Skip to main content
Food Science & Nutrition logoLink to Food Science & Nutrition
. 2020 Mar 21;8(4):2035–2051. doi: 10.1002/fsn3.1491

Antimicrobial resistance of Escherichia coli isolated from retail foods in northern Xinjiang, China

Yingjiao Li 1, Mei Zhang 1, Juan Luo 1, Jiluan Chen 1, Qingling Wang 1, Shiling Lu 1, Hua Ji 1,
PMCID: PMC7174230  PMID: 32328270

Abstract

To determine antimicrobial resistance, 431 samples of retail foods purchased at different supermarkets in Northern Xinjiang were examined in this study. There were 112 Escherichia coli strains that were isolated, with approximately 26% of the samples contaminated by E. coli. The detection rate of E. coli isolated from pork was the highest (59.6%), followed by mutton (52.6%), retail fresh milk (52.4%), duck (36.4%), beef (35.3%), chicken (33.3%), and ready‐to‐eat food (12.9%); the E. coli detection rate for fish and vegetables was <11%. The result showed that the 112 isolates were mostly resistant to tetracycline (52%), followed by ampicillin (42%), compound trimethoprim/sulfamethoxazole (37%), amoxicillin (33%), and nalidixic acid (32%), imipenem resistance was not detected. One hundred isolates carried at least one antimicrobial resistance gene. The detection rate of resistance genes of our study was as follows: tetA (38%), tetB (27%), bla OXA (40%), bla TEM (20%), floR (20%), sul1 (16%), sul2 (27%), aad Ala (19%), aadB (11%), strA (28%), and strB (24%); tetC and bla PSE were not detected. Virulence genes fimC, agg, stx2, fimA, fyuA, papA, stx1, and eaeA were found in 52, 34, 21, 19, 6, 3, 2, and 2 isolates, respectively; papC was not detected. There was a statistically significant association between fimC and resistance to ciprofloxacin (p = .001), gentamicin (p = .001), amikacin (p = .001), levofloxacin (p = .001), and streptomycin (p = .001); between fimA and resistance to tetracycline (p = .001), ampicillin (p = .001), compound trimethoprim/sulfamethoxazole (p = .001), and amoxicillin (p = .003); between agg and resistance to gentamicin (p = .001), tetracycline (p = .001), ciprofloxacin (p = .017), and levofloxacin (p = .001); and between stx2 and resistance to ampicillin (p = .001), tetracycline (p = .001), compound trimethoprim/sulfamethoxazole (p = .002), and amoxicillin (p = .015).

Keywords: Escherichia coli, multidrug resistance, resistance gene, virulence gene


The drug resistance and virulence genes of Escherichia coli isolated from retail food in northern Xinjiang, China, were studied, and the relationship between them was analyzed to reveal the resistance of foodborne E. coli to veterinary and clinical commonly used drugs in the region. The paper provided reference materials to guide the rational use of antibiotics in clinical and animal feeding and control the spread of drug‐resistant strains in nature.

graphic file with name FSN3-8-2035-g001.jpg

1. INTRODUCTION

It is well known that Escherichia coli mainly exists in the human and animal gastrointestinal tract. It also occurs in the natural environment, especially in soil, water, and plants (Katarzyna & Anna, 2016). Therefore, it is not surprising that some of the E. coli in the environment reinfects humans through vegetable‐ or animal‐derived foods.

Escherichia coli is a highly diverse virulent species that is widely distributed in open systems, is easy to spread in the environment, and can be harmful to human health (Tenaillon, Skurnik, Picard, & Denamur, 2010). Drug resistance genes carried by E. coli can be transferred to other pathogenic bacteria, and, due to the excessive use of antibiotics, selection pressure is very high, resulting in bacterial strains resistant to a variety of drugs. Multi‐drug‐resistant strains are characterized by the presence of multiple genes conferring drug resistance, which results in insensitivity to many different drug groups (Hu, Yang, & Li, 2016; Rasheed, Thajuddin, Ahamed, Teklemariam, & Jamil, 2014).

Genetic mutations or genetic acquisition of antibiotic resistance genes (ARG) through horizontal gene transfer might also result in the occurrence of antibiotic‐resistant bacteria (ARB) throughout the environment (Céline & David, 2015). This has resulted in the emergence of many different ARG, including the dfr and sul genes related to trimethoprim and sulfamethoxazole resistance, respectively (Chang, Lin, Chang, & Lu, 2007; Ho, Wang, Chow, & Que, 2009), and other genes, such as ampC, oxa2, and tetA.

The ever‐increasing threat of ARB may be associated with enhanced virulence (Guillard, Pons, Roux, Pier, & Skurnik, 2016; Roux et al., 2015), and with the increase in antibiotic resistance, an increase in virulence may naturally evolve. Therefore, when controlling the spread of antibiotic resistance, we must also control the spread of virulence (Meredith, Brooks, & Brooks, 2017). Although the profile of virulence and antimicrobial resistance genes of E. coli from foods has been reported (Luo, Ji, & Wang, 2016), the data elucidating the association between these two gene sets are lacking.

In Xinjiang, China, a previous study conducted antibiotic resistance research on foodborne E. coli based on samples from slaughterhouses, butcher shops, and farms (Xia, Xiang, & Guo, 2014; Yao, Long, Kuerbannaimu, Wang, & Xia, 2017). However, little is known about the resistance of those bacteria in retail foods.

There have been some reports describing the antimicrobial resistance and virulence of E. coli, such as Arisoy, Rad, Akin, and Akar (2008), who showed that the virulence genes afaI, pap, hly, aer, and sfa were increased in sensitive strains. However, detailed information on the relationship between antimicrobial resistance genes and virulence genes of E. coli isolated from retail foods in Xinjiang is scarce.

The purpose of this study was to evaluate the drug resistance of E. coli strains isolated from retail foods in northern Xinjiang, identify their virulence genes, and determine the possible relationship between the virulence genes and drug resistance.

2. MATERIALS AND METHODS

2.1. Sampling and E. coli isolation

A total of 431 food samples were purchased at supermarkets in Shihezi, Kuitun, and Urumqi, in northern Xinjiang, China, from 2014 to 2016, and each type of sample and its number are listed in Table 1. Each sample weighed 25 g and was placed in a sterile plastic bag containing 225 ml of sterilized sodium chloride solution (0.85%) and then homogenized for 90 s using a BagMixer 400 CC beating homogenizer. Lauryl Sulfate Tryptose (LST) broth was inoculated with 1 ml of homogenate and incubated for 48 hr at 37 ± 1°C. Gas‐positive tubes were inoculated into 100 ml of E. coli (EC) broth and incubated at 44 ± 0.5°C for 48 hr (Wang, Sun, & Ji, 2014). After that, one loopful from each gas‐positive tube was streaked onto eosin methylene blue agar. Presumptive E. coli colonies were streaked onto Luria–Bertani nutrient agar and incubated for 12–48 hr at 36 ± 1°C. Each culture was confirmed as E. coli through an IMViC test. E. coli ATCC 25922 was used as a positive control for polymerase chain reaction (PCR) of UidA. Template was prepared via the boiling method, for the amplification of selected UidA genes in E. coli using PCR (Heijnen & Medema, 2006). The oligonucleotide sequences used and the predicted sizes of PCR amplification products of genes are listed in Table 2.

Table 1.

