Skip to main content
Insights into Imaging logoLink to Insights into Imaging
. 2020 Apr 22;11:57. doi: 10.1186/s13244-020-00862-x

Correction to: Advanced imaging in adult diffusely infiltrating low-grade gliomas

Nail Bulakbaşı 1,, Yahya Paksoy 2
PMCID: PMC7176752  PMID: 32323033

Correction to: Insights Imaging

https://doi.org/10.1186/s13244-019-0793-8

The original article "Advanced imaging in adult diffusely infiltrating low-grade gliomas" contains errors in Table 1 in rows ktrans and Ve; the correct version of Table 1 can be viewed in this Correction article.

Table 1.

Radiomic data for differential diagnosis of low-grade vs high-grade gliomas

Parameters Low-grade glioma High-grade glioma Cut of valueRef (Range)Ref
rCBVmax Low High 1.76 [10, 19] (0.94–3.34) [911, 1921]
rCBVMD Low High 1.44 [22] (1.08–1.81) [22]
nADCmin High Low 1.07 × 10−3 mm2/s [24] (0.31–1.31) [2328]
Cho/Cr ratio Low High 1.56 [19] (1.3–2.04) [2931]
MKMD Low High 0.17 [28] (0.11–0.28) [28]
FATC Low High 0.3 [25] (0.14–0.63) [25]
MDmin High Low 0.98 mm2/s [25] (0.76–0.91) [25]
ktrans Low High 1.18 [22] (0.91–1.45) [22]
Ve Low High 1.43 [22] (1.06–1.80) [22]
ITTS grade 1.2 2.6 NA [9]
APT signal (%) Low High 2.23% [15] (1.53%–3.70%) [15]

rCBVmax maximum relative cerebral blood volume, rCBVMD standardized mean difference of rCBVmax,nADCmin Normalized minimum apparent diffusion coefficient, Cho/Cr Choline/Creatine, MKMD mean difference in mean kurtosis, FATC Odds ratio of fractional anisotropy in the tumor core, MDmin Minimum mean diffusivity, ktrans standardized mean difference of volume transfer coefficient, Ve standardized mean difference of volume fraction of extravascular extracellular space, ITTS Intratumoral susceptibility score, APT Percent amide proton transfer signal

