Skip to main content
Wiley Open Access Collection logoLink to Wiley Open Access Collection
. 2020 Feb 17;41(5):884–905. doi: 10.1002/humu.23995

Update of variants identified in the pancreatic β‐cell KATP channel genes KCNJ11 and ABCC8 in individuals with congenital hyperinsulinism and diabetes

Elisa De Franco 1, Cécile Saint‐Martin 2, Klaus Brusgaard 3, Amy E Knight Johnson 4, Lydia Aguilar‐Bryan 5, Pamela Bowman 1, Jean‐Baptiste Arnoux 6, Annette Rønholt Larsen 7, May Sanyoura 8, Siri Atma W Greeley 8, Raúl Calzada‐León 9, Bradley Harman 1, Jayne A L Houghton 10, Elisa Nishimura‐Meguro 11, Thomas W Laver 1, Sian Ellard 1,10, Daniela del Gaudio 4, Henrik Thybo Christesen 7,12, Christine Bellanné‐Chantelot 2, Sarah E Flanagan 1,
PMCID: PMC7187370  PMID: 32027066

Abstract

The most common genetic cause of neonatal diabetes and hyperinsulinism is pathogenic variants in ABCC8 and KCNJ11. These genes encode the subunits of the β‐cell ATP‐sensitive potassium channel, a key component of the glucose‐stimulated insulin secretion pathway. Mutations in the two genes cause dysregulated insulin secretion; inactivating mutations cause an oversecretion of insulin, leading to congenital hyperinsulinism, whereas activating mutations cause the opposing phenotype, diabetes. This review focuses on variants identified in ABCC8 and KCNJ11, the phenotypic spectrum and the treatment implications for individuals with pathogenic variants.

Keywords: ABCC8, congenital hyperinsulinism, K‐ATP channel, KCNJ11, neonatal diabetes


The most common genetic cause of neonatal diabetes and hyperinsulinism is pathogenic variants in ABCC8 and KCNJ11. These genes encode the subunits of the β‐cell ATP‐sensitive potassium channel, a key component of the glucose‐stimulated insulin secretion pathway. Mutations in the two genes cause dysregulated insulin secretion; inactivating mutations cause an oversecretion of insulin, leading to congenital hyperinsulinism, whereas activating mutations cause the opposing phenotype, diabetes. This review focuses on variants identified in ABCC8 and KCNJ11, the phenotypic spectrum and the treatment implications for individuals with pathogenic variants.

graphic file with name HUMU-41-884-g002.jpg

1. INTRODUCTION

ATP‐sensitive potassium (KATP) channels were found to couple glucose metabolism to membrane electrical activity and insulin release over 30 years ago (Ashcroft, Harrison, & Ashcroft, 1984; Cook & Hales, 1984; Rorsman & Trube, 1985). This landmark discovery was fundamental to further understanding of the insulin secretion pathway whereby glucose metabolism results in a change in ratio of ADP and ATP. The binding of ATP to the channel induces channel closure, depolarization of the membrane, and activation of voltage‐dependent calcium channels, leading to calcium influx, and insulin granule exocytosis (Figure 1a).

Figure 1.

Figure 1

Schematic representation of insulin secretion in the pancreatic β‐cell. (a) In a normal cell in a high plasma glucose environment. (b) In a cell with an activating KATP channel mutation. (c) In a cell with an inactivating mutation resulting in the absence/reduction in protein at the membrane surface d) In a cell with an inactivating mutation that impairs the stimulatory effect of MgADP (a) Glucose is metabolized after entry into the β‐cell via a GLUT transporter. This results in change in the ATP:ADP ratio, leading to channel closure and membrane depolarization and activation of voltage‐dependent calcium channels. Calcium enters the cell, which triggers insulin release. (b) An activating mutation in a KATP channel gene results in the membrane being maintained in a hyperpolarized state. Calcium channels remain closed and insulin is not secreted. (c) Loss‐of‐function mutations can result in an absence/reduction in protein at the membrane surface. This keeps the membrane in a depolarized state, regardless of the metabolic state ultimately leading to unregulated insulin secretion. (d) Loss‐of‐function missense mutations can produce channels that traffic to the membrane but have impaired mgADP activation

Given the role of the KATP channel in insulin secretion, it is not unexpected that variants in KCNJ11, encoding the four pore‐forming inwardly rectifying Kir6.2 subunits, and ABCC8, encoding the four sulphonylurea receptor 1 (SUR1) subunits of the channel, can cause hypo‐ or hyperglycemia (Babenko et al., 2006; Gloyn, Pearson, et al., 2004; Thomas et al., 1995; Thomas, Ye, & Lightner, 1996). Identifying these mutations is important for informing prognosis, medical management, and recurrence risk.

Over recent years, the number of variants identified in these two genes has expanded tremendously. In 2006, 124 disease‐causing mutations were reported, which increased to 265 pathogenic variants 3 years later (Flanagan et al., 2009; Gloyn, Siddiqui, & Ellard, 2006). By combining published reports together with data from five international molecular genetic screening laboratories in the UK, Denmark, France, and the United States of America, we now report 953 pathogenic ABCC8 and KCNJ11 variants (Tables S1–S6) and discuss the role of these genes in congenital hyperinsulinism (CHI) and monogenic diabetes.

2. CONGENITAL HYPERINSULINISM

CHI is characterized by the inappropriate secretion of insulin despite low blood glucose, which can result in irreversible brain damage if not promptly treated (Helleskov et al., 2017). The condition has a variable phenotype usually presenting during the neonatal period or infancy with seizures and/or coma and a large birth weight due to high levels of insulin acting as a growth factor in utero.

Although most cases of CHI are sporadic, rare familial forms have been well documented. Sporadic CHI has an estimated incidence of between 1 in 27,000 and 1 in 50,000 live births (Glaser, Thornton, Otonkoski, & Junien, 2000; Otonkoski et al., 1999). However, in some isolated populations or in countries with high rates of consanguineous unions, the incidence is higher (i.e., 1 in 2,675 to 1 in 3,200; Mathew et al., 1988; Otonkoski et al., 1999).

2.1. CHI due to KATP channel mutations

Loss‐of‐function ABCC8 mutations were first described in 1995 (Thomas et al., 1995). These mutations either prevent trafficking of the channel to the membrane surface or are associated with channels that reach the surface but are not fully responsive to MgADP activation (Figure 1; Ashcroft, 2005; Nichols et al., 1996; Taschenberger et al., 2002). The majority of ABCC8 loss‐of‐function mutations are recessively acting with a small number of dominant missense mutations reported that produce channels that traffic to the membrane but have impaired mgADP activation.

Fewer loss‐of‐function mutations have been reported in KCNJ11 in keeping with the gene being much smaller (1173 vs. 4749 bases, respectively; Thomas et al., 1996). Similar to ABCC8, both dominant and recessively acting KCNJ11 mutations have been described (Pinney et al., 2013). Mutations in these two genes together account for 36–70% of CHI cases (Kapoor et al., 2013; Snider et al., 2013).

There exist mouse models for KATP channel CHI; however, their inability to fully recapitulate the human phenotype means that they have a limited value for studying specific disease mechanisms. For example, mice generated with a deletion of ABCC8 or KCNJ11, or the homozygous recessive KCNJ11 mutation p.(Tyr12Ter), do not have the sustained neonatal hypoglycemia observed in humans with homozygous null mutations. Instead the blood glucose levels normalize in the mouse within a few days of birth with glucose intolerance developing in later life (Hugill, Shimomura, Ashcroft, & Cox, 2010; Miki et al., 1998; Seghers, Nakazaki, DeMayo, Aguilar‐Bryan, & Bryan, 2000). The differences in the phenotype between mice and humans are not fully understood, but they highlight the need to develop human‐specific models for studying disease mechanisms.

2.2. Clinical management of KATP channel CHI

In 2015, the Pediatric Endocrine Society published recommendations for the evaluation and management of persistent hypoglycemia in neonates, infants, and children (Thornton et al., 2015). The main treatment for CHI is the KATP channel‐opener diazoxide; however, patients with ABCC8/KCNJ11 mutations that prevent trafficking to the membrane do not respond to the drug as diazoxide targets the SUR1 subunit of the KATP channel. For approximately 50% of patients with mutations that do not prevent the channel from reaching the membrane, diazoxide is an effective treatment (Boodhansingh et al., 2019). For patients with diazoxide‐unresponsive CHI, second‐line treatment with somatostatin analogs may be helpful to control hypoglycemia; however, adverse effects on somatostatin analogs, and likewise diazoxide, have been reported (Demirbilek et al., 2014; Herrera et al., 2018).

The mode of inheritance of the KATP channel mutation determines the pancreatic histological subtype (de Lonlay et al., 1997; de Lonlay et al., 2002; Jack, Walker, Thomsett, Cotterill, & Bell, 2000; Rahier et al., 1984). Inheritance of two recessively acting or one dominant ABCC8/KCNJ11 mutation results in diffuse disease affecting the entire pancreas. Focal disease is caused by somatic loss of the maternal chromosome 11p15.5 region by uniparental disomy that unmasks a paternally inherited KATP channel mutation at 11p15.1. These focal lesions often appear histologically as small regions of islet adenomatosis that develop as a result of the imbalanced expression of maternally imprinted tumor suppressor genes H19 and p57Kip2, and the increased expression of the paternally derived insulin‐like growth factor II gene (Craigie et al., 2018; Damaj et al., 2008; de Lonlay et al., 1997). Rarely, giant focal lesions have been described where virtually the whole of the pancreas is affected (Ismail et al., 2012). Atypical mosaic disease has also been reported in a small number of cases (Han et al., 2017; Houghton et al., 2019; Hussain et al., 2008; Sempoux et al., 2011).

The identification of a single recessively acting KATP channel mutation in an individual with CHI predicts focal disease with 84–97% sensitivity, with a positive predictive value up to 94% (Mohnike et al., 2014; Snider et al., 2013). 18F‐DOPA PET/CT scanning can identify and localize a focal lesion before surgery (Otonkoski et al., 2006). Intraoperative ultrasound may further aid the surgeon to perform tissue‐sparing pancreatic resection in focal CHI, which is potentially curative (Bendix et al., 2018).

3. DIABETES MELLITUS

Diabetes is the opposing disorder to CHI and results from hyper‐ rather than hypoglycemia. Current estimates suggest that approximately 0.4% of all diabetes (and up to 3.5% of those diagnosed under 30 years of age) has a monogenic cause (Shepherd et al., 2016; Shields et al., 2017). Individuals diagnosed with monogenic diabetes outside of infancy are generally classified as having maturity onset diabetes of the young, whereas neonatal diabetes (NDM) describes congenital diabetes. In individuals with NDM, impaired insulin secretion results in a low birth weight and hyperglycemia diagnosed before the age of 6 months (Hattersley & Ashcroft, 2005). The minimal incidence of NDM has been calculated to be between 1 in 89,000 and 1 in 160,949 live births (Grulich‐Henn et al., 2010; Wiedemann et al., 2010).

3.1. Later‐onset diabetes due to KATP channel mutations

Dominantly acting mutations in the KATP channel genes have been rarely described in individuals with later‐onset diabetes in the absence of documented hyper‐ or hypoglycemia in the neonatal period (Bowman et al., 2012; Hartemann‐Heurtier et al., 2009; Huopio et al., 2003; Koufakis et al., 2019; Tarasov et al., 2008). The mechanism(s) leading to this variable penetrance are not fully understood and may differ according to whether the mutation is causing a gain or loss of channel function. Interestingly, in one study, the generation of a mouse model harboring a homozygous dominantly acting loss‐of‐function ABCC8 mutation p.(Glu1507Lys) recapitulated the biphasic phenotype with the mice having increased insulin secretion in early life and reduced insulin secretion later on. This was shown to be resulting from a reduction in insulin content rather than a reduction of islet number and/or size. Heterozygosity for the mutation did, however, not result in a phenotype in the mouse, further highlighting differences between the mouse models and human disease (Shimomura et al., 2013).