The original number of samples

Number Sampling number Origin Number Sampling number Origin Number Sampling number Origin
1 K1 Pig heart 145 K3 Celery 289 K15 Duck
2 K2 Pork 146 K5 Broccoli 290 K16 Duck
3 K4 Pork liver 147 K7 Lettuce 291 K17 Duck leg
4 K6 Pork 148 K11 Tomato 292 K19 Duck
5 K8 Pork 149 K12 Pepper 293 K20 Duck
6 K9 Pork 150 K14 Cabbage 294 K24 Duck
7 K10 Pork stuffing 151 K21 Ginger 295 K25 Duck
8 K13 Porcine blood 152 K22 Celery 296 K27 Duck
9 K18 Pork 153 K23 Pepper 297 K35 Duck
10 K33 Porcine blood 154 K26 Cabbage 298 W7 Duck
11 K34 Pork 155 W1 Broccoli 299 W12 Duck
12 K40 Pork liver 156 W4 Lettuce 300 N4 Fish
13 W2 Pork intestine 157 W5 Pepper 301 N5 Fish
14 W3 Pork liver 158 N1 Ginger 302 N8 Fish
15 W6 Porcine blood 159 N2 Broccoli 303 N14 Fish
16 W8 Pigtail 160 N3 Eggplant 304 N15 Fish
17 W9 Pork 161 S18 Spinach 305 N16 Crustacean
18 W10 Pork fillet 162 S19 Celery 306 N17 Fish
19 W11 Pork liver 163 N6 Shallot 307 W17 Fish
20 W13 Pork 164 N7 Tomato 308 W18 Fish
21 W14 Pork 165 N9 Lettuce 309 W61 Fish
22 W15 Pork 166 W21 Tomato 310 W62 Fish
23 W16 Pork 167 H11 Ginger 311 W63 Fish
24 W19 Pork 168 N52 Cowpea 312 K36 Fish
25 W20 Pork 169 H14 Spinach 313 K37 Fish
26 W25 Porcine blood 170 H15 Broccoli 314 S1 Fish
27 W26 Porcine blood 171 H16 Pepper 315 S2 Fish
28 S5 Pork 172 H17 Shallot 316 S3 Fish
29 S8 Pig heart 173   Tomato 317 S4 Fish
30 S9 Pork stuffing 174 W22 Eggplant 318 W64 Fish
31 S10 Pork fillet 175 W23 Spinach 319 W65 Fish
32 S12 Pork liver 176 W24 Tomato 320 W66 Fish
33 S14 Pig hind leg 177 W67 Celery 321 W69 Fish
34 S15 Pork 178 W68 Ginger 322 W72 Fish
35 S16 Pork liver 179 W70 Shallot 323 W73 Fish
36 S17 Pork 180 W71 Cowpea 324 W75 Fish
37 H2 Pork intestine 181 W74 Tomato 325 W54 Fish
38 H4 Pork 182 W76 Pepper 326 W55 Fish
39 H5 Pork 183 K38 Broccoli 327 W56 Fish
40 H6 Porcine blood 184 K39 Ginger 328 S6 Fish
41 H7 Pig trotters 185 K41 Shallot 329 S7 Fish
42 H8 Porcine blood 186 W77 Lettuce 330 S11 Brine shrimp
43 H9 Pork 187 W78 Cowpea 331 N10 Bean curd skin
44 H12 Porcine blood 188 W79 Spinach 332 N11 Marinated tofu
45 H13 Pork 189 W80 Eggplant 333 N12 Stewed chicken leg
46 H23 Porcine blood 190 S13 Tomato 334 N13 Stewed beef
47 H24 Pork liver 191 H1 Shallot 335 N51 Red oil chicken gizzards
48 H27 Pork 192 H3 Celery 336 K42 Hot and sour gluten
49 H28 Pork 193 H10 Ginger 337 K43 Marinated chicken leg
50 H30 Pork 194 W28 Pepper 338 K45 Cold bamboo shoots
51 H33 Pork 195 W29 Broccoli 339 K74 Soy sauce pickles
52 H34 Pork 196 W34 Tomato 340 K75 Spiced gizzard
53 K28 Celery 197 H66 Lettuce 341 K76 Beef salad
54 K29 Shallot 198 H67 Shallot 342 K77 Beef tendon in cold sauce
55 K30 Spinach 199 H68 Eggplant 343 K78 Cold bamboo shoots
56 N46 Potato 200 H69 Ginger 344 K79 Bean salad
57 N47 Eggplant 201 H70 Spinach 345 S22 Fungus salad
58 N48 Spinach 202 H71 Cowpea 346 S23 Kelp salad
59 N49 Shallot 203 H72 Tomato 347 K80 Bean curd skin in cold sauce
60 W52 Cowpea 204 H73 Coriander 348 K81 Kelp salad
61 W53 Bitter gourd 205 H74 Snow pea 349 W32 Shredded lotus root slice
62 W57 Eggplant 206 H75 Lettuce 350 W33 Spiced gizzard
63 S20 Flammulina velutipes mushroom 207 N18 Drumsticks 351 H18 Pea noodles
64 S21 Celery 208 N19 Chicken wings 352 H19 Dried bean curd
65 S24 Zhaer root 209 N20 Drumsticks 353 H20 Bean curd
66 S25 Lettuce 210 N21 Chicken gizzard 354 H26 Red ear silk
67 S26 Chinese cabbage 211 N22 Chicken 355 H29 Chicken salad
68 S27 Bok choy 212 H21 Drumsticks 356 H30 Sweet potato
69 S28 Ginger 213 H22 Chicken wings 357 S95 Chinese wolfberries
70 S47 Tomato 214 K44 Chicken gizzard 358 S96 Cold bean curd
71 S48 Bitter gourd 215 K46 Chicken 359 S97 Bean curd skin
72 S49 Black fungus 216 H23 Chicken wing 360 S98 Gluten
73 S50 Garlic sprouts 217 S53 Drumsticks 361 S99 Cold pig ears
74 S51 Chive 218 N53 Chicken 362 S100 Peanut salad
75 S52 Coriander 219 N54 Chicken wing 363 H76 Cold bamboo shoots
76 N55 Broccoli 220 S64 Drumsticks 364 H77 Marinated tofu
77 N56 Celery 221 S65 Chicken gizzard 365 H78 Spicy dried tofu
78 S61 Pepper 222 S66 Chicken 366 K47 Spicy dried tofu
79 S62 Coriander 223 S67 Drumsticks 367 K64 Red oil ear silk
80 S63 Green Chinese onion 224 S68 Chicken wings 368 K65 Cold bean curd stick
81 H24 Bitter gourd 225 W35 Drumsticks 369 K66 Dried vegetables
82 H25 Lentinus edodes mushroom 226 W38 Chicken wings 370 K67 Brine shrimp
83 H27 Pepper 227 S69 Drumsticks 371 K71 Bean curd skin
84 H28 Kelp 228 S70 Chicken gizzard 372 K72 Chicken skewer
85 H31 Pepper 229 S71 Chicken 373 K73 Hot and sour gluten
86 S72 Bean sprouts 230 S29 Chicken wings 374 W36 Marinated tofu
87 S73 Coprinus comatus mushroom 231 S30 Chicken 375 W37 Stewed pork liver
88 S74 Romaine lettuce 232 H41 Chicken wings 376 S34 Stewed beef
89 S75 Coriander 233 H42 Drumsticks 377 S35 Stewed chicken leg
90 S76 Tomatoes 234 H43 Drumsticks 378 S36 Marinated tofu
91 S77 Pepper 235 H44 Chicken wings 379 S54 Brine shrimp
92 S78 Celery 236 H60 Chicken gizzard 380 S55 Bean curd skin
93 S79 Lotus root 237 S81 Drumsticks 381 S56 Chicken skewer
94 S80 Cabbage 238 S82 Chicken 382 S57 Marinated chicken leg
95 S89 Cucumber 239 S83 Chicken gizzard 383 N34 Marinated tofu
96 S90 Celery 240 S84 Chicken wings 384 N35 Stewed beef
97 S91 Garlic sprouts 241 S85 Chicken gizzard 385 N36 Stewed beef
98 S92 Spinach 242 S86 Drumsticks 386 N37 Hot and sour gluten
99 S93 Towel gourd 243 S87 Drumsticks 387 N38 Marinated chicken leg
100 S94 Peas 244 S88 Drumsticks 388 N45 Stewed chicken leg
101 K48 Chives 245 K32 Chicken wings 389 N50 Stewed pork liver
102 K49 Garlic sprouts 246 W27 Chicken 390 K61 Marinated tofu
103 K52 Lettuce 247 W30 Drumsticks 391 K62 Stewed pork liver
104 K68 Pepper 248 W31 Chicken wings 392 K63 Lamb tripe
105 K69 Cucumber 249 K53 Chicken 393 K31 Mutton
106 K70 Lettuce 250 K54 Chicken 394 W39 Mutton
107 H40 Cucumber 251 K59 Drumsticks 395 W46 Mutton
108 H45 Pepper 252 K60 Chicken gizzard 396 W51 Sheep heart
109 H48 Peas 253 W47 Chicken gizzard 397 W63 Mutton
110 H50 Cucumber 254 W48 Drumsticks 398 W64 Mutton
111 H56 Lettuce 255 K50 Beef 399 W65 Mutton
112 H57 Towel gourd 256 K51 Beef 400 W66 Mutton
113 H58 Pepper 257 W47 Beef 401 S39 Mutton
114 H59 Peas 258 W48 Beef stuffing 402 S40 Mutton
115 W40 Chives 259 N23 Beef 403 S41 Mutton
116 W43 Spinach 260 N24 Beef 404 S44 Mutton
117 W45 Pepper 261 N25 Beef 405 S58 Mutton
118 W60 Towel gourd 262 N26 Beef 406 S59 Mutton
119 W61 Spinach 263 N27 Beef 407 S60 Mutton
120 W62 Cucumber 264 H32 Beef 408 N31 Mutton
121 S42 Celery 265 H33 Beef 409 N32 Mutton
122 S43 Chives 266 H34 Beef 410 N33 Mutton
123 N28 Peas 267 H61 Beef 411 R1 Retail fresh milk
124 N29 Lettuce 268 H62 Beef 412 R2 Retail fresh milk
125 N30 Pepper 269 H63 Beef 413 R3 Retail fresh milk
126 S31 Towel gourd 270 H64 Beef 414 R4 Retail fresh milk
127 S32 Pepper 271 H65 Beef 415 R5 Retail fresh milk
128 S33 Lettuce 272 W44 Beef stuffing 416 R6 Retail fresh milk
129 W41 Cucumber 273 S37 Beef stuffing 417 R7 Retail fresh milk
130 W42 Peas 274 S38 Beef 418 R8 Retail fresh milk
131 N39 Lettuce 275 S45 Beef 419 R9 Retail fresh milk
132 N40 Lettuce 276 S46 Beef 420 R10 Retail fresh milk
133 K55 Pepper 277 S50 Beef 421 R11 Retail fresh milk
134 K57 Chives 278 S51 Beef 422 R12 Retail fresh milk
135 S47 Towel gourd 279 S53 Beef 423 R13 Retail fresh milk
136 S48 Lettuce 280 K56 Beef 424 R14 Retail fresh milk
137 S52 Cucumber 281 K58 Beef 425 R15 Retail fresh milk
138 N41 Spinach 282 S49 Beef 426 R19 Retail fresh milk
139 N42 Pepper 283 H36 Beef 427 R20 Retail fresh milk
140 N43 Cucumber 284 H37 Beef 428 R21 Retail fresh milk
141 N44 Cucumber 285 W59 Beef 429 R23 Retail fresh milk
142 W49 Chives 286 W60 Beef 430 R26 Retail fresh milk
143 W50 Spinach 287 H38 Beef 431 R31 Retail fresh milk
144 H35 Towel gourd 288 H39 Beef      

H, supermarket sampling in Shihezi; K, samples collected from Kuitun; N, sampling in cooperation with Inspection Institute; R, retail fresh milk collected from Shihezi; S, samples collected from Shihezi; W, samples collected from Urumqi.

Table 2.