Reference

  • 1.Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (2016) WHO classification oftumours of the central nervous system, revised 4th edition. IARC, Lyon.
  • 2.Sahm F, Reuss D, Koelsche C et al (2014) Farewell to oligoastrocytoma: insitu molecular genetics favor classification as either oligodendroglioma orastrocytoma. Acta Neuropathol 128(4):551–559. 10.1007/s00401-014-1326-7 [DOI] [PubMed]
  • 3.Bready D, Placantonakis DG (2019) Molecular pathogenesis of low-gradeglioma. Neurosurg Clin N Am 30(1):17–25. 10.1016/j.nec.2018.08.011 [DOI] [PMC free article] [PubMed]
  • 4.Duffau H (2016) Long-term outcomes after supratotal resection of diffuselow-grade gliomas: a consecutive series with 11-year follow-up. ActaNeurochir (Wien) 158(1):51–58. 10.1007/s00701-015-2621-3 [DOI] [PubMed]
  • 5.National Comprehensive Cancer Network. Central nervous system cancers (Version 1.2019). https://www.nccn.org/professionals/physician_gls/pdf/cns.pdf. Accessed Mar 5 2019 [DOI] [PubMed]
  • 6.Olson JJ, Kalkanis SN, Ryken TC. Evidence-based clinical practiceparameter guidelines for the treatment of adults with diffuse low-gradeglioma: introduction and methods. J Neurooncol. 2015;125(3):449–456. doi: 10.1007/s11060-015-1847-5. [DOI] [PubMed] [Google Scholar]
  • 7.Fouke SJ, Benzinger T, Gibson D, Ryken TC, Kalkanis SN, Olson JJ (2015) Therole of imaging in the management of adults with diffuse low-gradeglioma: a systematic review and evidence-based clinical practice guideline. JNeurooncol 125(3):457–479. 10.1007/s11060-015-1908-9 [DOI] [PubMed]
  • 8.Caulo M, Panara V, Tortora D et al (2014) Data-driven grading of braingliomas: a multiparametric MR imaging study. Radiology 272(2):494–503. 10.1148/radiol.14132040. [DOI] [PubMed]
  • 9.Li X, Zhu Y, Kang H, et al. Glioma grading by microvascularpermeability parameters derived from dynamic contrast-enhanced MRI andintratumoral susceptibility signal on susceptibility weighted imaging. CancerImaging. 2015;15:4. doi: 10.1186/s40644-015-0039-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Delgado AF, Delgado AF. Discrimination between glioma grades IIand III using dynamic susceptibility perfusion MRI: a meta-analysis. AJNR AmJ Neuroradiol. 2017;38(7):1348–1355. doi: 10.3174/ajnr.A5218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Kong L, Chen H, Yang Y, Chen L (2017) A meta-analysis of arterial spinlabelling perfusion values for the prediction of glioma grade. Clin Radiol72(3):255–261. 10.1016/j.crad.2016.10.016. [DOI] [PubMed]
  • 12.ACR Committee on Drugs and Contrast Media (2018) ACR manual oncontrast media (Version 10.3, 2018). https://www.acr.org/-/media/ACR/Files/Clinical-Resources/Contrast_Media.pdf. Accessed 2018.
  • 13.Choi C, Ganji SK, DeBerardinis RJ, et al. 2-hydroxyglutarate detectionby magnetic resonance spectroscopy in IDH-mutated patients with gliomas. Nat Med. 2012;18(4):624–629. doi: 10.1038/nm.2682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Tietze A, Choi C, Mickey B, et al. Noninvasive assessment of isocitratedehydrogenase mutation status in cerebral gliomas by magnetic resonancespectroscopy in a clinical setting. J Neurosurg. 2018;128(2):391–398. doi: 10.3171/2016.10.JNS161793. [DOI] [PubMed] [Google Scholar]
  • 15.Suh CH, Park JE, Jung SC, Choi CG, Kim SJ, Kim HS. Amide protontransfer-weighted MRI in distinguishing high- and low-grade gliomas: asystematic review and meta-analysis. Neuroradiology. 2019;61(5):525–534. doi: 10.1007/s00234-018-02152-2. [DOI] [PubMed] [Google Scholar]
  • 16.Park JE, Kim HS, Park KJ, Choi CG, Kim SJ (2015) Histogram analysis of amideproton transfer imaging to identify contrast-enhancing low-grade braintumor that mimics high-grade tumor: increased accuracy of MR perfusion.Radiology 277(1):151–161. 10.1148/radiol.2015142347. [DOI] [PubMed]