3.2. Neonatal diabetes due to KATP channel mutations

Strong support for the role of gain‐of‐function KATP channel mutations in the etiology of diabetes came from the observation that mice overexpressing a mutant KATP channel with reduced ATP sensitivity developed diabetes within 2 days (Koster, Marshall, Ensor, Corbett, & Nichols, 2000). In 2004, the first heterozygous activating KCNJ11 mutations causing NDM were described in humans with activating ABCC8 mutations reported 2 years later (Babenko et al., 2006; Gloyn, Pearson, et al., 2004; Proks et al., 2006). Mutations in these two genes together have now been shown to account for approximately 40% of NDM cases (De Franco et al., 2015; Stoy et al., 2008).

Both dominant and recessive activating mutations are frequently identified in ABCC8. Conversely for KCNJ11, all, but one of the mutations reported so far, p.(Gly324Arg), have been dominantly acting. The majority (~60%) of dominant mutations arise “de novo,” so there is often no family history of diabetes; however, germline mosaicism has been observed in some families (Edghill et al., 2007; Gloyn, Cummings, et al., 2004).

There is added complexity associated with ABCC8 mutations, as compound heterozygosity for both an activating and an inactivating mutation can cause diabetes (Ellard et al., 2007). Furthermore, a recessively inherited ABCC8 nonsense variant has been reported in two cases with NDM, which leads to the deletion of the in‐frame exon 17 likely resulting in enhanced sensitivity of the channel to intracellular MgADP/ATP (Flanagan et al., 2017).

The specific KATP channel mutation identified determines whether the diabetes will cause permanent or transient NDM (Gloyn, Reimann, et al., 2005; Patch, Flanagan, Boustred, Hattersley, & Ellard, 2007). Variable penetrance within families with mutations leading to transient diabetes is observed with some individuals being diagnosed with diabetes at birth, yet others developing diabetes for the first time in adulthood (see previous section on adult‐onset diabetes; Flanagan, Edghill, Gloyn, Ellard, & Hattersley, 2006).

3.3. Spectrum of central nervous system features in KATP channel NDM

Central nervous system (CNS) features are frequently reported in individuals with KATP channel NDM due to the Kir6.2 and SUR1 proteins being expressed in the brain (Karschin, Ecke, Ashcroft, & Karschin, 1997; Liss, Bruns, & Roeper, 1999; Sakura, Ammala, Smith, Gribble, & Ashcroft, 1995; Schmahmann & Sherman, 1998). The most severe neurological phenotype is termed as developmental delay, epilepsy and neonatal diabetes (DEND) syndrome, which includes muscle weakness and hypotonia (Hattersley & Ashcroft, 2005). Intermediate DEND (iDEND) syndrome is diagnosed when epilepsy is absent or presents after the age of 12 months (Gloyn, Diatloff, et al. 2006). Clinical studies have reported CNS features in approximately 20–30% of individuals with KATP channel permanent NDM (De Franco et al., 2015; Massa et al., 2005; Sagen et al., 2004).

Since these initial reports, studies on larger cohorts of individuals affected with KATP channel NDM have characterized the neurological features in more detail. Additional features reported include autism and attention deficit hyperactivity disorder (ADHD), anxiety and sleep disorders, dyspraxia, and learning difficulties, resulting in impaired attention, memory, visuospatial abilities, and executive function (Beltrand et al., 2015; Bowman et al., 2016; Bowman et al., 2017; Bowman, Day, et al., 2018; Busiah et al., 2013; Landmeier, Lanning, Carmody, Greeley, & Msall, 2017). More important, it is now recognized that some degree of impairment can be detected on neuropsychological testing in the majority of patients with KATP channel mutations, even if there is no obvious CNS involvement (Busiah et al., 2013; Carmody et al., 2016).

3.4. Clinical management of neonatal diabetes and CNS features due to KATP channel mutations

The identification of a KATP channel mutation can have an impact on the medical management of patients with NDM as approximately 90% can transfer from insulin injections to high‐dose sulphonylurea tablets (Pearson et al., 2006; Zung, Glaser, Nimri, & Zadik, 2004). Sulphonylureas bind to the SUR1 subunit of the KATP channel and close it independently of ATP, resulting in excellent long‐term glycemic control and improved quality of life for affected patients and their families (Babenko et al., 2006; Bowman, Sulen et al., 2018; Rafiq et al., 2008). Patients who are unable to transfer to sulphonylureas tend to have a longer duration of diabetes before attempting transfer or functionally severe mutations (Babiker et al., 2016; Thurber et al., 2015). Few side effects and no episodes of severe hypoglycemia involving seizures or loss of consciousness have been reported in individuals with sulphonylurea‐treated neonatal diabetes (Bowman, Sulen, et al., 2018; Codner, Flanagan, Ellard, Garcia, & Hattersley, 2005; Kumaraguru et al., 2009; Lanning et al., 2018).

Sulphonylureas can improve the neurological features in people with KATP channel NDM, particularly in the first year of treatment (Beltrand et al., 2015; Fendler et al., 2013; Stoy et al., 2008). However, these features do not fully resolve after sulphonylurea therapy and persist for a long term into adulthood (Bowman, Day et al., 2018; Bowmen, Sulen, et al., 2018). Higher doses of sulphonylureas are recommended for patients with severe neurological features in an attempt to mitigate this (https://www.diabetesgenes.org/). In addition, starting sulphonylurea therapy as early as possible after a genetic diagnosis is crucial as the largest improvements appear to occur in younger patients (Beltrand et al., 2015; Shah, Spruyt, Kragie, Greeley, & Msall, 2012).

4. GENETIC VARIATION IN ABCC8 AND KCNJ11

KCNJ11 (MIM# 600937) is located 4.5Kb from ABCC8 on chromosome 11p15.1 and has a single exon encoding for the 390‐amino acid Kir6.2 protein (GenBank NM_000525.3). ABCC8 consists of 39 exons that encode for the 1,582 amino acids of SUR1 (NM_001287174.1; MIM# 600509). This gene has an alternatively spliced recognition site at the 5′ end of exon 17, which results in two different transcripts differing in length by a single amino acid (GenBank AH003589.2). This alternative splicing has led to discrepancies in the literature for nomenclature of variants present in 17–39, which differ by a single amino acid depending on the isoform used (1581 amino acids, NM_000249.3 and 1582 amino acids, NM_001287174.1). For the purpose of this review, we have described ABCC8 variants according to the longer isoform (NM_001287174.1).

4.1. Disease‐causing variants

A total of 748 ABCC8 and 205 KCNJ11 pathogenic or likely pathogenic variants have been identified in individuals with CHI or NDM (Table 1 and Table 3 and Tables S1 and S4) — please note that these tables are meant to direct to the appropriate references and laboratories. They do not provide in‐depth clinical information and variants that had been previously reported as pathogenic with a GnomAD frequency compatible with the disease frequency (as calculated by http://cardiodb.org/allelefrequencyapp/ using a biallelic mode of inheritance, a prevalence of 1/50,000, an allelic heterogeneity of 0.1, genetic heterogeneity of 0.5, and penetrance of 0.5) were not re‐assessed.

Table 1.

Unpublished pathogenic variants identified in KCNJ11 (NM_000525.3)

Protein change Nucleotide change Mutation type Phenotype Zygosity Likely dominant or recessively acting GnomAD MAF Reporting laboratory
p.(Arg4Cys) c.10C>T Missense

TNDM 

PNDM

Heterozygous Dominant 0.00002150 Exeter
p.(Leu17Pro) c.50T>C Missense PNDM Heterozygousdenovo Dominant 0 Exeter
p.(Tyr26Ter) c.78C>A Nonsense HI Homozygous Recessive 0 Exeter
p.(Arg27Cys) c.79C>T Missense HI HeterozygousPat Recessive 0.000007976 Chicago
p.(Lys38Glu) c.112A>G Missense HI Homozygous Recessive 0 Exeter
p.(Gly40Ala) c.119G>C Missense HI Homozygous Recessive 0 Exeter
p.(Ile49Phe) c.145A>T Missense TNDM Heterozygousdenovo Dominant 0 Exeter
p.(Glu51Gly) c.152A>G Missense PNDM Heterozygousdenovo Dominant 0 Exeter
p.(Arg54Cys) c.160C>T Missense

HI/

Later‐onset diabetes

Homozygous/

Heterozygous

Recessive/

Dominant

0.000007078

Exeter/

Paris

p.(Leu56Gly) c.166_167delinsGG Missense HI Homozygous Recessive 0 Exeter
p.(Thr62SerfsTer68) c.185del Frameshift HI Homozygous Recessive 0 Exeter
p.(Cys81AlafsTer49) c.240del Frameshift HI HeterozygousPat Recessive 0 Exeter
p.(Asp99Tyr) c.295G>T Missense HI Heterozygousdenovo Dominant 0 Paris
p.(Ala120CysfsTer7) c.356dup Frameshift HI Homozygous Recessive 0 Exeter
p.(Val129Met) c.385G>A Missense NDM Heterozygousdenovo Dominant 0 Exeter
p.(Gly132TyrfsTer10) c.390_393dup Frameshift HI Homozygous Recessive 0 Exeter
p.(Cys166Trp) c.498C>G Missense NDM Heterozygous Not known 0 Chicago
p.(Met169Thr) c.506T>C Missense PNDM Heterozygousdenovo Dominant 0 Exeter
p.(Ala178LeufsTer11) c.532del Frameshift HI HeterozygousPat Recessive 0 Exeter
p.(Glu179Lys) c.535G>A Missense TNDM Heterozygousdenovo Dominant 0 Exeter
p.(Arg206His) c.617G>A Missense

Later‐onset diabetes/HI

Heterozygous/

Heterozygousdenovo

/HeterozygousPat

Not known/

Dominant/

Not known

0

Paris/Paris/

Odense

p.(Ser208Thr) c.623G>C Missense HI Heterozygousdenovo Dominant 0 Exeter
p.(Tyr258Ter) c.774C>A Nonsense HI HeterozygousPat Recessive 0 Exeter
p.(His259MetfsTer61) c.775del Missense HI Homozygous Recessive 0 Exeter
p.(Gln279Ter) c.835C>T Nonsense HI Homozygous Recessive 0 Exeter
p.(Gln289Ala) c.866G>C Missense HI HeterozygousPat Recessive 0 Chicago
p.(Gly295Ser) c.883G>A Missense HI Homozygous Recessive 0 Paris
p.(Val328Met) c.982G>A Missense TNDM Heterozygous Dominant 0 Exeter
p.(Tyr330Asn) c.988T>A Missense TNDM Heterozygous Dominant 0 Exeter
p.(Tyr330His) c.988T>C Missense Diabetes Heterozygous Not known 0 Chicago
p.(Ser331Pro) c.991T>C Missense PNDM Heterozygousdenovo Dominant 0 Exeter
p.(Gly334Ser) c.1000G>A Missense PNDM Heterozygous Dominant 0 Exeter
p.(Gly334Arg) c.1000G>C Missense PNDM Heterozygousdenovo Dominant 0 Exeter

Note: The phenotype column highlights a new phenotype; the reporting laboratory column indicates which laboratory has identified the variant in a patient with the new phenotype. See Supporting Information data for details of inclusion criteria for variants in this table.

Abbreviations: HI, hyperinsulinism; PNDM,  permanent neonatal diabetes mellitus; Ter, termination codon; TNDM,  transient neonatal diabetes mellitus.

Table 3.