Primers used for detection of genes encoding resistance to different antimicrobials

Gene Primer DNA sequence (5′ → 3′) Size (bp) Thermocycling conditions References
UidA UidAF 5′‐ATGGAATTTCGCCGATTTTGC‐3′ 194 95°C for 5 min, 40 cycles of 95°C for 30 s, 60°C for 1 min, 72°C for 1 min, and final extension at 72°C for 7 min Heijnen and Medema (2006)
UidAR 5′‐ATTGTTTGCCTCCCTGCTGC‐3′
tetA tetAF 5′‐GCTACATCCTGCTTGCCTTC‐3′ 210 95°C for 5 min, 30 cycles of 94°C for 30 s, 60°C for 1 min, 72°C for 1 min, and final extension at 72°C for 5 min Ng, Martin, Alfo, and Mulvey (2001)
tetA‐R 5′‐CATAGATCGCCGTGAAGAGG‐3′ Ng et al. (2001)
tetB tetBF 5′‐TTGGTTAGGGGCAAGTTTTG‐3′ 659 Ng et al. (2001)
tetBR 5′‐GTAATGGGCCAATAACACCG‐3′ Ng et al. (2001)
tetC tetCF 5′‐CTTGAGAGCCTTCAACCCAG‐3′ 418 Sáenz et al. (2004)
tetCR 5′‐ATGGTCGTCATCTACCTGCC‐3′ Sáenz et al. (2004)
bla TEM bla TEM‐F 5′‐TTGGGTGCACGACTGGGT‐3′ 503 95°C for 5 min, 30 cycles of 94°C for 1 min, 60°C for 1 min, 72°C for 1 min, and final extension at 72°C for 5 min Knapp, Dolfing, Ehlert, and Graham (2010)
bla TEM‐R 5′‐TAATTGTTGCCGGGAAGC‐3′ Knapp et al. (2010)
bla PSE bla PSE F 5′‐CGCTTCGGGTTAACAAGTAC‐3′ 419 Zhi, Xi, and Shen (2009)
bla PSE R 5′‐CTGGTTCATTTCAGATAGCG‐3′ Zhi et al. (2009)
bla OXA bla OXA‐F 5′‐AGCAGCGCCAGTGCATCA‐3′ 708 Guerra et al. (2003(
bla OXA‐R 5′‐ATTCGACCCCAAGTTTCC‐3′ Guerra et al. (2003)
floR floR‐F 5′‐CACGTTGAGCCTCTATAT‐3′ 868 95°C for 5 min, 30 cycles of 94°C for1 min, 52°C for 1 min, 72°C for 1 min, and final extension at 72°C for 10 min Sáenz et al. (2004)
floR‐R 5′‐ATGCAGAAGTAGAACGCG‐3′ Sáenz et al. (2004)
sul1 Sul1‐F 5′‐CGGCGTGGGCTACCTGAACG‐3′ 433 94°C for 5 min, 30 cycles of 94°C for 15 s, 69°C for 30 s, 72°C for 1 min, and final extension at 72°C for 7 min Sáenz et al. (2004)
Sul1‐R 5′‐GCCGATCGCGTGAAGTTCCG‐3′ Sáenz et al. (2004)
sul2 Sul2‐F 5′‐GCGCTCAAGGCAGATGGCATT‐3′ 285 Sáenz et al. (2004)
Sul2‐R 5′‐GCGTTTGATACCGGCACCCGT‐3′ Sáenz et al. (2004)
aad Ala aad Ala F 5′‐AACGACCTTTTGGAAACTTCGG−3′ 352 94°C for 10 min, 35 cycles of 94°C for 1 min, 60°C for 30 s, 72°C for 1 min, and final extension at 72°C for 10 min Sáenz et al. (2004)
aad Ala R 5′‐TTCGCTCATCGCCAGCCCAG‐3′ Sáenz et al. (2004)
aadB AadBF 5′‐GGGCGCGTCATGGAGGAGTT‐3′ 329 94°C for 10 min, 35 cycles of 94°C for 1 min, 65°C for 30 s, 72°C for 1 min, and final extension at 72°C for 10 min Rosengren, Waldner, and Reid‐Smith (2009)
aadBR 5′‐TATCGCGACCTGAAAGCGGC‐3′ Rosengren et al. (2009)
strA StrAF 5′‐CCTGGTGATAACGGCAATTC‐3′ 546 95°C for 4 min, 35 cycles of 95°C for 1 min, 55°C for 1 min, 72°C for 1 min, and final extension at 72°C for 7 min Rosengren et al. (2009)
StrAR 5′‐CCAATCGCAGATAGAAGGC‐3′ Rosengren et al. (2009)
strB StrBF 5′‐ATCGTCAAGGGATTGAAACC‐3′ 509 Rosengren et al. (2009)
StrBR 5′‐GGATCGTAGAACATATTGGC‐3′ Rosengren et al. (2009)

2.2. Antimicrobial susceptibility testing

Antimicrobial susceptibility testing was performed utilizing the disk‐diffusion method as recommended by the Clinical and Laboratory Standards Institute (CLSI, 2015). The following antibiotics were used: ampicillin (AMP: 10 μg/p), cefotaxime (CTX: 30 μg/p), ceftazidime (CAZ: 30 μg/p), gentamicin (GEN: 10 μg/p), imipenem (IPM: 10 μg/p), ciprofloxacin (CIP: 5 μg/p), levofloxacin (LEV: 5 μg/p), tetracycline (TET: 30 μg/p), chloramphenicol (CHL: 30 μg/p), amikacin (AMK: 30 μg/p), piperacillin (PIP: 100 μg/p), compound trimethoprim/sulfamethoxazole (T/S: 23.75 μg/1.25 μg/p), erythromycin (ERY: 15 μg/p), amoxicillin (AMX: 10 μg/p), streptomycin (STR: 10 μg/p), nalidixic acid (NAL: 30 μg/p), and polymyxin B (PB: 300 μg/p). Standard strain E. coli ATCC 25922 was used as a quality control. Strains were classified as either susceptible, intermediate, or resistant strains (CLSI, 2015).

2.3. PCR amplification of antimicrobial resistance and virulence genes

Genomic DNA for PCR was extracted by the boiling method. Tables 2 and 3 list the oligonucleotide sequences of different antimicrobial genes and virulence genes in E. coli and the predicted sizes after PCR amplification.

Table 3.

Primers used for detection of genes encoding resistance to different virulence

Gene Primer DNA sequence (5′ → 3′) Size (bp) Thermocycling conditions References
stx1 stx1F 5′‐ACACTGGATGATCTCAGTGG‐3′ 244 95°C for 5 min, 35 cycles of 94°C for 1 min, 60°C for 1 min, 72°C for 1 min, final extension at 72°C for 10 min Moses, Garbati, and Egwu (2006)
stx1R 5′‐CTGAATCCCCCTCCATTATG‐3′ Moses et al. (2006)
stx2 stx2‐F 5′‐CCATGACAACGGACAGCAGTT‐3′ 255 Moses et al. (2006)
stx2‐R 5′‐CCTGTCAACTGAGCACTTTG‐3′ Moses et al. (2006)
agg agg‐F 5′‐AAGAAAAAGAAGTAGACCAAC‐3′ 400 Pass, Odedra, and Batt (2000)
agg‐R 5′‐AAACGGCAAGACAAGTAAATA‐3′ Pass et al. (2000)
eaeA eae‐F 5′‐AAGCGACTGAGGTCACT‐3′ 384 Lopez et al. (2003)
eae‐R 5′‐ACGCTGCTCACTAGATGT‐3′ Lopez et al. (2003)
fyuA fyu‐F 5′‐ACACGGCTTTATCCTCTGGC‐3′ 235 95°C for 5 min, 30 cycles of 94°C for 30 s, 52°C for 30 s, 72°C for 45 s, and final extension at 72°C for 10 min Viktoria, Lionel, and Per (2008)
fyu‐R 5′‐GGCATATTGACGATTAACGA‐3′ Viktoria et al. (2008)
fimA fimAF 5′‐CTGTGAGTGGTCAGGCAAGCG‐3′ 352 Rawool et al. (2015)
fimAR 5′‐TAACCGTGTTGGCGTAAGAGC‐3′ Rawool et al. (2015)
papC papC‐F 5′‐GACGGCTGTACTGCAGGGTCGGGCG‐3′ 234 95°C for 5 min, 30 cycles of 94°C for 30 s, 47°C for 30 s, 72°C for 45 s, and final extension at 72°C for 10 min Xia et al. (2011)
papC‐R 5′‐ATATCCTTTCTGCAGGGATGCAATA‐3′ Xia et al. (2011)
papA papA‐F 5′‐GGAACGAACGCAGAAACG‐3′ 374 95°C for 5 min, 30 cycles of 94°C for 30 s, 52°C for 30 s, 72°C for 45 s, and final extension at 72°C for 10 min Xia et al. (2011)
papA‐R 5′‐CGCAATGGGCGAATACTT‐3′ Xia et al. (2011)
fimC fimC‐F 5′TAAGGAAATCGCAGGAA‐3′ 337 95°C for 5 min, 30 cycles of 94°C for 30 s, 50°C for 30 s, 72°C for 45 s, and final extension at 72°C for 10 min Antonio et al. (2007)
fimC‐R 5′‐GCTGTGGGATAATGGACT‐3′ Antonio et al. (2007)

The presence of genes associated with resistance to tetracycline (tetA, tetB, and tetC), β‐lactams (bla TEM, bla PSE, and bla OXA), aminoglycosides (aad A1a, aadB, strA, and strB), chloramphenicol (floR), and sulfonamide (Sul1 and Sul2), and virulence‐encoding genes were detected by PCR. The PCR products were electrophoresed for 40 min at 90 V in 1% agarose gel containing 0.5 µg/ml of ethidium bromide, and then, the gels were visualized on a Gel Doc 2000 transmittance apparatus (Kerrn, Klemmensen, Frimodt‐MØller, & Espersen, 2002). Target fluorescentbands were removed from the gel with a razor blade. The DNA fragments were purified with a MIDI gel purification kit and then sequenced. The DNA sequence data were compared with the data in the GenBank database.