  • 17.Biller A, Badde S, Nagel A, et al. Improved brain tumor classification bysodium MR imaging: prediction of IDH mutation status and tumor progression.AJNR. Am J Neuroradiol. 2016;37(1):66–73. doi: 10.3174/ajnr.A4493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Pepin KM, McGee KP, Arani A, et al. MR elastography analysis ofglioma stiffness and IDH1-mutation status. AJNR Am J Neuroradiol. 2018;39(1):31–36. doi: 10.3174/ajnr.A5415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Law M, Yang S, Wang H, et al. Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MRspectroscopic imaging compared with conventional MR imaging. AJNR AmJ Neuroradiol. 2003;24(10):1989–1998. [PMC free article] [PubMed] [Google Scholar]
  • 20.Bulakbasi N, Kocaoglu M, Farzaliyev A, Tayfun C, Ucoz T, Somuncu I. Assessment of diagnostic accuracy of perfusion MR imaging in primary andmetastatic solitary malignant brain tumors. AJNR Am J Neuroradiol. 2005;26(9):2187–2199. [PMC free article] [PubMed] [Google Scholar]
  • 21.Anzalone N, Castellano A, Cadioli M, et al. Brain gliomas: multicenterstandardized assessment of dynamic contrast-enhanced and dynamicsusceptibility contrast MR images. Radiology. 2018;287(3):933–943. doi: 10.1148/radiol.2017170362. [DOI] [PubMed] [Google Scholar]
  • 22.Liang J, Liu D, Gao P, et al. Diagnostic values of DCE-MRI and DSC-MRIfor differentiation between high-grade and low-grade gliomas: acomprehensive meta-analysis. Acad Radiol. 2018;25(3):338–348. doi: 10.1016/j.acra.2017.10.001. [DOI] [PubMed] [Google Scholar]
  • 23.Bulakbasi N, Guvenc I, Onguru O, Erdogan E, Tayfun C, Ucoz T (2004) Theadded value of the apparent diffusion coefficient calculation to magneticresonance imaging in the differentiation and grading of malignant braintumors. J Comput Assist Tomogr 28(6):735–46 [DOI] [PubMed]
  • 24.Server A, Kulle B, Gadmar ØB, Josefsen R, Kumar T, Nakstad PH (2011) Measurements of diagnostic examination performance using quantitativeapparent diffusion coefficient and proton MR spectroscopic imaging in thepreoperative evaluation of tumor grade in cerebral gliomas. Eur J Radiol 80(2):462–70. 10.1016/j.ejrad.2010.07.017 [DOI] [PubMed]
  • 25.Miloushev VZ, Chow DS, Filippi CG (2015) Meta-analysis of diffusion metricsfor the prediction of tumor grade in gliomas. AJNR Am J Neuroradiol 36(2):302–8. 10.3174/ajnr.A4097 [DOI] [PMC free article] [PubMed]
  • 26.Zhang L, Min Z, Tang M, Chen S, Lei X, Zhang X (2017) The utility ofdiffusion MRI with quantitative ADC measurements for differentiating high-grade from low-grade cerebral gliomas: evidence from a meta-analysis. JNeurol Sci 373:9–15. 10.1016/j.jns.2016.12.008Erratum in: JNeurol Sci. 2017;375:103–6
  • 27.Liang R, Wang X, Li M et al. (2014) Potential role of fractionalanisotropy derived from diffusion tensor imaging in differentiatinghigh-grade gliomas from low-grade gliomas: a meta-analysis. Int J ClinExp Med 7(10):3647–53 [PMC free article] [PubMed]
  • 28.Falk Delgado A, Nilsson M, van Westen D, Falk Delgado A. Gliomagrade discrimination with MR diffusion kurtosis imaging: a meta-analysis ofdiagnostic accuracy. Radiology. 2018;287(1):119–127. doi: 10.1148/radiol.2017171315. [DOI] [PubMed] [Google Scholar]
  • 29.Castillo M, Smith JK, Kwock L. Correlation of myo-inositol levels andgrading of cerebral astrocytomas. AJNR Am J Neuroradiol. 2000;21(9):1645–1649. [PMC free article] [PubMed] [Google Scholar]
  • 30.Wang Q, Zhang H, Zhang J, et al. The diagnostic performance ofmagnetic resonance spectroscopy in differentiating high-from low-gradegliomas: a systematic review and meta-analysis. Eur Radiol. 2016;26(8):2670–2684. doi: 10.1007/s00330-015-4046-z. [DOI] [PubMed] [Google Scholar]
  • 31.Usinskiene J, Ulyte A, Bjørnerud A, et al. Optimal differentiation ofhigh- and low-grade glioma and metastasis: a meta-analysis of perfusion, diffusion, and spectroscopy metrics. Neuroradiology. 2016;58(4):339–350. doi: 10.1007/s00234-016-1642-9. [DOI] [PubMed] [Google Scholar]
  • 32.Hilario A, Sepulveda JM, Perez-Nuñez A, et al. A prognostic modelbased on preoperative MRI predicts overall survival in patients with diffusegliomas. AJNR Am J Neuroradiol. 2014;35(6):1096–1102. doi: 10.3174/ajnr.A3837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Cuccarini V, Erbetta A, Farinotti M, et al. Advanced MRI maycomplement histological diagnosis of lower grade gliomas and help inpredicting survival. J Neurooncol. 2016;126(2):279–288. doi: 10.1007/s11060-015-1960-5. [DOI] [PubMed] [Google Scholar]