Unpublished pathogenic variants identified in ABCC8 (NM_001287174.1)

Protein change Nucleotide position Position Mutation type Phenotype Zygosity Likely dominant or recessive GnomAD MAF Reporting laboratory
p.? c.(?‐1)_(1011+1_1012–1)del Exons 1–6 Deletion HI HeterozygousPat Recessive 0 Exeter
p.? c.(?‐1)_(4749+?)del Exons 1–39 Deletion HI HeterozygousPat Recessive 0 Exeter
p.(Gly7Cys) c.19G>T Exon1 Missense HI Compound heterozygous Recessive 0 Paris
p.(Glu9Ter) c.25G>T Exon 1 Nonsense HI Homozygous Recessive 0 Exeter
p.(Asn10ThrfsTer68) c.29del Exon 1 Frameshift HI Heterozygous Not known 0 Exeter
p.(Gln19Ter) c.55C>T Exon 1 Nonsense HI

Homozygous/

Homozygous

Recessive/

Recessive

0.000004209

Exeter/

Odense

p.(Gly25AlafsTer53) c.74del Exon 1 Frameshift HI HeterozygousPat Recessive 0 Exeter
p.(Cys26Trp) c.78C>G Exon 1 Missense HI HeterozygousPat Recessive 0 Paris
p.(Val28SerfsTer61) c.81_82insA Exon 1 Frameshift HI Heterozygous Not known 0 Exeter
p.(Ile46Thr) c.137T>C Exon 1 Missense HI Compound heterozygous Recessive 0 Paris
p.? c.(148+1_149–1)_(290+1_291–1)del Exon 2 Deletion HI

Homozygous/

Homozygous

Recessive/

Recessive

0

Exeter/

Odense

p.(Trp65Ter) c.195G>A Exon 2 Nonsense HI Homozygous Recessive 0 Paris
p.(Arg74Leu) c.221G>T Exon 2 Missense HI HeterozygousPat Recessive 0.000003978 Odense
p.(Trp75CysfsTer12) c.225_229del Exon 2 Frameshift HI Compound heterozygous Recessive 0 Exeter
p.? c.(290+1_291–1)_822+1_823–1)del Exons 3–5 Deletion HI Homozygous Recessive 0 Exeter
p.(Pro133Arg) c.398C>G Exon 3 Missense HI Homozygous Recessive 0 Seattle
p.? c.(412+1_413–1)_(579+1_580–1)del Exon 4 Deletion HI Compound heterozygous Recessive 0 Paris
p.(Leu175AlafsTer97) c.522dup Exon 4 Frameshift HI Homozygous Recessive 0 Exeter
p.? c.580–2A>G Intron 4 Aberrant splicing HI

Homozygous/

HeterozygousPat

Recessive/

Recessive

0

Exeter/

Odense

p.(Pro206Leu) c.617C>T Exon 5 Missense TNDM Heterozygousdenovo Dominant 0 Exeter
p.(Asp212Gly) c.635A>G Exon 5 Missense NDM Heterozygousdenovo Dominant 0 Exeter
p.(Asp212Glu) c.636C>G Exon 5 Missense NDM Heterozygous Dominant 0 Chicago
p.(Leu225_Ser226insThrLysTer) c.674_675insCACGAAGTAGCA Exon 5 Nonsense HI HeterozygousPat Recessive 0 Odense
p.(Tyr230Cys) c.689A>G Exon 5 Missense HI HeterozygousPat Recessive 0.0001034 Odense
p.(Ala235Val) c.704C>T Exon 5 Missense NDM Heterozygous Not known 0 Exeter
p.(Pro254Leu) c.761C>T Exon 5 Missense HI HeterozygousPat Recessive 0 Odense
p.(Gln282Ter) c.844C>T Exon 6 Nonsense HI HeterozygousPat Recessive 0 Exeter
p.(Lys329Ter) c.985A>T Exon 6 Nonsense HI Compound heterozygous Recessive 0 Exeter
p.? c.1012–2A>G Intron 6 Aberrant splicing HI

Heterozygous/

HeterozygousPat

Not known/

Recessive

0

Exeter/

Odense

p.(Glu350Gly) c.1049A>G Exon 7 Missense PNDM Homozygous Recessive 0 Exeter
p.(Tyr356Ter) c.1068C>G Exon 7 Nonsense HI Homozygous Recessive 0 Exeter
p.(Val360Ala) c.1079T>C Exon 7 Missense TNDM Heterozygousdenovo Dominant 0 Exeter
p.(Leu362ArgfsTer26) c.1085del Exon 7 Frameshift HI Homozygous Recessive 0 Exeter
p.(Leu366Phe) c.1096C>T Exon 7 Missense HI Heterozygous Not known 0 Odense
p.(Thr371Ile) c.1112C>T Exon 7 Missense HI Assumed compound heterozygous with pathogenic variant Assumed recessive 0.000007953 Paris
p.(Gln374Ter) c.1120C>T Exon 7 Nonsense HI HeterozygousPat Recessive 0 Exeter
p.(Ala380ProfsTer8) c.1138del Exon 7 Frameshift HI Homozygous Recessive 0.000003976 Exeter
p.(Gly384Ter) c.1150_1159del Exon 7 Nonsense HI Homozygous Recessive 0 Exeter
p.? c.1332+1G>A Intron 8 Aberrant splicing HI HeterozygousPat Recessive 0 Paris
p.? c.1332+3A>G Intron 8 Aberrant splicing HI Homozygous Recessive 0 Exeter
p.? c.(1332+1_1333–1)_(1671+1_1672–1)dup Exon 9–11 Duplication HI HeterozygousPat Recessive 0 Exeter
p.(Val447LeufsTer4) c.1337_1338dup Exon 9 Frameshift HI Compound heterozygous Recessive 0

Paris/

Odense

p.? c.1467+6T>G Intron 9 Aberrant splicing HI Compound heterozygous Recessive 0 Paris
p.? c.1468–48G>A Intron 9 Aberrant splicing HI Homozygous Recessive 0 Exeter
p.(Asn500GlnfsTer122) c.1497dup Exon 10 Frameshift HI HeterozygousPat Recessive 0 Exeter
p.(Gly505Arg) c.1513G>C Exon 10 Missense HI

Heterozygousdenovo

/Heterozygousdenovo

Dominant/

Dominant

0

Exeter/

Paris

p.(Phe536Ser) c.1607T>C Exon 10 Missense NDM Heterozygousdenovo Dominant 0 Exeter
p.? c.1631–2A>T Intron 10 Aberrant splicing HI Compound heterozygous Recessive 0 Paris
p.? c.1672–20A>T Intron 11 Aberrant splicing HI Homozygous Recessive 0 Exeter
p.(His562GlnfsTer58) c.1683_1687del Exon 12 Frameshift HI HeterozygousPat Recessive 0 Exeter
p.(Phe577Leu) c.1731T>G Exon 12 Missense TNDM Heterozygousdenovo Dominant 0 Exeter
p.(Val587Asp) c.1760T>A Exon 12 Missense NDM Heterozygousdenovo Dominant 0 Exeter
p.(Ser594Pro) c.1780T>C Exon 12 Missense HI HeterozygousPat Recessive 0 Odense
p.(Lys609ArgfsTer2) c.1826_1828delinsGG Exon 13 Frameshift HI Compound heterozygous Recessive 0 Paris
p.(Glu612Asp) c.1836G>T Exon 13 Missense HI HeterozygousPat Recessive 0.000007974 Odense
p.? c.1924–2A>T Intron 13 Aberrant splicing HI HeterozygousPat Recessive 0 Odense
p.(Glu654Ter) c.1960G>T Exon 14 Nonsense HI Compound heterozygous Recessive 0 Exeter
p.? c.2041–2A>G Intron 14 Aberrant splicing HI Heterozygous Not known 0 Exeter
p.? c.2041–1G>A Intron 14 Aberrant splicing HI HeterozygousPat Recessive 0 Odense
p.(Arg705Ter) c.2113C>T Exon 15 Nonsense HI Homozygous Recessive 0.000003989 Exeter
p.(Gly713Arg) c.2137G>C Exon 16 Missense HI HeterozygousPat Recessive 0 Exeter
p.(Glu729Ter) c.2185G>T Exon 16 Nonsense HI Heterozygous Paternal 0 Exeter
p.? c.2222+1G>A Intron 16 Aberrant splicing HI Homozygous Recessive 0 Exeter
p.(Glu757Ter) c.2269G>T Exon 18 Nonsense HI Compound heterozygous Recessive 0 Exeter
p.(Arg767SerfsTer21) c.2298_2310delinsAA Exon 19 Frameshift HI HeterozygousPat Recessive 0 Chicago
p.(Gly768ProfsTer23) c.2301_2302del Exon 19 Frameshift HI Homozygous Recessive 0 Exeter
p.(Phe794SerfsTer71) c.2379del Exon 19 Frameshift HI HeterozygousPat Recessive 0 Paris
p.(Tyr799Ter) c.2397del Exon 20 Nonsense HI Assumed compound heterozygous with pathogenic variant Assumed recessive 0 Paris
p.(Cys806Tyr) c.2417G>A Exon 20 Missense HI Homozygous Recessive 0 Exeter
p.(Asp811Val) c.2432A>T Exon 20 Missense TNDM Heterozygous Dominant 0 Chicago
p.(His817Arg) c.2450A>G Exon 20 Missense Later onset diabetes Heterozygous Not known 0.00001768 Paris
p.? c.2479–1G>A Intron 20 Aberrant splicing HI HeterozygousPat Recessive 0 Exeter
p.(Gly827AlafsTer38) c.2480del Exon 21 Frameshift HI Compound heterozygous Recessive 0 Paris
p.(Arg842GlufsTer23) c.2524del Exon 21 Frameshift HI Homozygous Recessive 0 Exeter
p.(Arg842Pro) c.2525G>C Exon 21 Missense HI HeterozygousPat Recessive 0 Odense
p.? c.2559+3_2559+15delinsCCTGGGGTCCTTGT Intron 21 Aberrant splicing HI HeterozygousPat Recessive 0 Paris
p.? c.2560–1G>A Intron 21 Aberrant splicing HI HeterozygousPat Recessive 0 Exeter
p.? c.(2559+1_2560–1)_(3332+1_3333–1)del Exons 22–26 Deletion HI Compound heterozygous Recessive 0 Exeter
p.(Gln892Ter) c.2674C>T Exon 22 Nonsense HI Compound heterozygous Recessive 0 Exeter
p.(Gln892ProfsTer28) c.2675_2679del Exon 22 Frameshift HI Homozygous Recessive 0 Exeter
p.(Gly912Arg) c.2734G>C Exon 23 Missense HI Compound heterozygous Recessive 0 Paris
p.(Leu939TrpfsTer104) c.2815del Exon 23 Frameshift HI Compound heterozygous Recessive 0 Exeter
p.? c.2823+1G>A Intron 23 Aberrant splicing HI Homozygous Recessive 0 Exeter
p.(Glu973ArgfsTer70) c.2917del Exon 24 Frameshift HI Homozygous Recessive 0 Exeter
p.(Glu974Gly) c.2921A>G Exon 24 Missense HI Heterozygous Dominant 0 Paris
p.? c.2924–1G>A Intron 24 Aberrant splicing HI Homozygous Recessive 0.000004162 Exeter
p.? c.3165+2T>A Intron 25 Aberrant splicing HI Homozygous Recessive 0 Exeter
p.? c.3166–1G>A Intron 25 Aberrant splicing HI Homozygous Recessive 0.000003977 Exeter
p.(Gln1061Ter) c.3181C>T Exon 26 Nonsense HI Homozygous Recessive 0 Exeter
p.(Cys1079Ter) c.3237C>A Exon 26 Nonsense HI Heterozygous Recessive 0 Exeter
p.(His1098Arg) c.3293A>G Exon 26 Missense HI Homozygous Recessive 0 Exeter
p.(Met1110HisfsTer5) c.3327dup Exon 26 Frameshift HI HeterozygousPat Recessive 0 Odense
p.(Gln1134Ter) c.3400C>T Exon 27 Nonsense HI Homozygous Recessive 0 Exeter
p.(Gln1134Arg) c.3401A>G Exon 27 Missense HI Compound heterozygous Recessive 0.00001193 Odense
p.? c.(3402+1_3403–1)_(3653+1_3654–1)del Exons 28–29 Deletion HI Heterozygous Not known 0 Exeter
p.(Thr1139HisfsTer7) c.3410_3414dup Exon 28 Frameshift HI Homozygous Recessive 0 Exeter
p.(Glu1141Ter) c.3421G>T Exon 28 Nonsense HI HeterozygousPat Recessive 0 Exeter
p.(Glu1141Gly) c.3422A>G Exon 28 Missense TNDM Heterozygousdenovo Dominant 0 Paris
p.(Cys1150Ter) c.3450T>A Exon 28 Nonsense HI HeterozygousPat Recessive 0.000003990 Exeter
p.(Ala1153Val) c.3458C>T Exon 28 Missense HI Heterozygousdenovo Dominant 0 Exeter
p.(Ala1153Gly) c.3458C>G Exon 28 Missense NDM Heterozygous Dominant 0 Exeter
p.(Tyr1181Ter) c.3543C>A Exon 28 Nonsense HI Homozygous Recessive 0 Paris
p.(Phe1182Leu) c.3546C>A Exon 28 Missense