2.4. Statistical analysis

SPSS v.17.0 software was used to analyze the data. Logistical regression analysis was used to analyze the correlation between variables. p < .05 was considered statistically significant.

3. RESULTS AND CONCLUSIONS

3.1. E. coli isolated from retail foods

A total of 112 strains of E. coli were isolated from 431 random samples, with 26% of the samples testing positive for contamination. The overall incidence was higher than 14.7% reported elsewhere (Rasheed et al., 2014). As shown in Table 4, pork was most frequently contaminated with E. coli (59.6%). The detection rates of E. coli were 52.6%, 52.4%, 36.4%, 35.3%, and 33.3% in mutton, retail fresh milk, duck, beef, and chicken, respectively, followed by ready‐to‐eat food (12.9%), vegetables (11%), and fish (10%).

Table 4.

Samples and isolates from different food origins

Products No. of samples No. of samples positive for E. coli Positive rate (%)
Pork 52 31 59.6
Chicken 48 16 33.3
Duck 11 4 36.4
Fish 30 3 10.0
Retail fresh milk 21 11 52.4
Beef 34 12 35.3
Mutton 19 10 52.6
Vegetables 154 17 11.0
Ready‐to‐eat food 62 8 12.9
Total 431 112 26.0

Several studies have documented antibiotic‐resistant E. coli and other coliforms in raw meat (Srinivasa, Gill, Ravi, & Sandeep, 2011), poultry (Nuno et al., 2016), eggs (Arathy, Vanpee, Belot, DeAllie, & Sharma, 2011), milk (Alharbi & Khaled, 2018), and vegetables (Rasheed et al., 2014). Whether there is a link between high contamination rates and high antibiotic resistance rates for E. coli in food remains to be determined.

In both developed and developing countries, antibiotic resistance has been recognized as a problem in the field of human and veterinary medicine (Bottacini et al., 2018; Zhang et al., 2017). There is ample evidence that the widespread use of antibiotics in agriculture and medicine is the main reason for the high resistance rate of Gram‐negative bacteria (Bothyna & Randa, 2018). Various food and environmental sources contain bacteria resistant to one or more antimicrobial agents used in human or veterinary medicine and animal food production (Hinthong, Pumipuntu, & Santajit, 2017).

3.2. Antimicrobial resistance profiles of E. coli isolates

Antibiotic resistance in E. coli is of particular concern because it is the most common Gram‐negative pathogen in humans, the most common cause of urinary tract infections, and a frequent cause of community and hospital‐acquired bacteremia (Bothyna & Randa, 2018) and diarrhea (Jessica, Lashaunda, & Levens, 2016).

Worldwide data have shown that resistance to traditional drugs is increasing, and resistance is also being encountered against newer and more effective antibiotics (Sara, Mohammad, & Sadegh, 2014). As in this study, the most frequent resistance was seen for third‐generation cephalosporin–ceftazidime (22%) and tetracyclines (52%; Table 5). A comparative study by Dominguez et al. (2018) showed that high resistance rates (76.5%–79.4%) were observed in oxyimino‐cephalosporins (cefotaxime, ceftriaxone, and ceftiofur) and cefepime (70.6%). This phenomenon requires additional study and sustained data support.

Table 5.

The reactions of E. coli to 17 antibacterial agents

Antimicrobials Resistant (n = 112) Susceptible (n = 112, %)
AMP 47 (42%) 23 (20)
CTX 12 (11%) 34 (30)
CAZ 25 (22%) 38 (34)
IPM 0 112 (100)
PIP 31 (28%) 40 (36)
AMX 37 (33%) 35 (31)
PB 2 (2%) 72 (64)
CIP 18 (16%) 48 (43)
LEV 12 (11%) 50 (45)
NAL 36 (32%) 34 (30)
GEN 12 (11%) 50 (45)
AMK 10 (9%) 55 (49)
STR 24 (21%) 44 (39)
TET 58 (52%) 22 (20)
CHL 30 (27%) 38 (34)
T/S 41 (37%) 32 (29)
ERY 12 (11%) 38 (34)

n = 112: No. of samples positive for E. coli.

As shown in Table 5, our study revealed that 87 (77.7%) isolates (n = 112) were resistant to one or more antimicrobials, including tetracycline (52%), ampicillin (42%), compound trimethoprim/sulfamethoxazole (37%), amoxicillin (33%), and nalidixic acid (32%). No resistance to imipenem was observed. Among those isolates, two strains (E36, E37) isolated from chicken and one strain (E38) isolated from mutton were resistant to 13 antimicrobial agents. There were two strains (E24 and E53) isolated from chicken and one strain (E56) isolated from fish resistant to 11 antimicrobial agents. The specific multiple drug resistance rate is shown in Table 6, and the pattern of antibiotic resistance in those isolates is shown in Table 7.

Table 6.

Profile of multiple antibiotic‐resistant Escherichia coli isolates

Resistance type The number of multi‐drug‐resistant strain The rate of multi‐drug‐resistant strains (%; n = 112)
AMP CTX GEN CIP LEV TET CHL AMK PIP T/S AMX STR NAL E36 3 (2.7)
AMP CTX CAZ GEN CIP LEV TET CHL AMK PIP T/S AMX NAL E37
AMP CTX CAZ GEN CIP LEV TET CHL AMK PIP T/S AMX NAL E38
CAZ CIP LEV TET CHL PIP T/S ERY AMX STR NAL     E24 3 (2.7)
CTX GEN TET CHL AMK PIP T/S ERY AMX STR NAL     E53
AMP CTX CAZ CIP LEV TET T/S ERY AMX STR NAL     E56
AMP CTX GEN CIP TET STR AMK PIP AMX T/S       F41 1 (0.9)
AMP CTX CAZ CIP TET CHL T/S ERY NAL         E48 1 (0.9)
AMP CAZ TET CHL PIP T/S AMX CIP           E28 5 (4.5)
AMP CAZ TET CHL AMK T/S ERY AMX           E31
AMP CAZ TET CHL PIP T/S ERY LEV           E42
AMP TET T/S CAZ CHL AMX STR NAL           E47
AMP CIP LEV TET T/S AMX STR NAL           F38  
AMP TET PIP T/S ERY AMX NAL             E9 6 (5.4)
AMP CAZ GEN PIP T/S AMX AMK             E23
AMP CAZ TET PIP AMX CIP LEV             E41
CAZ TET CHL T/S AMX STR NAL             E46
CAZ TET PIP T/S AMX STR NAL             E49
TET NAL T/S AMP PIP AMX CHL             F21
AMP CIP TET CHL PIP T/S               E2 12 (11)
AMP TET CHL PIP T/S AMX               E6
AMP CTX CAZ PIP NAL PB               E22
AMP CTX CAZ TET PIP T/S               E32
AMP CAZ TET PIP NAL CHL               E34
AMP CAZ TET CHL T/S AMX               E44
AMP TET CHL PIP T/S AMX               E52
AMP CTX CAZ TET T/S NAL               E54
AMP TET CHL AMK T/S NAL               E55
TET NAL T/S AMP PIP AMX               F1
TET NAL T/S AMP PIP AMX               F3
TET NAL T/S AMP PIP AMX               F11
TET CHL T/S NAL CIP                 E5 11 (10)
AMP TET CHL T/S STR                 E8
AMP TET PIP AMX NAL                 E43
GEN TET CHL T/S AMX                 E51
NAL T/S AMP LEV CHL                 F10
TET NAL AMP PIP LEV                 F18
TET AMP PIP AMX CHL                 F19
TET NAL T/S AMP LEV                 F24
AMP PIP AMX CHL STR                 F30
TET NAL T/S GEN STR                 F32
NAL PIP AMX STR ERY                 F56
GEN CIP TET AMX                   E3 9 (8)
AMP TET CHL T/S                   E12
CAZ TET AMX STR                   E19
CIP ERY AMX NAL                   E20
TET NAL PIP AMK                   E26
CAZ TET AMX NAL                   E27
TET T/S CIP AMK                   E33
TET AMP PIP STR                   F45
TET NAL AMP STR                   F47
CAZ TET CIP                     E18 10 (9)
CTX CAZ CHL                     E39
TET AMX CHL                     E40
AMP CTX CAZ                     E45
TET T/S AMP                     F9
CHL STR ERY                     F23
TET NAL AMP                     F35
T/S AMX STR                     F49
CHL ERY STR                     F53
CHL GEN STR                     F55
TET T/S                       E1 16 (14)
AMP CAZ                       E15
AMP CIP                       E16
CAZ NAL                       E17
AMP TET                       E21
PB CIP                       E25
AMP AMX                       F4
AMP PIP                       F6
AMP PIP                       F15
AMP STR                       F17
TET STR                       F28
TET NAL                       F29
NAL T/S                       F31
AMP GEN                       F39
GEN STR                       F42
TET STR                       F44

Table 7.