  • 34.Villanueva-Meyer JE, Wood MD, Choi BS, et al. MRI features and IDHmutational status of grade II diffuse gliomas: impact on diagnosis andprognosis. AJR Am J Roentgenol. 2018;210(3):621–628. doi: 10.2214/AJR.17.18457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Law M, Oh S, Babb JS, et al. Low-grade gliomas: dynamicsusceptibility-weighted contrast-enhanced perfusion MR imaging-predictionof patient clinical response. Radiology. 2006;238(2):658–667. doi: 10.1148/radiol.2382042180. [DOI] [PubMed] [Google Scholar]
  • 36.Nguyen TB, Cron GO, Mercier JF et al. (2015) Preoperative prognostic valueof dynamic contrast-enhanced MRI-derived contrast transfer coefficient andplasma volume in patients with cerebral gliomas. AJNR Am J Neuroradiol36(1):63–69. 10.3174/ajnr.A4006 [DOI] [PMC free article] [PubMed]
  • 37.Hlaihel C, Guilloton L, Guyotat J, Streichenberger N, Honnorat J, Cotton F. Predictive value of multimodality MRI using conventional, perfusion, and spectroscopy MR in anaplastic transformation of low-gradeoligodendrogliomas. J Neurooncol. 2010;97(1):73–80. doi: 10.1007/s11060-009-9991-4. [DOI] [PubMed] [Google Scholar]
  • 38.Law M, Young RJ, Babb JS et al. (2008) Gliomas: predicting time toprogression or survival with cerebral blood volume measurements atdynamic susceptibility-weighted contrast-enhanced perfusion MR imaging.Radiology 247(2):490–98. 10.1148/radiol.2472070898 [DOI] [PMC free article] [PubMed]
  • 39.Danchaivijitr N, Waldman AD, Tozer DJ, et al. Low-grade gliomas: dochanges in rCBV measurements at longitudinal perfusion-weighted MRimaging predict malignant transformation? Radiology. 2008;247(1):170–178. doi: 10.1148/radiol.2471062089. [DOI] [PubMed] [Google Scholar]
  • 40.Back M, Jayamanne DT, Brazier D, et al. Influence of molecularclassification in anaplastic glioma for determining outcome and futureapproach to management. J Med Imaging Radiat Oncol. 2019;63(2):272–280. doi: 10.1111/1754-9485.12850. [DOI] [PubMed] [Google Scholar]
  • 41.Shirahata M, Ono T, Stichel D, et al. Novel, improved gradingsystem(s) for IDH-mutant astrocytic gliomas. Acta Neuropathol. 2018;136(1):153–166. doi: 10.1007/s00401-018-1849-4. [DOI] [PubMed] [Google Scholar]
  • 42.Patel SH, Poisson LM, Brat DJ, et al. T2-FLAIR mismatch, an imagingbiomarker for IDH and 1p/19q status in lower-grade gliomas: a TCGA/TCIA project. Clin Cancer Res. 2017;23(20):6078–6085. doi: 10.1158/1078-0432.CCR-17-0560. [DOI] [PubMed] [Google Scholar]
  • 43.Ren Y, Zhang X, Rui W, et al. Noninvasive prediction of IDH1 mutationand ATRX expression loss in low-grade gliomas using multiparametric MRradiomic features. J Magn Reson Imaging. 2019;49(3):808–817. doi: 10.1002/jmri.26240. [DOI] [PubMed] [Google Scholar]
  • 44.Hasselblatt M, Jaber M, Reuss D, et al. Diffuse astrocytoma, IDH-wildtype: a dissolving diagnosis. J Neuropathol Exp Neurol. 2018;77(6):422–425. doi: 10.1093/jnen/nly012. [DOI] [PubMed] [Google Scholar]
  • 45.BratDJ, AldapeK, ColmanH, etal. (2018) cIMPACT-NOWupdate3:recommended diagnostic criteria for "diffuse astrocytic glioma, IDH-wildtype, with molecular features of glioblastoma, WHO grade IV. Acta Neuropathol 136(5):805–10. 10.1007/s00401-018-1913-0 [DOI] [PMC free article] [PubMed]
  • 46.Wu CC, Jain R, Radmanesh A et al. (2018) Predicting genotype and survivalin glioma using standard clinical MR imaging apparent diffusion coefficientimages: a pilot study from the cancer genome atlas. AJNR Am J Neuroradiol 39(10):1814–20. 10.3174/ajnr.A5794 [DOI] [PMC free article] [PubMed]
  • 47.Smits M, van den Bent MJ. Imaging correlates of adult gliomagenotypes. Radiology. 2017;284(2):316–331. doi: 10.1148/radiol.2017151930. [DOI] [PubMed] [Google Scholar]