PNDM/

TNDM

Homozygous/

Heterozygous

Recessive/

Dominant

0

Exeter/

Exeter

p.(Asp1194Val) c.3581A>T Exon 29 Missense HI Homozygous Recessive 0.00005303 Odense
p.(Pro1199Ser) c.3595C>T Exon 29 Missense TNDM Heterozygousdenovo Dominant 0 Exeter
p.(Pro1199Gln) c.3596C>A Exon 29 Missense TNDM Heterozygousdenovo Dominant 0 Exeter
p.(Leu1201ThrfsTer18) c.3600_3604del Exon 29 Frameshift HI HeterozygousPat Recessive 0 Odense
p.? c.3653+2T>A Intron 29 Aberrant splicing HI Homozygous Recessive 0 Exeter
p.? c.3757–17_3823del Intron 30 Aberrant splicing HI Homozygous Recessive 0 Exeter
p.(Glu1253Ter) c.3757G>T Exon 31 Nonsense HI Homozygous Recessive 0 Exeter
p.(Ser1267Phe) c.3800C>T Exon 31 Missense NDM Heterozygous Dominant 0 Chicago
p.(Leu1276Pro) c.3827T>C Exon 31 Missense Later‐onset diabetes Heterozygous Dominant 0 Paris
p.(Leu1283AlafsTer8) c.3844_3845dup Exon 31 Frameshift HI HeterozygousPat Not known 0 Paris
p.(Tyr1287Ter) c.3861C>A Exon 31 Nonsense HI

Homozygous/

HeterozygousPat

Recessive/

Recessive

0

Exeter/

Odense

p.(Met1290Ile) c.3870G>T Exon 31 Missense HI Assumed compound heterozygous with pathogenic variant Assumed recessive 0 Paris
p.? c.3871–2A>G Intron 31 Aberrant splicing HI Homozygous Recessive 0 Exeter
p.(Leu1295Phe) c.3883C>T Exon 32 Missense PNDM Heterozygousdenovo Dominant 0 Exeter
p.(Glu1324Ter) c.3970G>T Exon 32 Nonsense HI Compound heterozygous Recessive 0 Exeter
p.(Tyr1326Ter) c.3978del Exon 32 Nonsense HI Compound heterozygous Recessive 0 Exeter
p.(Glu1327Ter) c.3979G>T Exon 32 Nonsense HI Homozygous Recessive 0 Exeter
p.? c.3991+1G>A Intron 32 Aberrant splicing HI HeterozygousPat Recessive 0 Exeter
p.(Ser1333Ter) c.3998C>A Exon 33 Nonsense HI Heterozygousdenovo Recessive 0.000003977 Paris
p.(Ile1347Phe) c.4039A>T Exon 33 Missense HI Compound heterozygous Recessive 0 Paris
p.(Asn1349SerfsTer5) c.4045_4061delinsT Exon 33 Frameshift HI HeterozygousPat Recessive 0 Exeter
p.(Arg1380Pro) c.4139G>C Exon 34 Missense NDM Heterozygous Dominant 0 Exeter
p.(Thr1381Asn) c.4142C>A Exon 34 Missense TNDM Heterozygousdenovo Dominant 0 Exeter
p.(Gly1401Trp) c.4201G>T Exon 34 Missense HI HeterozygousPat Recessive 0 Odense
p.(His1402ThrfsTer59) c.4203del Exon 35 Frameshift HI Homozygous Recessive 0 Exeter
p.(Ile1405del) c.4212_4214del Exon 35 In frame deletion HI Homozygous Recessive 0 Exeter
p.(Ser1423Pro) c.4267T>C Exon 35 Missense HI HeterozygousPat Recessive 0 Exeter
p.(Ser1423Cys) c.4268C>G Exon 35 Missense NDM Heterozygous Dominant 0 Chicago
p.(Asp1428ArgfsTer6) c.4282_4298del Exon 35 Frameshift HI HeterozygousPat Recessive 0 Chicago
p.(Pro1429LeufsTer8) c.4286_4293del Exon 35 Frameshift HI HeterozygousPat Recessive 0 Exeter
p.? c.4311–1G>T Intron 35 Aberrant splicing HI Compound heterozygous Recessive 0 Paris
p.(Trp1452Cys) c.4356G>C Exon 36 Missense HI Compound heterozygous Recessive 0 Paris
p.? c.(4414+1_4415–1)_(*4749+34)del Exons 37–39 Deletion HI Compound heterozygous Recessive 0 Exeter
p.(Gly1485Val) c.4454G>T Exon 37 Missense HI Heterozygousdenovo Dominant 0 Chicago
p.(Gln1486Ter) c.4456C>T Exon 37 Nonsense HI Homozygous Recessive 0.000003977 Exeter
p.(Gln1488Arg) c.4463A>G Exon 37 Missense HI Heterozygousdenovo Dominant 0 Exeter
p.(Cys1491AlafsTer7) c.4471del Exon 37 Frameshift HI Homozygous Recessive 0 Paris
p.(Ser1501Arg) c.4503C>A Exon 37 Missense Later‐onset diabetes Heterozygous Dominant 0 Exeter
p.(Met1505Thr) c.4514T>C Exon 37 Missense Later‐onset diabetes Heterozygous Dominant 0.00001194 Paris
p.(Asp1506Asn) c.4516G>A Exon 37 Missense HI progressed to diabetes Heterozygous Dominant 0 Paris
p.(Glu1507_Asp1513dup) c.4519_4539dup Exon 37 In frame duplication HI Heterozygous Dominant 0 Chicago
p.? c.4548+1G>C Intron 37 Aberrant splicing HI HeterozygousPat Recessive 0 Odense
p.(Val1523Met) c.4567G>A Exon 38 Missense Later‐onset diabetes Heterozygous Dominant 0 Paris
p.? c.4611+4A>G Intron 38 Aberrant splicing HI Homozygous Recessive 0 Paris
p.(Arg1539Ter) c.4615C>T Exon 39 Nonsense HI HeterozygousPat Recessive 0 Paris
p.(Val1540Met) c.4618G>A Exon 39 Missense TNDM Heterozygous Dominant 0 Exeter
p.(Glu1559Ter) c.4675G>T Exon 39 Nonsense HI Compound heterozygous Recessive 0 Exeter
p.(Ser1572Arg) c.4716C>A Exon 39 Missense HI HeterozygousPat Recessive 0 Paris
p.(Arg1579GlnfsTer31) c.4734_4737del Exon 39 Frameshift HI Compound heterozygous Recessive 0 Paris

Note: The phenotype column highlights a new phenotype; the reporting laboratory column indicates which laboratory has identified the variant in a patient with the new phenotype. See Supporting Information data for details of inclusion criteria for variants in this table.

Abbreviations: HI, hyperinsulinism; NDM, neonatal diabetes; Ter, termination codon; TNDM, transient neonatal diabetes mellitus.

Founder mutations have been identified in many populations with the best recognized example being the ABCC8 p.(Phe1388del) and c.3992‐9G>A mutations present in >90% of cases from the Ashkenazi Jewish population (Nestorowicz et al., 1996; Otonkoski et al., 1999). In the Irish population, a deep intronic ABCC8 founder mutation at position c.1333‐1013G>A has been described that generates a cryptic splice site and causes pseudoexon activation (Flanagan et al., 2013). Founder mutations have also been reported in Hispanic (Aguilar‐Bryan & Bryan, 1999), Bedouin (Tornovsky et al., 2004), Spanish (Fernandez‐Marmiesse et al., 2006), Finnish (Otonkoski et al., 1999), and Turkish populations (Flanagan et al., 2013).

4.2. Common variation in ABCC8 and KCNJ11

Three hundred and sixty‐eight benign/likely benign variants and variants of uncertain significance have been observed in both genes (Tables 2, 3, 4, S2, S3, S5, and S6). Two common variants in linkage disequilibrium, p.(Glu23Lys) in KCNJ11 and p.(Ser1370Ala) in ABCC8, predispose to type 2 diabetes (Florez et al., 2004). Although their effect size is small (odds ratio ~1.2), given that 58% of the population carry at least one lysine allele at residue 23 in KCNJ11, this equates to a sizeable population risk (Gloyn, Weedon, et al., 2003; Nielsen et al., 2003).

Table 2.

Unpublished variants of uncertain clinical significance identified in KCNJ11 (NM_000525.3)

Protein change Nucleotide position Mutation type Phenotype Zygosity Inheritance GnomAD MAF Reporting laboratory
p.(Arg4His) c.11G>A Missense HI Heterozygous Unaffected mother 0.000008066 Exeter
p.(Cys42Tyr) c.125G>A Missense Diabetes Heterozygous Not known 0 Paris
p.(Ala45Ser) c.133G>T Missense Diabetes Heterozygous Unaffected parent 0 Exeter
p.(Arg50Trp) c.148C>T Missense

Later‐onset diabetes/HI

Heterozygous/

Homozygous/

Heterozygous

Affected parent/

Not known/

Unaffected father

0

Paris/

Paris/

Exeter

p.(Gln52Pro) c.155A>C Missense NDM Heterozygous Not known 0 Exeter
p.(Asp58Val) c.173A>T Missense HI Heterozygous Unaffected father 0 Paris
p.(Phe60Ser) c.179T>C Missense HI

Heterozygous 

(in cis with VUS)

Unaffected mother 0 Chicago
p.(Leu84Arg) c.251T>G Missense HI Homozygous Bi‐parental 0 Exeter
p.(Ala96Val) c.287C>T Missense HI Heterozygous Unaffected father 0 Exeter
p.(His97Tyr) c.289C>T Missense Diabetes Heterozygous Unaffected parent 0 Exeter
p.(Ile114Thr) c.341T>C Missense Diabetes Heterozygous Not known 0 Paris
p.(His115Leu) c.344A>T Missense HI Heterozygous Unaffected father 0 Paris
p.(Ser118Leu) c.353C>T Missense Diabetes Heterozygous/Heterozygous

Not known/

Not known

0.00002389

Paris/

Chicago

p.(Phe121Ser) c.362T>C Missense HI Heterozygous Unaffected father 0 Paris
p.(Ile131dup) c.391_393dup In‐Frame duplication HI Homozygous Bi‐parental 0 Paris
p.(Ile131Val) c.391A>G Missense HI Heterozygous Unaffected father 0 Exeter
p.(Thr139Pro) c.415A>C Missense HI

Heterozygous 

(in cis with VUS)

Unaffected father 0 Paris
p.(Glu140Lys) c.418G>A Missense HI Homozygous Bi‐parental 0 Paris
p.(Cys142Tyr) c.425G>A Missense HI Heterozygous Unaffected father 0 Exeter
p.(Val155Leu) c.463G>T Missense HI Heterozygous Unaffected mother 0 Exeter
p.(Val155Met) c.463G>A Missense Diabetes

Heterozygous/

Heterozygous

Not known/

Not known

0.00001199

Chicago/

Paris

p.(Leu157Val) c.469C>G Missense HI Heterozygous Unaffected mother 0 Exeter
p.(Asn160Lys) c.480C>G Missense HI Heterozygous Not known 0 Paris
p.(Ile167Val) c.499A>G Missense HI

Heterozygous 

(in cis with VUS)

Unaffected father 0 Paris
p.(Thr171Asn) c.512C>A Missense HI Heterozygous Unaffected father 0 Exeter
p.(Thr180Ile) c.539C>T Missense HI Heterozygous Unaffected father 0 Paris
p.(Ser208Asn) c.623G>A Missense Diabetes Heterozygous Not known 0 Paris
p.(Lys222Gln) c.664A>C Missense HI Heterozygous Unaffected mother 0.00001064 Exeter
p.(Ser265Ile) c.794G>T Missense HI Heterozygous Unaffected father 0.000003978 Exeter
p.(Tyr268His) c.802T>C Missense HI Heterozygous Unaffected father 0 Exeter
p.(Asp274His) c.820G>C Missense HI Heterozygous Unaffected father 0 Exeter
p.(Leu287Pro) c.860T>C Missense HI Heterozygous Unaffected father 0 Paris
p.(Thr297Asn) c.890C>A Missense NDM Heterozygous Unaffected parent 0 Exeter
p.(Ala300Asp) c.899C>A Missense HI Heterozygous Not known 0 Paris
p.(Leu310Pro) c.929T>C Missense HI Heterozygous Not maternal 0 Exeter
p.(Ile318Val) c.952A>G Missense Diabetes Heterozygous Not known (affected sibling also heterozygous) 0.00001061 Paris
p.(Arg325Ser) c.973C>A Missense HI

Heterozygous 

(in cis with VUS)

Unaffected mother 0.00001591 Chicago
p.(Arg325His) c.974G>A Missense HI Heterozygous Unaffected father 0.00001591 Exeter
p.(Thr336Ala) c.1006A>G Missense Diabetes Heterozygous Not known 0 Exeter
p.(Leu343Val) c.1027C>G Missense NDM Heterozygous Unaffected parent 0 Exeter
p.(Arg369Ser) c.1105C>A Missense Diabetes Heterozygous Not known 0.00003988 Paris
p.(Arg369His) c.1106G>A Missense Diabetes Heterozygous Unaffected parent 0.000003989 Exeter
p.(Arg369Leu) c.1106G>T Missense HI Heterozygous Paternal 0.000003989 Chicago
p.(Ala376Ser) c.1126G>T Missense HI Heterozygous Maternal 0 Paris
p.(Pro380_Lys381dup) c.1138_1143dup In‐Frame duplication Diabetes Heterozygous Not known 0.00007098 Paris

Note: The phenotype column highlights a new phenotype; the reporting laboratory column indicates which laboratory has identified the variant in a patient with the new phenotype. See Supporting Information data for details of inclusion criteria for variants in this table.