Phenotypic and genotypic resistance patterns of E. coli isolates

Sampling number Origin Strain number Resistance to antimicrobial agent Resistance gene(s)
K2 Pork E1 TET‐T/S tetA, bla OXA, bla TEM
K13 Pork tenderloin E2 AMP‐CIP‐TET‐CHL‐PIP‐T/S tetA, floR
N19 Chicken wings E3 GEN‐CIP‐TET‐AMX tetA
K50 Beef E4 bla OXA, floR
K34 Pork E5 TET‐CHL‐T/S‐NAL‐CIP tetA, bla OXA, floR, aad Ala, Sul1
K46 Chicken E6 AMP‐TET‐CHL‐PIP‐T/S‐AMX bla OXA ,bla TEM ,, Sul1, sul2, strB
K51 Beef E7 aadB
K17 Duck leg E8 AMP‐TET‐CHL‐T/S‐STR floR, Sul1, sul2, strA, strB
S24 Zhaer root leaf vegetable E9 AMP‐TET‐PIP‐T/S‐ERY‐AMX‐NAL tetA, floR, Sul1, strA
S99 Cold pig ears E10
S100 Peanut salad E11
H8 Porcine blood E12 AMP‐TET‐CHL‐T/S aadB, strA
H22 Chicken wings E13
W41 Mutton E14 strA
N23 Beef E15 AMP‐CAZ
S25 Lettuce E16 AMX‐CIP strA
K14 Chinese cabbage E17 CAZ‐NAL tetA
H23 Chicken wings E18 CAZ‐TET‐CIP tetA
H76 Cold bamboo shoots E19 CAZ‐TET‐AMX‐STR tetB, Sul1, sul2, strA, strB
S65 Chicken breast E20 CIP‐ERY‐AMX‐NAL strA
S49 Black fungus E21 AMP‐TET tetA
H32 Beef E22 AMP‐CTX‐CAZ‐PIP‐NAL‐PB tetA, bla OXA, bla TEM,
W9 Pork E23 AMP‐CAZ‐GEN‐PIP‐T/S‐AMX‐AMK tetB, bla OXA, aad Ala
S55 Chicken wings E24 CAZ‐CIP‐LEV‐TET‐CHL‐PIP‐T/S‐ERY‐AMX‐STR‐NAL floR, Sul1, sul2, aad Ala, strA, strB
H33 Beef E25 PB‐CIP tetA, bla OXA, strA
W39 Mutton E26 TET‐NAL‐PIP‐AMK tetA, tetB, aadB
W46 Mutton E27 CAZ‐TET‐AMX‐NAL bla TEM, strA
K4 Pork liver E28 AMP‐CAZ‐TET‐CHL‐PIP‐T/S‐AMX‐CIP tetA, bla OXA, floR, sul2, aad Ala, strA,strB
H65 Beef hind legs E29 AMX
H61 Dried beef E30 bla TEM
H13 Pork E31 AMP‐CAZ‐TET‐CHL‐AMK‐T/S‐ERY‐AMX bla OXA, floR, aad Ala
N11 Marinated tofu E32 AMP‐CTX‐CAZ‐TET‐PIP‐T/S bla TEM
S66 Chicken E33 TET‐T/S‐CIP‐AMK tetA, aad Ala
H27 Pork E34 AMP‐CAZ‐TET‐PIP‐NAL‐CHL floR, bla OXA
K47 Spicy dried tofu E35 TET tetA, tetB
W38 Chicken wings E36 AMP‐CTX‐GEN‐CIP‐LEV‐TET‐CHL‐AMK‐PIP‐T/S‐AMX‐STR‐NAL bla TEM, bla OXA, floR, sul2, strA, strB, tetA
S70 Chicken gizzard E37 AMP‐CTX‐CAZ‐GEN‐CIP‐LEV‐TET‐CHL‐AMK‐PIP‐T/S‐AMX‐NAL tetA, tetB, floR, sul2, strA, strB
S39 Mutton E38 AMP‐CTX‐CAZ‐GEN‐CIP‐LEV‐TET‐CHL‐AMK‐PIP‐T/S‐AMX‐NAL aadB, tetA, tetB
K40 Pork liver E39 CTX‐CAZ‐CHL bla OXA
W2 Pork E40 TET‐AMX‐CHL tetA, bla TEM
S71 Chicken E41 AMP‐CAZ‐TET‐PIP‐AMX‐CIP‐LEV tetB, bla OXA, sul2, aadB, strA, strB
H24 Pork liver E42 AMP‐CAZ‐TET‐CHL‐PIP‐T/S‐ERY‐LEV tetA, tetB, bla OXA
H60 Chicken gizzard E43 AMP‐TET‐PIP‐AMX‐NAL tetA, tetB, bla TEM
K33 Porcine blood E44 AMP‐CAZ‐TET‐CHL‐T/S‐AMX tetA, bla TEM,floR
H78 Spicy dried tofu E45 AMP‐CTX‐CAZ tetA
H28 Pork liver E46 CAZ‐TET‐CHL‐T/S‐AMX‐STR‐NAL tetA, bla TEM, Sul1, sul2, aadB, strA, strB
H30 Pork E47 AMP‐TET‐T/S‐CAZ‐CHL‐AMX‐STR‐NAL tetA, tetB, Sul1, sul2, strB
H34 Pork liver E48 AMP‐CTX‐CAZ‐CIP‐TET‐CHL‐T/S‐ERY‐NAL tetA, tetB, Sul1, sul2, strA, strB
S10 Pork fillet E49 CAZ‐TET‐PIP‐T/S‐AMX‐STR‐NAL tetA, Sul1, sul2, strA, strB
N31 Mutton E50 bla TEM
K10 Pork stuffing E51 GEN‐TET‐CHL‐T/S‐AMX tetA, bla TEM
W3 Pork liver E52 AMP‐TET‐CHL‐PIP‐T/S‐AMX tetA, tetB, bla TEM, aadAla
S30 Chicken E53 CTX‐GEN‐TET‐CHL‐AMK‐PIP‐T/S‐ERY‐AMX‐STR‐NAL tetA, tetB, bla TEM, Sul1, sul2, strA, strB
H64 Beef hind legs E54 AMP‐CTX‐CAZ‐TET‐T/S‐NAL tetA, tetB, strA, strB
K64 Red oil ear silk E55 AMP‐TET‐CHL‐AMK‐T/S‐NAL sul2
N5 Fish E56 AMP‐CTX‐CAZ‐CIP‐LEV‐TET‐T/S‐ERY‐AMX‐STR‐NAL bla TEM, strA, strB, sul1, sul2, strB
N16 Crustacean F1 TET‐NAL‐T/S‐AMP‐PIP‐AMX strA, strB, bla OXA, tetA, floR, Sul1, sul2
R1 Retail fresh milk F2 tetB
S27 Bok choy F3 TET‐NAL‐T/S‐AMP‐PIP‐AMX strA, strB, sul2, bla OXA, tetA, bla TEM, aad Ala, floR
S56 Broccoli F4 AMP‐AMX tetB
S96 Cold bean curd stick F5
W51 Sheep heart F6 AMP‐PIP strA, strB, bla TEM, aad Ala, floR, Sul1, sul2
S72 Bean sprouts F7 TET bla OXA
H4 Pork F8 TET strA, strB, sul2, bla OXA,, tetA, bla TEM
H9 Pork F9 TET‐T/S‐AMP tetA
N22 Chicken F10 NAL‐T/S‐AMP‐LEV‐CHL strB, aadA1a, floR, Sul1, sul2
R2 Retail fresh milk F11 TET‐NAL‐T/S‐AMP‐PIP‐AMX bla OXA
N30 Pepper F12
W8 Pig tail F13 T/S bla OXA, tetB, aad Ala
R5 Retail fresh milk F14 T/S tetB
R7 Retail fresh milk F15 AMP‐PIP floR
R8 Retail fresh milk F16 bla OXA, aadB
S38 Beef F17 AMP‐STR strB, sul2, bla OXA
K44 Chicken gizzard F18 TET‐NAL‐AMP‐PIP‐LEV bla OXA
W47 Beef F19 TET‐AMP‐PIP‐AMX‐CHL strA, strB, sul2, bla OXA, aad Ala
R8 Retail fresh milk F20 bla OXA
H9 Pork F21 TET‐NAL‐T/S‐AMP‐PIP‐AMX‐CHL strA, strB, sul2, bla OXA, tetA, tetB, bla TEM, floR, aadB
K28 Celery F22 bla OXA,
H33 Pork F23 CHL‐STR‐ERY strA, strB, bla OXA, aad Ala, Sul1, sul2, aadB
S68 Chicken wings F24 TET‐NAL‐T/S‐AMP‐LEV strA, strB, Sul1, sul2,, tetA, bla TEM, aad Ala
S79 Lotus root F25 ERY tetB
S80 Cabbage F26 bla OXA
S89 Cucumber F27 TET bla OXA, tetA, tetB
S58 Sheep fat F28 TET‐STR bla OXA, tetB, aad Ala
K60 Chicken gizzard F29 TET‐NAL tetB
S8 Pig heart F30 AMP‐PIP‐AMX‐CHL‐STR strA, strB, bla OXA, tetA, bla TEM, aad Ala, Sul1
W13 Pork F31 NAL‐T/S bla OXA
W14 Pork F32 TET‐NAL‐T/S‐GEN‐STR bla TEM, aad Ala, aadB
K26 Carrot F33
R9 Retail fresh milk F34 sul2, bla OXA
S60 Mutton F35 TET‐NAL‐AMP tetA, tetB, bla OXA
H34 Beef F36
R3 Retail fresh milk F37 bla OXA
S59 Lamb tripe F38 AMP‐CIP‐LEV‐TET‐T/S‐AMX‐STR‐NAL bla OXA, tetB, floR
R6 Retail fresh milk F39 AMP‐GEN bla OXA, tetA, aad Ala, floR
R7 Retail fresh milk F40
S90 Celery F41 AMP‐CTX‐GEN‐CIP‐TET‐STR‐AMK‐PIP‐T/S‐AMX strA, strB, sul2, tetA, tetB, aad Ala, floR
R10 Retail fresh milk F42 GEN‐STR bla OXA, aadB
S45 Beef F43 NAL bla OXA
S12 Pork liver F44 TET‐STR bla OXA, tetA, tetB, aad Ala
S41 Lamb tripe F45 TET‐AMP‐PIP‐STR bla OXA, tetB
K66 Dried vegetables F46 tetB
S91 Garlic sprouts F47 TET‐NAL‐AMP‐STR tetA, tetB, bla OXA
K32 Chicken wings F48 bla OXA
W43 Spinach F49 T/S‐AMX‐STR sul2
H12 Porcine blood F50
N10 Bean curd skin F51 bla OXA
S93 Towel gourd F52
K19 Duck F53 CHL‐ERY‐STR floR,aadB
K25 Duck F54 LEV sul2
W12 Duck F55 CHL‐GEN‐‐STR sul2, aad Ala
N4 Fish F56 NAL‐PIP‐AMX‐STR‐ERY strA

—, not detected.

