi: 10.1126/science.6206564. [DOI] [PubMed] [Google Scholar]
  • 40.Vlasak R., Luitjes W., Span W., Palese P. 4th ed. Vol. 85. 1988. pp. 4526–4529. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Analytical Biochemistry are provided here courtesy of Elsevier

RESOURCES