  • 48.Kickingereder P, Sahm F, Radbruch A et al. (2015) IDH mutation status isassociated with a distinct hypoxia/angiogenesis transcriptome signaturewhich is non-invasively predictable with rCBV imaging in human glioma. SciRep 5:16238. 10.1038/srep16238 [DOI] [PMC free article] [PubMed]
  • 49.Leu K, Ott GA, Lai A, et al. Perfusion and diffusion MRI signatures inhistologic and genetic subtypes of WHO grade II-III diffuse gliomas. JNeurooncol. 2017;134(1):177–188. doi: 10.1007/s11060-017-2506-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Stadlbauer A, Zimmermann M, Kitzwögerer M, et al. MR imaging-derived oxygen metabolism and neovascularization characterization forgrading and IDH gene mutation detection of gliomas. Radiology. 2017;283(3):799–809. doi: 10.1148/radiol.2016161422. [DOI] [PubMed] [Google Scholar]
  • 51.Bian W, Khayal IS, Lupo JM, et al. Multiparametric characterization ofgrade 2 glioma subtypes using magnetic resonance spectroscopic, perfusion, and diffusion imaging. Transl Oncol. 2009;2(4):271–280. doi: 10.1593/tlo.09178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Lin Y, Xing Z, She D, et al. IDH mutant and 1p/19q co-deletedoligodendrogliomas: tumor grade stratification using diffusion-, susceptibility-, and perfusion-weighted MRI. Neuroradiology. 2017;59(6):555–562. doi: 10.1007/s00234-017-1839-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Yoon HJ, Ahn KJ, Lee S, et al. Differential diagnosis of oligodendroglialand astrocytic tumors using imaging results: the added value of perfusionMR imaging. Neuroradiology. 2017;59(7):665–675. doi: 10.1007/s00234-017-1851-x. [DOI] [PubMed] [Google Scholar]
  • 54.Jenkinson MD, Smith TS, Joyce KA et al. (2006) Cerebral blood volume, genotype and chemosensitivity in oligodendroglial tumours.Neuroradiology 48(10):703–13. [DOI] [PMC free article] [PubMed]
  • 55.Chawla S, Krejza J, Vossough A, et al. Differentiation betweenoligodendroglioma genotypes using dynamic susceptibility contrastperfusion-weighted imaging and proton MR spectroscopy. AJNR Am JNeuroradiol. 2013;34(8):1542–1549. doi: 10.3174/ajnr.A3384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Emblem KE, Scheie D, Due-Tonnessen P, et al. Histogram analysis ofMR imaging-derived cerebral blood volume maps: combined gliomagrading and identification of low-grade oligodendroglial subtypes. AJNRAm J Neuroradiol. 2008;29(9):1664–1670. doi: 10.3174/ajnr.A1182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Emblem KE, Nedregaard B, Nome T, et al. Glioma grading by usinghistogram analysis of blood volume heterogeneity from MR-derivedcerebral blood volume maps. Radiology. 2008;247(3):808–817. doi: 10.1148/radiol.2473070571. [DOI] [PubMed] [Google Scholar]
  • 58.Dietrich O, Reiser MF, Schoenberg SO (2008) Artifacts in 3T MRI: physicalbackground and reduction strategies. Eur J Radiol 65(1):29–35 [DOI] [PubMed]
  • 59.Vargas MI, Delavelle J, Kohler R, Becker CD, Lovblad K. Brain and spineMRI artifacts at 3Tesla. J Neuroradiol. 2009;36(2):74–81. doi: 10.1016/j.neurad.2008.08.001. [DOI] [PubMed] [Google Scholar]
  • 60.Kang Y, Choi SH, Kim YJ. Gliomas: histogram analysis of apparentdiffusion coefficient maps with standard- or high-b-value diffusion-weighted MR imaging--correlation with tumor grade. Radiology. 2011;261(3):882–890. doi: 10.1148/radiol.11110686. [DOI] [PubMed] [Google Scholar]
  • 61.Zhou M, Scott J, Chaudhury B et al. (2018) Radiomics in brain tumor: imageassessment, quantitative feature descriptors, and machine-learningapproaches. AJNR Am J Neuroradiol 39(2):208–16. 10.3174/ajnr.A5391 [DOI] [PMC free article] [PubMed]
  • 62.Zhang X, Yan LF, Hu YC, et al. Optimizing a machine learning basedglioma grading system using multi-parametric MRI histogram and texturefeatures. Oncotarget. 2017;8(29):47816–47830. doi: 10.18632/oncotarget.18001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Lee MH, Kim J, Kim ST et al. (2019) Prediction of IDH1 mutation in GBMusing machine learning technique based on quantitative radiomic data.World Neurosurg 125:e688–e696. 10.1016/j.wneu.2019.01.157 [DOI] [PubMed]

Articles from Insights into Imaging are provided here courtesy of Springer

RESOURCES