The incidence of multidrug resistance is a compelling issue, as there is a repository of antimicrobial resistance genes in the community, and drug resistance genes and plasmids can easily be transferred to other strains. The high resistance to tetracycline and ampicillin may be due to the easy availability and low cost of those medications. Although these antibiotics have been banned, the bans have not been effectively implemented by the relevant regulatory bodies. Another explanation for a strain's high resistance rate is its contact with environmental microorganisms that produce natural antibiotics, or with soil contaminated by wildlife feces carrying antibiotic‐resistant microorganisms.

3.3. Antimicrobial resistance genotypes of E. coli isolates

We detected 11 of the 13 resistance genes (tetA, tetB, bla tem, bla oxa, floR, aad Ala, aadB, sul1, sul2, strA, and strB), and one hundred isolates carried one or more antimicrobial genes. Resistance genes were not detected in twelve strains of E. coli. The resistance genotypes of E. coli isolates are shown in Table 7.

Among 58 tetracycline‐resistant E. coli isolates, tetA was found in 43 isolates and tetB in 30 isolates, although tetC was not detected in any. One of the beta‐lactam resistance genes, bla TEM, was detected in 23 E. coli isolates, bla OXA was detected in 45, and bla PSE was not detected. Other resistance genes such as floR, sul1, sul2, aad Ala, aadB, strA, and strB were detected in 22, 18, 30, 21, 12, 31, and 27 isolates, respectively. The detection rate of resistance genes of our study was as follows: tetA (38%, 43/112), tetB (27%, 30/112), bla OXA (40%, 45/112), bla TEM (20%, 23/112), floR (20%, 22/112), sul1 (16%, 18/112), sul2 (27%, 30/112), aad Ala (19%, 21/112), aadB (11%, 12/112), strA (28%, 31/112), and strB (24%, 27/112). These data suggest that retail foods may be a reservoir of multi‐drug‐resistant bacteria and contribute to the spread of drug‐resistant genes.

We found that the detection rate of pork was more than that of chicken, duck, and beef, but there are fewer resistance genes in pork as compared to chicken. Ayoyi, Bii, and Okemo (2008) showed that multidrug resistance is closely related to different farm management treatments, and statistical significance (p ≤ .001) was found between them.

Chickens are more likely to get sick than pigs, and in large‐scale chicken breeding operations, farmers will use a large number of antibiotic and antiviral drugs for the prevention and treatment of chicken diseases. The antibiotics used include enrofloxacin, amikacin, colistin, ciprofloxacin, azithromycin, doxycycline hydrochloride, levofloxacin, lincomycin, doxycycline, gentamicin, gentamicin, levofloxacin, neomycin sulfate, ceftriaxone sodium, cefotaxime sodium, penicillin, sulfachloropyridine, and sulfaquinoxaline sodium.

3.4. Virulence genes of E. coli isolates

Table 8 shows that among the nine tested virulence genes, fimC, agg, stx2, fimA, fyuA, papA, stx1, and eaeA were found in 52, 34, 21, 19, 6, 3, 2, and 2 isolates, respectively, papC was not detected. Two strains (F6, F52) carried five virulence genes, and six strains (F5, F11, F12, F14, F50, and F51) also carried four virulence genes. Detailed results are shown in Table 9.

Table 8.

The detection rate of strains and virulence genes

Virulence genes No. of positive strains Number of positive strains Positive rate (%; n = 112)
stx1 F1, F11 2 1.8
stx2 F3, F4, F5, F6, F7, F11, F12, F14, F17, F18, F20, F29, F36, F39, F45, F47, F48, F49, F50, F51, F52 21 18.8
eaeA F6, F18 2 1.8
agg E2, E7, E13, E14, E24, E39, F1, F5, F6, F8, F10,F11,F12, F16, F17, F18, F19, F21, F22, F24, F27, F28, F29, F32, F33, F34, F37, F38, F43, F44, F49, F50, F51, F52 34 30.4
fyuA E6, E13, E53, F13, F14, F50 6 5.4
papA E24, F14, F52 3 2.7
papC 0 0
fimA E5、E23、E26、E29、E33、E50, F2, F3, F5, F6, F10, F11, F12, F24, F25, F28, F50, F51, F52 19 17.0
fimC E4, E5, E6, E7, E8, E12, E22, E24, E26, E28, E29, E30, E35, E38, E43, E45, E49, E52, E54, E56, F1, F2, F3, F4, F5, F6, F8, F12, F13, F14, F17, F19, F22, F23, F24, F25, F27, F28, F30, F31, F33, F34, F35, F36, F37, F38, F43, F45, F47, F49, F51F52 52 46.4

Table 9.

Profile of Escherichia coli isolates with multiple virulence genes

Virulence genes No. of strains with multiple virulence genes The rate of strains with multiple virulence genes (%; N = 112)
Stx2 agg papA fimA fimC F52 2 (1.8)
Stx2 agg eaeA fimA fimC F6
Stx1 Stx2 agg fimA   F11 6 (5.4)
Stx2 fyuA papA fimC   F14
Stx2 agg fimA fimC   F51
Stx2 agg fimA fimC   F5
Stx2 agg fimA fimC   F12
Stx2 agg fimA fyuA   F50
Stx1 agg fimC     F1 7 (6.3)
Stx2 fimA fimC     F5
Stx2 agg fimC     F12
agg fimA fimC     F24
agg fimA fimC     F28
Stx2 agg fimC     F49
Stx2 eaeA agg     F18
Stx2 fimC       F4 23 (20.5)
Stx2 agg       F18
Stx2 fimC       F36
Stx2 fimC       F45
Stx2 fimC       F47
agg fimC       E7
agg fimC       E24
agg fimC       F8
agg fimC       F19
agg fimC       F22
agg fimC       F27
agg fimC       F33
agg fimC       F34
agg fimC       F37
agg fimC       F38
agg fimC       F43
agg fimA       E7
fyuA fimC       E6
fyuA fimC       F13
fimA fimC       E5
fimA fimC       E26
fimA fimC       E29
fimA fimC       F2

The emergence of virulence is mainly due to the presence of multiple virulence genes in E. coli pathogenicity islands. fyuA is highly pathogenic and is often used as an indication of the presence or absence of high pathogenicity islands (HPI; Paniagua et al., 2017). We detected fyuA virulence genes in six isolates (5.4%), compared to 83.3% found by Laupland, Gregson, Church, Ross, and Pitout (2008).

Bacterial pili and fimbriae are important structures for bacterial pathogenicity, and it has been suggested that type I fimbriae function primarily in the initial pathogenic phase of avian pathogenic E. coli (APEC) infection. P‐type fimbriae are also thought to contribute to bacterial pathogenicity (Paniagua et al., 2017). The fimC virulence gene encodes a protein necessary for the biosynthesis of type I fimbriae. The papA virulence gene encodes the main protein component of P‐type fimbriae, and P‐type fimbriae are encoded by the nine‐gene pap operon, which includes papA, papB, papC, papD, papE, papF, papG, papH, and papI. Sequence analysis showed that there is sufficienthomology between P fimbriae in humans and chickens to indicate that they share some common antigen (Laupland, Kibsey, & Gregson, 2013). We detected the fimC gene in 46.4% of isolates, and the papA gene was detected in 2.7%; papC was not detected. This suggests that APEC in the Xinjiang region is mainly caused by a type I fimbriae.

3.5. The relationship between virulence genes and antibiotic resistance

Arisoy et al. (2008) showed that there was a correlation between antibiotic sensitivity and virulence factors (VFs) of E. coli isolates causing pyelonephritis. They reported an increased presence of virulence genes pap, sfa, afai, hly, and aer in sensitive strains. Horcajada et al. (2005) showed that a significant correlation was found between nalidixic acid resistance and the decreased prevalence of three VFs: sfa, hly, and cnf‐1.

In the current study, strong associations were found between the presence of fimC and resistance to ciprofloxacin, gentamicin, amikacin, levofloxacin, and streptomycin; between the presence of fimA and resistance to tetracycline, ampicillin, compound trimethoprim/sulfamethoxazole, and amoxicillin; between the presence of agg and resistance to gentamicin, tetracycline, ciprofloxacin, and levofloxacin; and between the presence of stx2 and resistance to ampicillin, tetracycline, compound trimethoprim/sulfamethoxazole, and amoxicillin.

Based on statistical analysis, the following correlations were identified: (a) expression of the fimC gene and resistance to ciprofloxacin (p = .001), gentamicin (p = .001), amikacin (p = .001), levofloxacin (p = .001), and streptomycin (p = .001); (b) expression of the fimA gene and resistance to tetracycline (p = .001), ampicillin (p = .001), compound trimethoprim/sulfamethoxazole (p = .001), and amoxicillin (p = .003); (c) expression of the agg gene and resistance to gentamicin (p = .001), tetracycline (p = .001), ciprofloxacin (p = .017), and levofloxacin (p = .001); and (d) expression of the stx2 gene and resistance to ampicillin (p = .001), tetracycline (p = .001), compound trimethoprim/sulfamethoxazole (p = .002), and amoxicillin (p = .015; Table 10).