Abbreviations: HI, hyperinsulinism; NDM, neonatal diabetes.

Table 4.

Unpublished variants of uncertain clinical significance identified in ABCC8 (NM_001287174.1)

Protein change Nucleotide position Position Mutation type Phenotype Zygosity Inheritance GnomAD MAF Reporting laboratory
p.(Ala14Ser) c.40G>T Exon 1 Missense Diabetes Heterozygous Not known 0 Paris
p.(Tyr15Phe) c.44A>T Exon 1 Missense HI Heterozygous Not known 0 Paris
p.(Phe41Leu) c.121T>C Exon 1 Missense Diabetes Heterozygous Not known 0 Paris
p.(His59Asn) c.175C>A Exon 2 Missense HI Homozygous Bi‐parental 0 Paris
p.(Gly97=) c.291G>T Exon 3 Missense Diabetes Heterozygous Not known 0 Paris
p.(Val121Met) c.361G>A Exon 3 Missense Diabetes Heterozygous Affected parent 0 Paris
p.(Val121Ala) c.362T>C Exon 3 Missense NDM Heterozygous Not known 0 Chicago
p.(Ile127Thr) c.380T>C Exon 3 Missense Diabetes Heterozygous Not known 0 Paris
p.(Ile137Ser) c.410T>G Exon 3 Missense Diabetes Heterozygous Not known 0 Paris
p.? c.580–16_580–14del Intron 4 Intronic deletion Diabetes Heterozygous Not known 0.00001776 Paris
p.(Arg194Lys) c.581G>A Exon 5 Missense Diabetes Heterozygous Not known 0 Paris
p.(Pro201Leu) c.602C>T Exon 5 Missense HI Heterozygous Maternal 0 Paris
p.(Ala240Thr) c.718G>A Exon 5 Missense HI Heterozygous Maternal 0 Paris
p.(Met257Leu) c.769A>C Exon 5 Missense Diabetes Heterozygous Not known 0.000003976 Paris
p.(Met257Thr) c.770T>C Exon 5 Missense Diabetes Heterozygous Not known 0 Paris
p.(Phe270Cys) c.809T>G Exon 5 Missense Diabetes Heterozygous Not known 0 Paris
p.(His293Pro) c.878A>C Exon 6 Missense HI Heterozygous Paternal 0 Chicago
p.(Gly316Glu) c.947G>A Exon 6 Missense HI Heterozygous Paternal 0 Chicago
p.(Gly342Arg) c.1024G>A Exon 7 Missense Diabetes Heterozygous Not known 0.00001591 Paris
p.(Val357Ile) c.1069G>A Exon 7 Missense

HI/

Later‐onset diabetes

Heterozygous/

Heterozygous

Not known/

Not known

0.00003181

Odense/

Paris

p.(Ile395Phe) c.1183A>T Exon 8 Missense NDM Heterozygous Not known 0.000007953 Chicago
p.(Thr413Ser) c.1238C>G Exon 8 Missense Diabetes Heterozygous Maternal 0 Exeter
p.(Asp424Gly) c.1271A>G Exon 9 Missense PNDM Homozygous Recessive 0 Paris
p.(Ile446Thr) c.1337T>C Exon 9 Missense Diabetes Heterozygous Not known 0.00001194 Paris
p.(Gly457Arg) c.1369G>A Exon 9 Missense Diabetes Heterozygous Affected parent 0.00004598 Paris
p.(Arg504Cys) c.1510C>T Exon 10 Missense Diabetes Heterozygous Unaffected parent 0.000007969 Paris
p.(Gly505Cys) c.1513G>T Exon 10 Missense HI Heterozygous Paternal 0 Paris
p.(Ala513Thr) c.1537G>A Exon 10 Missense Diabetes Heterozygous Unaffected mother 0.00004601 Paris
p.(Arg521Trp) c.1561C>T Exon 10 Missense Diabetes

Heterozygous/

Heterozygous

Not known/

Dominant

0.00002787

Chicago/

Paris

p.(Arg521Gln) c.1562G>A Exon 10 Missense Diabetes Heterozygous Not known 0.00009556 Paris
p.(Val522Met) c.1564G>A Exon 10 Missense Diabetes Heterozygous Not known 0.000007078 Paris
p.(Ala537Thr) c.1609G>A Exon 10 Missense HI Heterozygous Paternal 0 Paris
p.(Val575Met) c.1723G>A Exon 12 Missense Diabetes Heterozygous Not known 0.00001591 Paris
p.(Phe613Leu) c.1837T>C Exon 13 Missense Diabetes Heterozygous Not known 0 Paris
p.? c.1924–44A>G Intron 13 Intronic substitution HI Heterozygous Paternal 0 Odense
p.(Cys656Phe) c.1967G>T Exon 14 Missense Diabetes Heterozygous Not known 0.000003984 Paris
p.(Arg702Cys) c.2104C>T Exon 15 Missense Diabetes Heterozygous Not known 0.00008768 Paris
p.? c.2116+61A>G Intron 15 Intronic substitution Diabetes Heterozygous Not known 0.00003187 Paris
p.(Gln731Glu) c.2191C>G Exon 16 Missense HI Heterozygous Not known 0.00001444 Paris
p.(Val770Met) c.2308G>A Exon 19 Missense HI Assumed compound heterozygous with pathogenic variant Assumed recessive 0.00002031 Paris
p.(Ser831Thr) c.2491T>A Exon 21 Missense Diabetes Heterozygous Not known 0 Paris
p.(Arg835His) c.2504G>A Exon 21 Missense Diabetes Heterozygous Not known 0.00002442 Paris
p.(Ile838Val) c.2512A>G Exon 21 Missense Diabetes Heterozygous Not known 0 Paris
p.(Val840Ala) c.2519T>C Exon 21 Missense Diabetes Heterozygous Not known 0 Paris
p.(Asn849Thr) c.2546A>C Exon 21 Missense Diabetes Heterozygous Not known 0 Paris
p.(His863Arg) c.2588A>G Exon 22 Missense Diabetes Heterozygous Affected parent 0.000007953

Paris/

Exeter

p.(Arg934Gln) c.2801G>A Intron 23 Missense HI Heterozygous Paternal 0.00001193 Paris
p.(Ala1002Thr) c.3004G>A Exon 25 Missense HI Homozygous, in cis with VUS Recessive 0.00003575 Paris
p.(Ser1019Leu) c.3056C>T Exon 25 Missense Diabetes/HI

Heterozygous/

Compound heterozygous/

Heterozygous

Unknown/

Recessive/

Affected father

0.000008152 Paris
p.(Thr1038Asn) c.3113C>A Exon 25 Missense Diabetes Heterozygous Not known 0 Paris
p.(Val1166Met) c.3496G>A Exon 28 Missense Diabetes

Compound heterozygous/

Heterozygous

Recessive/

Dominant

0.00008843

Chicago/

Paris

p.? c.3561–19A>C Intron 28 Intronic substitution HI Heterozygous Not known 0 Chicago
p.(Asp1194Val) c.3581A>T Exon 29 Missense Diabetes Heterozygous Not known 0.00005303 Paris
p.(Glu1209Lys) c.3625G>A Exon 29 Missense HI Heterozygous Affected grandparent 0 Paris
p.(Phe1217Leu) c.3651C>G Exon 29 Missense TNDM Heterozygous Unaffected parent 0 Paris
p.? c.3653+4C>G Intron 29 Intronic substitution

Later‐onset diabetes/HI

Heterozygous/

Heterozygous

Affected parent/

Not known

0.0001449

Paris/

Exeter

p.(Leu1241Arg) c.3722T>G Exon 30 Missense HI Heterozygous Paternal 0 Paris
p.(Glu1249Ala) c.3746A>C Exon 30 Missense HI Heterozygous Affected mother 0 Paris
p.(Glu1253Gly) c.3758A>G Exon 31 Missense HI Heterozygous Maternal 0 Chicago
p.(Val1260Met) c.3778G>A Exon 31 Missense Diabetes Heterozygous Affected parent 0.00005321 Paris
p.? c.3992–10C>T Intron 32 Intronic substitution HI Heterozygous Maternal 0.0004177 Odense
p.? c.4123–17T>C Intron 33 Intronic substitution Diabetes Heterozygous Not known 0 Chicago
p.(Ser1423Phe) c.4268C>T Exon 35 Missense HI Compound heterozygous with VUS Recessive 0 Paris
p.(Gln1427Lys) c.4279C>A Exon 35 Missense Diabetes Heterozygous Not known 0 Paris
p.(Asn1439=) c.4317C>T Exon 36 Synonymous HI Compound heterozygous Recessive 0.00001458 Paris
p.(Pro1442Leu) c.4325C>T Exon 36 Missense HI Homozygous, in cis with VUS Recessive 0 Paris
p.(Gly1478=) c.4434C>T Exon 37 Synonymous HI Heterozygous Not known 0.0001697 Chicago
p.(Ala1495=) c.4485C>T Exon 37 Synonymous HI Heterozygous Not known 0.0002228 Chicago
p.(Val1497Met) c.4489G>A Exon 37 Missense HI

Heterozygous/

Heterozygous

Paternal/

Paternal

0.000007957

Paris/

Odense

p.(Ile1504Asn) c.4511T>A Exon 37 Missense Diabetes Heterozygous Not known 0 Paris
p.(Arg1531His) c.4592G>A Exon 38 Missense Diabetes Heterozygous Not known 0.00001061 Chicago
p.(Val1534Leu) c.4600G>C Exon 38 Missense Diabetes Heterozygous Unaffected parent 0 Paris
p.(Ser1576Pro) c.4726T>C Exon 39 Missense HI Compound heterozygous Recessive 0 Paris
p.(Arg1579His) c.4736G>A Exon 39 Missense Diabetes Heterozygous Not known 0.00004952 Paris

Note: The Phenotype column highlights a new phenotype; the reporting laboratory column indicates which laboratory identified the variant in patient with the new phenotype. See Supporting Information data for details of inclusion criteria for variants in this table.

Abbreviations: HI, hyperinsulinism; NDM, neonatal diabetes; TNDM, transient neonatal diabetes mellitus.

4.3. Variant interpretation

Given the highly polymorphic nature of ABCC8 and KCNJ11, the occurrence of both activating and inactivating mutations, the multiple modes of inheritance of disease, and the variable penetrance associated with dominantly acting mutations, interpreting variants identified in these genes can be extremely challenging. Although the identification of a null ABCC8 or KCNJ11 variant(s) in an individual with CHI provides strong evidence for pathogenicity, finding a missense variant is insufficient to assign disease causality and, as such, additional support is required to achieve a “pathogenic” classification according to the guidelines set out by the American College of Medical Genetics (Richards et al., 2015).