Table 10.

Distribution of antimicrobial resistance among virulence factor a

Antibiotic AMP TET STR GEN CIP LEV AMK T/S AMX
fim C (n = 52)
Positive, % 23 (44.2) 25 (48.1) 12 (23.1) b 1 (1.9) b 6(11.5) b 5 (9.6) b 2 (3.8) b 18(34.6) 16 (30.8)
p Value .592 .352 .001 .001 .001 .001 .001 .224 .056
fim A (n = 19)
Positive, % 6 (31.6) b 7 (36.8) b 1 (5.2) 1 (5.3) 2 (10.5) 2 (10.5) 3(15.8) 7 (36.8) b 4 (21) b
p Value .001 .001 .307 .165 1.000 .241 .107 .001 .003
agg (n = 34)
Positive, % 11 (32.4) 15 (44.1) b 7 (20.6) 1 (2.9) b 3(8.8) b 5(14.7) b 0 (0) 10 (29.4) 7 (20.6)
p Value .051 .001 .169 .001 .017 .001 / .204 .566
stx2 (n = 21)
Positive, % 8 (38.1) b 7 (33.3) b 4 (19) 1 (4.8) 0 (0) 1(4.8) 0 (0) 4(19) b 4 (19) b
p Value .001 .001 .619 .057 / .091 / .002 .015

Abbreviations: AMK, amikacin; AMP, ampicillin; AMX, amoxicillin; CIP, ciprofloxacin; GEN, gentamicin; LEV, levofloxacin; STR, streptomycin; T/S, cotrimoxazole; TET, tetracycline.

a

Data are presented as No. (%).

b

Statistically significant.

4. CONCLUSIONS

Differences in the pathogenicity of E. coli and its susceptibility to antimicrobial agents were detected in different retail foods. This must be taken into account in developing guidelines for retail food management. Periodic review and formulation of antibiotic consumption policies are required to control the spread and acquisition of antibiotic resistance. Because most isolates express several types of VFs at the same time, it is necessary to further study the interaction between different VFs at the molecular level.

In conclusion, E. coli has become a potential source of foodborne illness due to the possibility of horizontal transfer of drug‐resistant genes, high drug resistance rate, and the correlation between the resistance to some antibiotics and several virulence factors. As those problems become more and more serious, we need to strengthen the supervision of veterinary drugs used in the raising of livestock. At the same time, the detection and monitoring of antimicrobial agents in animal foods can help to reveal the ongoing use of prohibited animal husbandry practices.

CONFLICT OF INTEREST

The authors declare that they do not have any conflicts of interest.

ETHICAL STATEMENTS

This study did not involve any human or animal testing.

ACKNOWLEDGMENTS

This work was supported by grants from the National Natural Science Foundation of China—Xinjiang Joint Fund Project (No. U1703119), National Natural Science Foundation of China (No. 31301469), Projects of Innovation and Development Pillar Program for Key Industries in Southern Xinjiang of Xinjiang Production and Construction Corps (No. 2018DB002), and Shihezi University Major Science and Technology Research Project (gxjs2015‐zdgg05).

Li Y, Zhang M, Luo J, et al. Antimicrobial resistance of Escherichia coli isolated from retail foods in northern Xinjiang, China. Food Sci Nutr. 2020;8:2035–2051. 10.1002/fsn3.1491

Funding information

This work was supported by grants from the National Natural Science Foundation of China—Xinjiang Joint Fund Project (No. U1703119), National Natural Science Foundation of China (No. 31301469), Projects of Innovation and Development Pillar Program for Key Industries in Southern Xinjiang of Xinjiang Production and Construction Corps (No. 2018DB002), and Shihezi University Major Science and Technology Research Project (gxjs2015‐zdgg05).