Large variant databases such as GnomAD and LOVD are powerful tools that aid in variant interpretation and allow for reclassification of variants (Fokkema et al., 2011; Lek et al., 2016). As such, some variants previously reported as pathogenic in the literature have now been found to be too common to be causative of disease and have now be reassigned as a variant of uncertain significance or a benign variant (Tables S2, S3, S5, and S6).

5. FUTURE PROSPECTS

Although sulphonylureas provide a safe and effective treatment for the majority of individuals with KATP channel NDM, for patients with CHI, pharmacological management of the condition is not always successful. Current efforts are, therefore, focusing on the development of new pharmacological treatments for this condition (Banerjee, De Leon, & Dunne, 2017; De Leon et al., 2008; Ng, Tang, Seeholzer, Zou, & De Leon, 2018; Patel et al., 2018; Powell et al., 2011; Senniappan et al., 2014).

Progress is also being made in terms of genetic screening, with a recent report describing the use of noninvasive prenatal testing of a paternally inherited KCNJ11 activating mutation in cell‐free fetal DNA (De Franco et al., 2017). Implementation of noninvasive prenatal testing for maternally inherited mutations will be extremely important, as a previous study suggested that sulphonylurea can cross the placenta and influence fetal growth with implications for treatment of monogenic diabetes pregnancies (Myngheer et al., 2014; Shepherd, Brook, Chakera, & Hattersley, 2017).

6. SUMMARY

The discovery of both inactivating and activating KATP channel mutations has firmly established the critical role of the channel in insulin secretion. The highly polymorphic nature of the two genes along with the occurrence of both gain‐of‐function and loss‐of‐function mutations as well as multiple different modes of inheritance can make variant interpretation extremely challenging. Rapid testing is absolutely crucial for all patients with CHI or NDM because finding a mutation has a huge impact on the clinical management of these conditions.

Supporting information

Supporting information

ACKNOWLEDGMENTS

The authors thank the clinicians who have referred patients for genetic testing to the contributing screening laboratories. SEF has a Sir Henry Dale Fellowship jointly funded by the Wellcome Trust and the Royal Society (Grant Number: 105636/Z/14/Z). EDF has an EFSD Rising Star Fellowship funded by EFSD and Novo Nordisk. SE is a Wellcome Trust Senior Investigator (WT098395/Z/12/Z). PB has a Sir George Alberti Clinical Research Training Fellowship funded by Diabetes UK (Grant Number 16/0005407). Relevant funding for SAWG includes National Institutes of Health (NIH) award numbers P30 DK020595, K23 DK094866, R03 DK103096, R01 DK104942, and UL1 TR000430, as well as by grants from the American Diabetes Association (1‐11‐CT‐41 and 1‐17‐JDF‐008) and gifts from the Kovler Family Foundation.

De Franco E, Saint‐Martin C, Brusgaard K, et al. Update of variants identified in the pancreatic β‐cell KATP channel genes KCNJ11 and ABCC8 in individuals with congenital hyperinsulinism and diabetes. Human Mutation. 2020;41:884–905. 10.1002/humu.23995

DATA AVAILABILITY STATEMENT

All the novel variants reported in this manuscript have been uploaded to LOVD (https://www.lovd.nl/).