REFERENCES

  1. Alharbi, N. S. , & Khaled, J. M. (2018). Prevalence of Escherichia coli strains resistance to antibiotics in wound infections and raw milk. Saudi Journal of Biological Sciences, 26(7), 1557–1562. 10.1016/j.sjbs.2018.11.016 [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Antonio, C. , Elena, C. , Davide, G. , Donato, P. , Patrizia, B. , Evelyn, C. , … Silvia, T. (2007). Avian pathogenic Escherichia coli in Audouin gulls (Larus audouinii) could they affect the surviving of the bird colonies? Italian Journal of Animal Science, 6, 317–320. 10.4081/ijas.2007.317 [DOI] [Google Scholar]
  3. Arathy, D. S. , Vanpee, G. , Belot, G. , DeAllie, C. , & Sharma, R. (2011). Antimicrobial drug resistance in Escherichia coli isolated from commercial chicken eggs in Grenada, West Indies. West Indian Medical Journal, 60, 53–56. 10.2298/VSP1101081P [DOI] [PubMed] [Google Scholar]
  4. Arisoy, M. , Rad, A. Y. , Akin, A. , & Akar, N. (2008). Relationship between susceptibility to antimicrobials and virulence factors in paediatric Escherichia coli isolates. International Journal of Antimicrobial Agents, 31(S1), 4–8. 10.1016/j.ijantimicag.2007.07.030 [DOI] [PubMed] [Google Scholar]
  5. Ayoyi, A. O. , Bii, C. C. , & Okemo, P. (2008). Detection of antibiotic resistance and virulence related factors in Escherichia coli isolates from broiler chicken in Limuru, Kenya. International Journal of Infectious Diseases, 12(1), e109–e110. 10.1016/j.ijid.2008.05.274 [DOI] [Google Scholar]
  6. Bothyna, G. , & Randa, N. H. (2018). Multiple drug resistance and biocide resistance in Escherichia coli environmental isolates from hospital and household settings. Antimicrobial Resistance and Infection Control, 7, 47 10.1186/s13756-018-0339-8 [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bottacini, F. , Morrissey, R. , Roberts, R. J. , James, K. , van Breen, J. , Egan, M. , … van Sinderen, D. (2018). Comparative genome and methylome analysis reveals restriction/modification system diversity in the gut commensal Bifidobacterium breve . Nucleic Acids Research, 46(4), 1860–1877. 10.1093/nar/gkx1289 [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Céline, B. A. , & David, M. (2015). Horizontal gene transfer in microbial ecosystems. Environmental Microbiology: Fundamentals and Applications, 48, 445–481. 10.1051/vetres:2001125 [DOI] [Google Scholar]
  9. Chang, L. L. , Lin, H. H. , Chang, C. Y. , & Lu, P. L. (2007). Increased incidence of class 1 integrons in trimethoprim/sulfamethoxazole‐resistant clinical isolates of Stenotrophomonas maltophilia . Journal of Antimicrobial Chemotherapy, 59, 1038–1039. 10.1093/jac/dkm034 [DOI] [PubMed] [Google Scholar]
  10. CL SI (2015). Performance Standards for Antimicrobial Susceptibility Testing (25th ed.). CLSI Supplement M100. Clinical and Laboratory Standards Institute, Wayne, PA: Retrieved from https://clsi.org/standards/products/microbiology/documents/m100/ [Google Scholar]
  11. Dominguez, J. E. , Redondo, L. M. , Figueroa Espinosa, R. A. , Cejas, D. , Gutkind, G. O. , Chacana, P. A. , … Fernández Miyakawa, M. E. (2018). Simultaneous carriage of mcr‐1 and other antimicrobial resistance determinants in Escherichia coli from poultry. Frontiers in Microbiology, 9, 1–10. 10.3389/fmicb.2018.01679 [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Guerra, B. , Junker, E. , Schroeter, A. , Malorny, B. , Lehmann, S. , & Helmuth, R. (2003). Phenotypic and genotypic characterization of antimicrobial resistance in German Escherichia coli isolates from cattle, swine and poultry. International Journal of Infectious Diseases, 52(3), 489–492. 10.1093/jac/dkg362 [DOI] [PubMed] [Google Scholar]
  13. Guillard, T. , Pons, S. , Roux, D. , Pier, G. B. , & Skurnik, D. (2016). Antibiotic resistance and virulence: Understanding the link and its consequences for prophylaxis and therapy. BioEssays, 38, 682–693. 10.1002/bies.201500180 [DOI] [PubMed] [Google Scholar]
  14. Heijnen, L. , & Medema, G. (2006). Quantitative detection of E. coli, E. coli O157 and other shiga toxin producing E. coli in water samples using a culture method combined with real‐time PCR. Journal of Water and Health, 4(4), 487–498. 10.2166/wh.2006.0032 [DOI] [PubMed] [Google Scholar]
  15. Hinthong, W. , Pumipuntu, N. , & Santajit, S. (2017). Detection and drug resistance profile of Escherichia coli from subclinical mastitis cows and water supply in dairy farms in Saraburi Province, Thailand. Peer J, 5, e3431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ho, P. L. , Wang, R. C. , Chow, K. H. , & Que, T. L. (2009). Distribution of integron‐associated trimethoprim‐sulfamethoxazole resistance determinants among Escherichia coli from humans and food‐producing animals. Letters in Applied Microbiology, 49(5), 627–634. 10.1111/j.1472-765X.2009.02717.x [DOI] [PubMed] [Google Scholar]
  17. Horcajada, J. P. , Soto, S. , Gajewski, A. , Smithson, A. , Jiménez de Anta, M. T. , Mensa, J. , … Johnson, J. R. (2005). Quinolone‐resistant uropathogenic Escherichia coli strains from phylogenetic group B2 have fewer virulence factors than their susceptible counterparts. Journal of Clinical Microbiology, 43(6), 2962–2964. 10.1128/JCM.43.6.2962-2964.2005 [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hu, Y. , Yang, X. , & Li, J. (2016). The transfer network of bacterial mobile resistome connecting animal and human microbiome. Applied and Environmental Microbiology, 82, 6672–6681. 10.1128/AEM.01802-16 [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jessica, C. , Lashaunda, B. , & Levens, J. (2016). Longitudinal comparison of antibiotic resistance in diarrheagenic and non‐pathogenic Escherichia coli from young Tanzanian children. Frontiers in Microbiology, 7, 1420 10.3389/fmicb.2016.01420 [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Katarzyna, W. K. , & Anna, L. B. (2016). Phenotypic and molecular assessment of drug resistance profile and genetic diversity of waterborne Escherichia coli . Water, Air, & Soil Pollution, 227, 146 10.1007/s11270-016-2833-z [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kerrn, M. B. , Klemmensen, T. , Frimodt‐MØller, N. , & Espersen, F. (2002). Susceptibility of Danish Escherichia coli strains isolated from urinary tract infections and bacteraemia, and distribution of sul genes conferring sulphonamide resistance. Journal of Antimicrobial Chemotherapy, 50(4), 513–516. 10.1093/jac/dkf164 [DOI] [PubMed] [Google Scholar]
  22. Knapp, C. W. , Dolfing, J. , Ehlert, P. , & Graham, D. W. (2010). Evidence of increasing antibiotic resistance gene abundances in archived soils since 1940. Environmental Science & Technology, 44(2), 580–587. 10.1021/es901221x [DOI] [PubMed] [Google Scholar]
  23. Laupland, K. B. , Gregson, D. B. , Church, D. L. , Ross, T. , & Pitout, J. D. D. (2008). Incidence, risk factors and outcomes of Escherichia coli bloodstream infections in a large Canadian region. Clinical Microbiology & Infection, 14(11), 1041–1047. 10.1111/j.1469-0691.2008.02089.x [DOI] [PubMed] [Google Scholar]
  24. Laupland, K. B. , Kibsey, P. C. , & Gregson, D. B. (2013). Population‐based laboratory assessment of the burden of community‐onset bloodstream infection in Victoria. Epidemiology and Infection, 141(1), 174–180. 10.1017/S0950268812000428 [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lopez, S. C. , Cerna, J. F. , Villegas, S. N. , Thompson, R. , Velazquez, F. R. , Torres, J. , … Estrada, G. T. (2003). Single multiplex polymerase chain reaction to detect diverse loci associated with diarrheagenic Escherichia coli . Emerging Infectious Diseases, 9, 127–131. 10.3201/eid0901.010507 [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Luo, J. , Ji, H. , & Wang, Q. L. (2016). Drug resistance of Escherichia coli isolated from different foods in Xinjiang. Modern Food Science and Technology, 32(8), 271–275. 10.13982/j.mfst.1673-9078.2016.8.041 [DOI] [Google Scholar]
  27. Meredith, S. , Brooks, B. D. , & Brooks, A. E. (2017). The complex relationship between virulence and antibiotic resistance. Genes, 8, 1–3. 10.3390/genes8010039 [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Moses, A. E. , Garbati, M. A. , & Egwu, G. O. (2006). Detection of E. coli O157 and O26 serogroups in human immunodeficiency virus‐infected patients with clinical manifestation of diarrhea in Maiduguri, Nigeria. Journal of Research in Medical Science, 1(4), 140–145. [Google Scholar]
  29. Ng, L. K. , Martin, I. , Alfo, M. , & Mulvey, M. (2001). Multiplex PCR for the detection of tetracycline resistance genes. Molecular and Cellular Probes, 15, 209–215. 10.1006/mcpr.2001.0363 [DOI] [PubMed] [Google Scholar]
  30. Nuno, M. , Figueiredo, R. , Mendes, C. , Card, R. , Anjum, M. , & da Silva, G. (2016). Microarray evaluation of antimicrobial resistance and virulence of Escherichia coli isolates from Portuguese poultry. Antibiotics, 5(1), 4 10.3390/antibiotics5010004 [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Paniagua, G. L. , Monroy‐Pérez, E. , Rodríguez‐Moctezuma, J. R. , Domínguez‐Trejo, P. , Vaca‐Paniagua, F. , & Vaca, S. (2017). Virulence factors, antibiotic resistance phenotypes and O‐serogroups of Escherichia coli strains isolated from community‐acquired urinary tract infection patients in Mexico. Journal of Microbiology, Immunology and Infection, 50(4), 478–485. 10.1016/j.jmii.2015.08.005 [DOI] [PubMed] [Google Scholar]
  32. Pass, M. A. , Odedra, R. , & Batt, R. M. (2000). Multiplex PCRs for identification of Escherichia coli virulence genes. Journal of Clinical Microbiology, 38, 2001–2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Rasheed, M. U. , Thajuddin, N. , Ahamed, P. , Teklemariam, Z. , & Jamil, K. (2014). Antimicrobial drug resistance in strains of Escherichia coli isolated from food sources. Revista do Instituto de Medicina Tropical de Sã, 56(4), 341–346. 10.1590/s0036-46652014000400012 [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Rawool, D. B. , Vergis, J. , Vijay, D. , Dhaka, P. , Negi, M. , Kumar, M. , … Barbuddhe, S. B. (2015). Evaluation of a PCR targeting fimbrial subunit gene (fimA) for rapid and reliable detection of Enteroaggregative Escherichia coli recovered from human and animal diarrhoeal cases. Journal of Microbiological Methods, 110, 45–48. 10.1016/j.mimet.2015.01.008 [DOI] [PubMed] [Google Scholar]
  35. Rosengren, L. B. , Waldner, C. L. , & Reid‐Smith, R. J. (2009). Associations between antimicrobial resistance phenotypes, antimicrobial resistance genes, and virulence genes of fecal Escherichia coli isolates from healthy grow‐finish pigs. Applied and Environmental Microbiology, 75(5), 1373–1380. 10.1128/AEM.01253-08 [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Roux, D. , Danilchanka, O. , Guillard, T. , Cattoir, V. , Aschard, H. , Fu, Y. , … Skurnik, D. (2015). Fitness cost of antibiotic susceptibility during bacterial infection. Science Translational Medicine, 7, 297 10.1126/scitranslmed.aab1621 [DOI] [PubMed] [Google Scholar]
  37. Sáenz, Y. , Briñas, L. , Domínguez, E. , Ruiz, J. , Zarazaga, M. , Vila, J. , & Torres, C. (2004). Mechanisms of resistance in multiple‐antibiotic‐resistant Escherichia coli strains of human, animal, and food origin. Antimicrobial Agents and Chemotherapy, 48(10), 3996–4001. 10.1128/AAC.48.10.3996-4001.2004 [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sara, A. , Mohammad, K. , & Sadegh, G. (2014). The association of virulence determinants of uropathogenic Escherichia coli with antibiotic resistance. Jundishapur Journal of Microbiology, 7(5), e9936 10.5812/jjm.9936 [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Srinivasa, R. T. , Gill, J. P. S. , Ravi, K. , & Sandeep, G. (2011). Multi drug resistance patterns of Shiga toxin ‐ producing Escherichia coli (STEC) and non‐STEC isolates from meats, RTE meat foods, drinking water and human diarrhoeic samples of Punjab, India. Archives of Clinical Microbiology, 2, 1–12. [Google Scholar]
  40. Tenaillon, O. , Skurnik, D. , Picard, B. , & Denamur, E. (2010). The population genetics of commensal Escherichia coli . Nature Reviews Microbiology, 8(3), 207–217. 10.1038/nrmicro2298 [DOI] [PubMed] [Google Scholar]
  41. Viktoria, H. , Lionel, F. , & Per, K. (2008). The ferric yersiniabactin uptake receptor FyuA is required for efficient biofilm formation by urinary tract infectious Escherichia coli in human urine. Microbiology, 154, 167–175. 10.1099/mic.0.2007/011981-0 [DOI] [PubMed] [Google Scholar]
  42. Wang, J. W. , Sun, Y. , & Ji, X. (2014). Isolation, identification and drug resistance analysis of Escherichia coli isolated from pigs in Changchun, China. Journal of Veterinary Medicine, 48(11), 14–18. [Google Scholar]
  43. Xia, L. N. , Xiang, F. , & Guo, Q. Y. (2014). Drug resistance analysis of bovine Escherichia coli in different areas of Xinjiang. Chinese Animal Husbandry and Veterinary Medicine, 41(2), 203–207. [Google Scholar]
  44. Xia, X. , Meng, J. , Zhao, S. , Bodeis‐jones, S. , Gaines, S. A. , Ayers, S. L. , & McDermott, P. F. (2011). Identification and antimicrobial resistance of extraintestinal pathogenic Escherichia coli from retail meats. Journal of Food Protection, 74(1), 38–44. 10.4315/0362-028X.JFP-10-251 [DOI] [PubMed] [Google Scholar]
  45. Yao, X. H. , Long, M. J. , Kuerbannaimu, K. , Wang, K. , & Xia, L. N. (2017). Antibiotic resistance of Escherichia coli from different animal sources. Xinjiang Agricultural Science, 54(12), 2314–2319. 10.6048/j.issn.1001-4330.2017.12.019 [DOI] [Google Scholar]
  46. Zhang, P. , Shen, Z. , Zhang, C. , Song, L. I. , Wang, B. , Shang, J. , … Wu, C. (2017). Surveillance of antimicrobial resistance among Escherichia coli from chicken and swine, China, 2008–2015. Veterinary Microbiology, 203, 49–55. 10.1016/j.vetmic.2017.02.008 [DOI] [PubMed] [Google Scholar]
  47. Zhi, S. , Xi, M. L. , & Shen, J. L. (2009). The antibiotic resistance of food‐borne Escherichia coli . Acta Agriculturae Boreali‐occidentalis Sinica, 18(6), 377–381. [Google Scholar]

Articles from Food Science & Nutrition are provided here courtesy of Wiley

RESOURCES