REFERENCES

  1. Aguilar‐Bryan, L. , & Bryan, J. (1999). Molecular biology of adenosine triphosphate‐sensitive potassium channels. Endocrine Reviews, 20(2), 101–135. [DOI] [PubMed] [Google Scholar]
  2. Ashcroft, F. M. (2005). ATP‐sensitive potassium channelopathies: Focus on insulin secretion. Journal of Clinical Investigation, 115(8), 2047–2058. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ashcroft, F. M. , Harrison, D. E. , & Ashcroft, S. J. (1984). Glucose induces closure of single potassium channels in isolated rat pancreatic beta‐cells. Nature, 312(5993), 446–448. [DOI] [PubMed] [Google Scholar]
  4. Babenko, A. P. , Polak, M. , Cave, H. , Busiah, K. , Czernichow, P. , Scharfmann, R. , … Froguel, P. (2006). Activating mutations in the ABCC8 gene in neonatal diabetes mellitus. New England Journal of Medicine, 355(5), 456–466. [DOI] [PubMed] [Google Scholar]
  5. Babiker, T. , Vedovato, N. , Patel, K. , Thomas, N. , Finn, R. , Männikkö, R. , … Hattersley, A. T. (2016). Successful transfer to sulfonylureas in KCNJ11 neonatal diabetes is determined by the mutation and duration of diabetes. Diabetologia, 59(6), 1162–1166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Banerjee, I. , De Leon, D. , & Dunne, M. J. (2017). Extreme caution on the use of sirolimus for the congenital hyperinsulinism in infancy patient. Orphanet Journal of Rare Diseases, 12(1), 70. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Beltrand, J. , Elie, C. , Busiah, K. , Fournier, E. , Boddaert, N. , Bahi‐Buisson, N. , … Polak, M. (2015). Sulfonylurea Therapy benefits neurological and psychomotor functions in patients with neonatal diabetes owing to potassium channel mutations. Diabetes Care, 38(11), 2033–2041. [DOI] [PubMed] [Google Scholar]
  8. Bendix, J. , Laursen, M. G. , Mortensen, M. B. , Melikian, M. , Globa, E. , Detlefsen, S. , … Christesen, H. T. (2018). Intraoperative ultrasound: A tool to support tissue‐sparing curative pancreatic resection in focal congenital hyperinsulinism. Frontiers in Endocrinology (Lausanne), 9, 478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Boodhansingh, K. E. , Kandasamy, B. , Mitteer, L. , Givler, S. , De Leon, D. D. , Shyng, S. L. , … Stanley, C. A. (2019). Novel dominant KATP channel mutations in infants with congenital hyperinsulinism: Validation by in vitro expression studies and in vivo carrier phenotyping. American Journal of Medical Genetics. Part A, 179, 2214–2227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bowman, P. , Broadbridge, E. , Knight, B. A. , Pettit, L. , Flanagan, S. E. , Reville, M. , … Hattersley, A. T. (2016). Psychiatric morbidity in children with KCNJ11 neonatal diabetes. Diabetic Medicine, 33(10), 1387–1391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Bowman, P , Day, J , Torrens, L , Shepherd, MH , Knight, BA , Ford, TJ , … Zeman, A. (2018). Cognitive, neurological, and behavioral features in adults with KCNJ11 neonatal diabetes. Diabetes Care, 42(2), 215–224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Bowman, P. , Flanagan, S. E. , Edghill, E. L. , Damhuis, A. , Shepherd, M. H. , Paisey, R. , … Ellard, S. (2012). Heterozygous ABCC8 mutations are a cause of MODY. Diabetologia, 55(1), 123–127. [DOI] [PubMed] [Google Scholar]
  13. Bowman, P. , Hattersley, A. T. , Knight, B. A. , Broadbridge, E. , Pettit, L. , Reville, M. , … Tonks, J. (2017). Neuropsychological impairments in children with KCNJ11 neonatal diabetes. Diabetic Medicine, 34(8), 1171–1173. [DOI] [PubMed] [Google Scholar]
  14. Bowman, P. , Sulen, Å. , Barbetti, F. , Beltrand, J. , Svalastoga, P. , Codner, E. , … øddegård, R. (2018). Effectiveness and safety of long‐term treatment with sulfonylureas in patients with neonatal diabetes due to KCNJ11 mutations: An international cohort study. The Lancet. Diabetes & Endocrinology, 6(8), 637–646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Busiah, K. , Drunat, S. , Vaivre‐Douret, L. , Bonnefond, A. , Simon, A. , Flechtner, I. , … Cavé, H. (2013). Neuropsychological dysfunction and developmental defects associated with genetic changes in infants with neonatal diabetes mellitus: A prospective cohort study [corrected]. The Lancet. Diabetes & Endocrinology, 1(3), 199–207. [DOI] [PubMed] [Google Scholar]
  16. Carmody, D. , Pastore, A. N. , Landmeier, K. A. , Letourneau, L. R. , Martin, R. , Hwang, J. L. , … Greeley, S. A. W. (2016). Patients with KCNJ11‐related diabetes frequently have neuropsychological impairments compared with sibling controls. Diabetic Medicine, 33(10), 1380–1386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Codner, E. , Flanagan, S. , Ellard, S. , Garcia, H. , & Hattersley, A. T. (2005). High‐dose glibenclamide can replace insulin therapy despite transitory diarrhea in early‐onset diabetes caused by a novel R201L Kir6.2 mutation. Diabetes Care, 28(3), 758–759. [DOI] [PubMed] [Google Scholar]
  18. Cook, D. L. , & Hales, C. N. (1984). Intracellular ATP directly blocks K+ channels in pancreatic B‐cells. Nature, 311(5983), 271–273. [DOI] [PubMed] [Google Scholar]
  19. Craigie, R. J. , Salomon‐Estebanez, M. , Yau, D. , Han, B. , Mal, W. , Newbould, M. , … Dunne, M. J. (2018). Clinical diversity in focal congenital hyperinsulinism in infancy correlates with histological heterogeneity of islet cell lesions. Frontiers in Endocrinology (Lausanne), 9, 619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Damaj, L. , le Lorch, M. , Verkarre, V. , Werl, C. , Hubert, L. , Nihoul‐Fékété, C. , … Jaubert, F. (2008). Chromosome 11p15 paternal isodisomy in focal forms of neonatal hyperinsulinism. Journal of Clinical Endocrinology and Metabolism, 93(12), 4941–4947. [DOI] [PubMed] [Google Scholar]
  21. De Franco, E. , Caswell, R. , Houghton, J. A. , Iotova, V. , Hattersley, A. T. , & Ellard, S. (2017). Analysis of cell‐free fetal DNA for non‐invasive prenatal diagnosis in a family with neonatal diabetes. Diabetic Medicine, 34(4), 582–585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. De Franco, E. , Flanagan, S. E. , Houghton, J. A. , Lango Allen, H. , Mackay, D. J. , Temple, I. K. , … Hattersley, A. T. (2015). The effect of early, comprehensive genomic testing on clinical care in neonatal diabetes: An international cohort study. Lancet, 386(9997), 957–963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. De Leon, D. D. , Li, C. , Delson, M. I. , Matschinsky, F. M. , Stanley, C. A. , & Stoffers, D. A. (2008). Exendin‐(9‐39) corrects fasting hypoglycemia in SUR‐1‐/‐ mice by lowering cAMP in pancreatic beta‐cells and inhibiting insulin secretion. Journal of Biological Chemistry, 283(38), 25786–25793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Demirbilek, H. , Shah, P. , Arya, V. B. , Hinchey, L. , Flanagan, S. E. , Ellard, S. , & Hussain, K. (2014). Long‐term follow‐up of children with congenital hyperinsulinism on octreotide therapy. Journal of Clinical Endocrinology and Metabolism, 99(10), 3660–3667. [DOI] [PubMed] [Google Scholar]
  25. Edghill, E. L. , Gloyn, A. L. , Goriely, A. , Harries, L. W. , Flanagan, S. E. , Rankin, J. , … Ellard, S. (2007). Origin of de novo KCNJ11 mutations and risk of neonatal diabetes for subsequent siblings. Journal of Clinical Endocrinology and Metabolism, 92(5), 1773–1777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ellard, S. , Flanagan, S. E. , Girard, C. A. , Patch, A. M. , Harries, L. W. , Parrish, A. , … Ashcroft, F. M. (2007). Permanent neonatal diabetes caused by dominant, recessive, or compound heterozygous SUR1 mutations with opposite functional effects. American Journal of Human Genetics, 81(2), 375–382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Fendler, W. , Pietrzak, I. , Brereton, M. F. , Lahmann, C. , Gadzicki, M. , Bienkiewicz, M. , … Mlynarski, W. M. (2013). Switching to sulphonylureas in children with iDEND syndrome caused by KCNJ11 mutations results in improved cerebellar perfusion. Diabetes Care, 36(8), 2311–2316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Fernandez‐Marmiesse, A. , Salas, A. , Vega, A. , Fernandez‐Lorenzo, J. R. , Barreiro, J. , & Carracedo, A. (2006). Mutation spectra of ABCC8 gene in Spanish patients with hyperinsulinism of infancy (HI). Human Mutation, 27(2), 214. [DOI] [PubMed] [Google Scholar]
  29. Flanagan, S. E. , Clauin, S. , Bellanne‐Chantelot, C. , de Lonlay, P. , Harries, L. W. , Gloyn, A. L. , & Ellard, S. (2009). Update of mutations in the genes encoding the pancreatic beta‐cell K(ATP) channel subunits Kir6.2 (KCNJ11) and sulfonylurea receptor 1 (ABCC8) in diabetes mellitus and hyperinsulinism. Human Mutation, 30(2), 170–180. [DOI] [PubMed] [Google Scholar]
  30. Flanagan, S. E. , Dung, V. C. , Houghton, J. A. L. , De Franco, E. , Ngoc, C. T. B. , Damhuis, A. , … Ellard, S. (2017). An ABCC8 nonsense mutation causing neonatal diabetes through altered transcript expression. Journal of Clinical Research in Pediatric Endocrinology, 9(3), 260–264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Flanagan, S. E. , Edghill, E. L. , Gloyn, A. L. , Ellard, S. , & Hattersley, A. T. (2006). Mutations in KCNJ11, which encodes Kir6.2, are a common cause of diabetes diagnosed in the first 6 months of life, with the phenotype determined by genotype. Diabetologia, 49(6), 1190–1197. [DOI] [PubMed] [Google Scholar]
  32. Flanagan, S. E. , Xie, W. , Caswell, R. , Damhuis, A. , Vianey‐Saban, C. , Akcay, T. , … Ellard, S. (2013). Next‐generation sequencing reveals deep intronic cryptic ABCC8 and HADH splicing founder mutations causing hyperinsulinism by pseudoexon activation. American Journal of Human Genetics, 92(1), 131–136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Florez, J. C. , Burtt, N. , de Bakker, P. I. W. , Almgren, P. , Tuomi, T. , Holmkvist, J. , … Altshuler, D. (2004). Haplotype structure and genotype‐phenotype correlations of the sulfonylurea receptor and the islet ATP‐sensitive potassium channel gene region. Diabetes, 53(5), 1360–1368. [DOI] [PubMed] [Google Scholar]
  34. Fokkema, I. F. , Taschner, P. E. , Schaafsma, G. C. , Celli, J. , Laros, J. F. , & den Dunnen, J. T. (2011). LOVD v.2.0: The next generation in gene variant databases. Human Mutation, 32(5), 557–563. [DOI] [PubMed] [Google Scholar]
  35. Glaser, B. , Thornton, P. , Otonkoski, T. , & Junien, C. (2000). Genetics of neonatal hyperinsulinism. Archives of Disease in Childhood. Fetal and Neonatal Edition, 82(2), F79–F86. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Gloyn, A. L. , Cummings, E. A. , Edghill, E. L. , Harries, L. W. , Scott, R. , Costa, T. , … Ellard, S. (2004). Permanent neonatal diabetes due to paternal germline mosaicism for an activating mutation of the KCNJ11 Gene encoding the Kir6.2 subunit of the beta‐cell potassium adenosine triphosphate channel. Journal of Clinical Endocrinology and Metabolism, 89(8), 3932–3935. [DOI] [PubMed] [Google Scholar]
  37. Gloyn, A. L. , Diatloff‐Zito, C. , Edghill, E. L. , Bellanne‐Chantelot, C. , Nivot, S. , Coutant, R. , … Robert, J. J. (2006a). KCNJ11 activating mutations are associated with developmental delay, epilepsy and neonatal diabetes syndrome and other neurological features. European Journal of Human Genetics, 14(7), 824–830. [DOI] [PubMed] [Google Scholar]
  38. Gloyn, A. L. , Pearson, E. R. , Antcliff, J. F. , Proks, P. , Bruining, G. J. , Slingerland, A. S. , … Hattersley, A. T. (2004). Activating mutations in the gene encoding the ATP‐sensitive potassium‐channel subunit Kir6.2 and permanent neonatal diabetes. New England Journal of Medicine, 350(18), 1838–1849. [DOI] [PubMed] [Google Scholar]
  39. Gloyn, A. L. , Reimann, F. , Girard, C. , Edghill, E. L. , Proks, P. , Pearson, E. R. , … Hattersley, A. T. (2005). Relapsing diabetes can result from moderately activating mutations in KCNJ11. Human Molecular Genetics, 14(7), 925–934. [DOI] [PubMed] [Google Scholar]
  40. Gloyn, A. L. , Siddiqui, J. , & Ellard, S. (2006). Mutations in the genes encoding the pancreatic beta‐cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) in diabetes mellitus and hyperinsulinism. Human Mutation, 27(3), 220–231. [DOI] [PubMed] [Google Scholar]
  41. Gloyn, A. L. , Weedon, M. N. , Owen, K. R. , Turner, M. J. , Knight, B. A. , Hitman, G. , … Frayling, T. M. (2003). Large‐scale association studies of variants in genes encoding the pancreatic beta‐cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes, 52(2), 568–572. [DOI] [PubMed] [Google Scholar]
  42. Grulich‐Henn, J. , Wagner, V. , Thon, A. , Schober, E. , Marg, W. , Kapellen, T. M. , … Holl, R. W. (2010). Entities and frequency of neonatal diabetes: Data from the diabetes documentation and quality management system (DPV). Diabetic Medicine, 27(6), 709–712. [DOI] [PubMed] [Google Scholar]
  43. Han, B. , Mohamed, Z. , Estebanez, M. S. , Craigie, R. J. , Newbould, M. , Cheesman, E. , … Dunne, M. J. (2017). Atypical forms of congenital hyperinsulinism in infancy are associated with mosaic patterns of immature islet cells. Journal of Clinical Endocrinology and Metabolism, 102(9), 3261–3267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Hartemann‐Heurtier, A. , Simon, A. , Bellanne‐Chantelot, C. , Reynaud, R. , Cave, H. , Polak, M. , … Grimaldi, A. (2009). Mutations in the ABCC8 gene can cause autoantibody‐negative insulin‐dependent diabetes. Diabetes & Metabolism, 35(3), 233–235. [DOI] [PubMed] [Google Scholar]
  45. Hattersley, A. T. , & Ashcroft, F. M. (2005). Activating mutations in Kir6.2 and neonatal diabetes: New clinical syndromes, new scientific insights, and new therapy. Diabetes, 54(9), 2503–2513. [DOI] [PubMed] [Google Scholar]
  46. Helleskov, A. , Melikyan, M. , Globa, E. , Shcherderkina, I. , Poertner, F. , Larsen, A. M. , … Christesen, H. T. (2017). Both low blood glucose and insufficient treatment confer risk of neurodevelopmental impairment in congenital hyperinsulinism: A multinational cohort study. Frontiers in Endocrinology(Lausanne), 8, 156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Herrera, A. , Vajravelu, M. E. , Givler, S. , Mitteer, L. , Avitabile, C. M. , Lord, K. , & De Leon, D. D. (2018). Prevalence of adverse events in children with congenital hyperinsulinism treated with diazoxide. Journal of Clinical Endocrinology and Metabolism, 103(12), 4365–4372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Houghton, J. A. , Banerjee, I. , Shaikh, G. , Jabbar, S. , Laver, T. W. , Cheesman, E. , … Dunne, M. J. (2019). Unravelling the genetic causes of mosaic islet morphology in congenital hyperinsulinism. The Journal of Pathology, 6(6), 12–16. https://www.diabetesgenes.org/ [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Hugill, A. , Shimomura, K. , Ashcroft, F. M. , & Cox, R. D. (2010). A mutation in KCNJ11 causing human hyperinsulinism (Y12X) results in a glucose‐intolerant phenotype in the mouse. Diabetologia, 53(11), 2352–2356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Huopio, H. , Otonkoski, T. , Vauhkonen, I. , Reimann, F. , Ashcroft, F. M. , & Laakso, M. (2003). A new subtype of autosomal dominant diabetes attributable to a mutation in the gene for sulfonylurea receptor 1. Lancet, 361(9354), 301–307. [DOI] [PubMed] [Google Scholar]
  51. Hussain, K. , Flanagan, S. E. , Smith, V. V. , Ashworth, M. , Day, M. , Pierro, A. , & Ellard, S. (2008). An ABCC8 gene mutation and mosaic uniparental isodisomy resulting in atypical diffuse congenital hyperinsulinism. Diabetes, 57(1), 259–263. [DOI] [PubMed] [Google Scholar]
  52. Ismail, D. , Kapoor, R. R. , Smith, V. V. , Ashworth, M. , Blankenstein, O. , Pierro, A. , … Hussain, K. (2012). The heterogeneity of focal forms of congenital hyperinsulinism. Journal of Clinical Endocrinology and Metabolism, 97(1), E94–E99. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Jack, M. M. , Walker, R. M. , Thomsett, M. J. , Cotterill, A. M. , & Bell, J. R. (2000). Histologic findings in persistent hyperinsulinemic hypoglycemia of infancy: Australian experience. Pediatric and Developmental Pathology, 3(6), 532–547. [DOI] [PubMed] [Google Scholar]
  54. Kapoor, R. R. , Flanagan, S. E. , Arya, V. B. , Shield, J. P. , Ellard, S. , & Hussain, K. (2013). Clinical and molecular characterisation of 300 patients with congenital hyperinsulinism. European Journal of Endocrinology, 168(4), 557–564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Karschin, C. , Ecke, C. , Ashcroft, F. M. , & Karschin, A. (1997). Overlapping distribution of K(ATP) channel‐forming Kir6.2 subunit and the sulfonylurea receptor SUR1 in rodent brain. FEBS Letters, 401(1), 59–64. [DOI] [PubMed] [Google Scholar]
  56. Koster, J. C. , Marshall, B. A. , Ensor, N. , Corbett, J. A. , & Nichols, C. G. (2000). Targeted overactivity of beta cell K(ATP) channels induces profound neonatal diabetes. Cell, 100(6), 645–654. [DOI] [PubMed] [Google Scholar]
  57. Koufakis, T. , Sertedaki, A. , Tatsi, E. B. , Trakatelli, C. M. , Karras, S. N. , Manthou, E. , … Kotsa, K. (2019). First Report of Diabetes Phenotype due to a Loss‐of‐Function ABCC8 Mutation Previously Known to Cause Congenital Hyperinsulinism. Case Reports in Genetics, 2019, 3654618–5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Kumaraguru, J. , Flanagan, S. E. , Greeley, S. A. , Nuboer, R. , Stoy, J. , Philipson, L. H. , … Rubio‐Cabezas, O. (2009). Tooth discoloration in patients with neonatal diabetes after transfer onto glibenclamide: A previously unreported side effect. Diabetes Care, 32(8), 1428–1430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Landmeier, K. A. , Lanning, M. , Carmody, D. , Greeley, S. A. W. , & Msall, M. E. (2017). ADHD, learning difficulties and sleep disturbances associated with KCNJ11‐related neonatal diabetes. Pediatric Diabetes, 18(7), 518–523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Lanning, M. S. , Carmody, D. , Szczerbinski, L. , Letourneau, L. R. , Naylor, R. N. , & Greeley, S. A. W. (2018). Hypoglycemia in sulfonylurea‐treated KCNJ11‐neonatal diabetes: Mild‐moderate symptomatic episodes occur infrequently but none involving unconsciousness or seizures. Pediatric Diabetes, 19(3), 393–397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Lek, M. , Karczewski, K. J. , Minikel, E. V. , Samocha, K. E. , Banks, E. , Fennell, T. , … MacArthur, D. G. (2016). Analysis of protein‐coding genetic variation in 60,706 humans. Nature, 536(7616), 285–291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Liss, B. , Bruns, R. , & Roeper, J. (1999). Alternative sulfonylurea receptor expression defines metabolic sensitivity of K‐ATP channels in dopaminergic midbrain neurons. EMBO Journal, 18(4), 833–846. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. de Lonlay, P. , Fournet, J. C. , Rahier, J. , Gross‐Morand, M. S. , Poggi‐Travert, F. , Foussier, V. , … Junien, C. (1997). Somatic deletion of the imprinted 11p15 region in sporadic persistent hyperinsulinemic hypoglycemia of infancy is specific of focal adenomatous hyperplasia and endorses partial pancreatectomy. Journal of Clinical Investigation, 100(4), 802–807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. de Lonlay, P. , Fournet, J. C. , Touati, G. , Groos, M. S. , Martin, D. , Sevin, C. , … Robert, J. J. (2002). Heterogeneity of persistent hyperinsulinaemic hypoglycaemia. A series of 175 cases. European Journal of Pediatrics, 161(1), 37–48. [DOI] [PubMed] [Google Scholar]
  65. Massa, O. , Iafusco, D. , D'Amato, E. , Gloyn, A. L. , Hattersley, A. T. , Pasquino, B. , … Barbetti, F. (2005). KCNJ11 activating mutations in Italian patients with permanent neonatal diabetes. Human Mutation, 25(1), 22–27. [DOI] [PubMed] [Google Scholar]
  66. Mathew, P. M. , Young, J. M. , Abu‐Osba, Y. K. , Mulhern, B. D. , Hammoudi, S. , Hamdan, J. A. , & Sa'di, A. R. (1988). Persistent neonatal hyperinsulinism. Clinical Pediatrics (Cleveland, OH), 27(3), 148–151. [DOI] [PubMed] [Google Scholar]
  67. Miki, T. , Nagashima, K. , Tashiro, F. , Kotake, K. , Yoshitomi, H. , Tamamoto, A. , … Seino, S. (1998). Defective insulin secretion and enhanced insulin action in KATP channel‐deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 95(18), 10402–10406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Mohnike, K. , Wieland, I. , Barthlen, W. , Vogelgesang, S. , Empting, S. , Mohnike, W. , … Zenker, M. (2014). Clinical and genetic evaluation of patients with KATP channel mutations from the German registry for congenital hyperinsulinism. Hormone research in pædiatrics, 81(3), 156–168. [DOI] [PubMed] [Google Scholar]
  69. Myngheer, N. , Allegaert, K. , Hattersley, A. , McDonald, T. , Kramer, H. , Ashcroft, F. M. , … Casteels, K. (2014). Fetal macrosomia and neonatal hyperinsulinemic hypoglycemia associated with transplacental transfer of sulfonylurea in a mother with KCNJ11‐related neonatal diabetes. Diabetes Care, 37(12), 3333–3335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Nestorowicz, A. (1996). Mutations in the sulonylurea receptor gene are associated with familial hyperinsulinism in Ashkenazi Jews. Human Molecular Genetics, 5(11), 1813–1822. [DOI] [PubMed] [Google Scholar]
  71. Ng, C. M. , Tang, F. , Seeholzer, S. H. , Zou, Y. , & De Leon, D. D. (2018). Population pharmacokinetics of exendin‐(9‐39) and clinical dose selection in patients with congenital hyperinsulinism. British Journal of Clinical Pharmacology, 84(3), 520–532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Nichols, C. G. , Shyng, S. L. , Nestorowicz, A. , Glaser, B. , Clement, J. Pt , Gonzalez, G. , … Bryan, J. (1996). Adenosine diphosphate as an intracellular regulator of insulin secretion. Science, 272(5269), 1785–1787. [DOI] [PubMed] [Google Scholar]
  73. Nielsen, E. M. , Hansen, L. , Carstensen, B. , Echwald, S. M. , Drivsholm, T. , Glumer, C. , … Pedersen, O. (2003). The E23K variant of Kir6.2 associates with impaired post‐OGTT serum insulin response and increased risk of type 2 diabetes. Diabetes, 52(2), 573–577. [DOI] [PubMed] [Google Scholar]
  74. Otonkoski, T. , Ammala, C. , Huopio, H. , Cote, G. J. , Chapman, J. , Cosgrove, K. , … Thomas, P. M. (1999). A point mutation inactivating the sulfonylurea receptor causes the severe form of persistent hyperinsulinemic hypoglycemia of infancy in Finland. Diabetes, 48(2), 408–415. [DOI] [PubMed] [Google Scholar]
  75. Otonkoski, T. , Nanto‐Salonen, K. , Seppanen, M. , Veijola, R. , Huopio, H. , Hussain, K. , … Minn, H. (2006). Noninvasive diagnosis of focal hyperinsulinism of infancy with [18F]‐DOPA positron emission tomography. Diabetes, 55(1), 13–18. [PubMed] [Google Scholar]
  76. Patch, A. M. , Flanagan, S. E. , Boustred, C. , Hattersley, A. T. , & Ellard, S. (2007). Mutations in the ABCC8 gene encoding the SUR1 subunit of the KATP channel cause transient neonatal diabetes, permanent neonatal diabetes or permanent diabetes diagnosed outside the neonatal period. Diabetes, obesity & metabolism, 9(Suppl 2), 28–39. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Patel, P. , Charles, L. , Corbin, J. , Goldfine, I. D. , Johnson, K. , Rubin, P. , & De Leon, D. D. (2018). A unique allosteric insulin receptor monoclonal antibody that prevents hypoglycemia in the SUR‐1(‐/‐) mouse model of KATP hyperinsulinism. mAbs, 10(5), 796–802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Pearson, E. R. , Flechtner, I. , Njølstad, P. R. , Malecki, M. T. , Flanagan, S. E. , Larkin, B. , … Hattersley, A. T. (2006). Switching from insulin to oral sulfonylureas in patients with diabetes due to Kir6.2 mutations. New England Journal of Medicine, 355(5), 467–477. [DOI] [PubMed] [Google Scholar]
  79. Pinney, S. E. , Ganapathy, K. , Bradfield, J. , Stokes, D. , Sasson, A. , Mackiewicz, K. , … Stanley, C. A. (2013). Dominant form of congenital hyperinsulinism maps to HK1 region on 10q. Hormone Research in Paediatrics, 80(1), 18–27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Powell, P. D. , Bellanne‐Chantelot, C. , Flanagan, S. E. , Ellard, S. , Rooman, R. , Hussain, K. , … Cosgrove, K. E. (2011). In vitro recovery of ATP‐sensitive potassium channels in {beta}‐cells from patients with congenital hyperinsulinism of infancy. Diabetes, 60(4), 1223–1228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Proks, P. , Arnold, A. L. , Bruining, J. , Girard, C. , Flanagan, S. E. , Larkin, B. , … Ellard, S. (2006). A heterozygous activating mutation in the sulphonylurea receptor SUR1 (ABCC8) causes neonatal diabetes. Human Molecular Genetics, 15(11), 1793–1800. [DOI] [PubMed] [Google Scholar]
  82. Rafiq, M. , Flanagan, S. E. , Patch, A. M. , Shields, B. M. , Ellard, S. , & Hattersley, A. T. (2008). Effective treatment with oral sulfonylureas in patients with diabetes due to sulfonylurea receptor 1 (SUR1) mutations. Diabetes Care, 31(2), 204–209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Rahier, J. , Falt, K. , Muntefering, H. , Becker, K. , Gepts, W. , & Falkmer, S. (1984). The basic structural lesion of persistent neonatal hypoglycaemia with hyperinsulinism: Deficiency of pancreatic D cells or hyperactivity of B cells? Diabetologia, 26(4), 282–289. [DOI] [PubMed] [Google Scholar]
  84. Richards, S. , Aziz, N. , Bale, S. , Bick, D. , Das, S. , Gastier‐Foster, J. , … Rehm, H. L. (2015). Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in Medicine, 17(5), 405–424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Rorsman, P. , & Trube, G. (1985). Glucose dependent K + ‐channels in pancreatic beta‐cells are regulated by intracellular ATP. Pflügers Archiv: European Journal of Physiology, 405(4), 305–309. [DOI] [PubMed] [Google Scholar]
  86. Sagen, J. V. , Raeder, H. , Hathout, E. , Shehadeh, N. , Gudmundsson, K. , Baevre, H. , … Njolstad, P. R. (2004). Permanent neonatal diabetes due to mutations in KCNJ11 encoding Kir6.2: Patient characteristics and initial response to sulfonylurea therapy. Diabetes, 53(10), 2713–2718. [DOI] [PubMed] [Google Scholar]
  87. Sakura, H. , Ammala, C. , Smith, P. A. , Gribble, F. M. , & Ashcroft, F. M. (1995). Cloning and functional expression of the cDNA encoding a novel ATP‐sensitive potassium channel subunit expressed in pancreatic beta‐cells, brain, heart and skeletal muscle. FEBS Letters, 377(3), 338–344. [DOI] [PubMed] [Google Scholar]
  88. Schmahmann, J. D. , & Sherman, J. C. (1998). The cerebellar cognitive affective syndrome. Brain, 121(Pt 4), 561–579. [DOI] [PubMed] [Google Scholar]
  89. Seghers, V. , Nakazaki, M. , DeMayo, F. , Aguilar‐Bryan, L. , & Bryan, J. (2000). Sur1 knockout mice. A model for K(ATP) channel‐independent regulation of insulin secretion. Journal of Biological Chemistry, 275(13), 9270–9277. [DOI] [PubMed] [Google Scholar]
  90. Sempoux, C. , Capito, C. , Bellanne‐Chantelot, C. , Verkarre, V. , de Lonlay, P. , Aigrain, Y. , … Rahier, J. (2011). Morphological mosaicism of the pancreatic islets: A novel anatomopathological form of persistent hyperinsulinemic hypoglycemia of infancy. Journal of Clinical Endocrinology and Metabolism, 96(12), 3785–3793. [DOI] [PubMed] [Google Scholar]
  91. Senniappan, S. , Alexandrescu, S. , Tatevian, N. , Shah, P. , Arya, V. , Flanagan, S. , … Hussain, K. (2014). Sirolimus therapy in infants with severe hyperinsulinemic hypoglycemia. New England Journal of Medicine, 370(12), 1131–1137. [DOI] [PubMed] [Google Scholar]
  92. Shah, R. P. , Spruyt, K. , Kragie, B. C. , Greeley, S. A. , & Msall, M. E. (2012). Visuomotor performance in KCNJ11‐related neonatal diabetes is impaired in children with DEND‐associated mutations and may be improved by early treatment with sulfonylureas. Diabetes Care, 35(10), 2086–2088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Shepherd, M. , Brook, A. J. , Chakera, A. J. , & Hattersley, A. T. (2017). Management of sulfonylurea‐treated monogenic diabetes in pregnancy: Implications of placental glibenclamide transfer. Diabetic Medicine, 34(10), 1332–1339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Shepherd, M. , Shields, B. , Hammersley, S. , Hudson, M. , McDonald, T. J. , Colclough, K. , … Hattersley, A. T. (2016). Systematic population screening, using biomarkers and genetic testing, identifies 2.5% of the U.K. pediatric diabetes population with monogenic diabetes. Diabetes Care, 39(11), 1879–1888. [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Shields, B. M. , Shepherd, M. , Hudson, M. , McDonald, T. J. , Colclough, K. , Peters, J. , … Hattersley, A. T. (2017). Population‐based assessment of a biomarker‐based screening pathway to aid diagnosis of monogenic diabetes in young‐onset patients. Diabetes Care, 40(8), 1017–1025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Shimomura, K. , Tusa, M. , Iberl, M. , Brereton, M. F. , Kaizik, S. , Proks, P. , … Ashcroft, F. M. (2013). A mouse model of human hyperinsulinism produced by the E1506K mutation in the sulphonylurea receptor SUR1. Diabetes, 62(11), 3797–3806. [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. Snider, K. E. , Becker, S. , Boyajian, L. , Shyng, S. L. , MacMullen, C. , Hughes, N. , … Ganguly, A. (2013). Genotype and phenotype correlations in 417 children with congenital hyperinsulinism. Journal of Clinical Endocrinology and Metabolism, 98(2), E355–E363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Stoy, J. , Greeley, S. A. , Paz, V. P. , Ye, H. , Pastore, A. N. , Skowron, K. B. , … Philipson, L. H. (2008). Diagnosis and treatment of neonatal diabetes: A United States experience. Pediatric Diabetes, 9(5), 450–459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Tarasov, A. I. , Nicolson, T. J. , Riveline, J. P. , Taneja, T. K. , Baldwin, S. A. , Baldwin, J. M. , … Rutter, G. A. (2008). A rare mutation in ABCC8/SUR1 leading to altered ATP‐sensitive K + channel activity and beta‐cell glucose sensing is associated with type 2 diabetes in adults. Diabetes, 57(6), 1595–1604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Taschenberger, G. , Mougey, A. , Shen, S. , Lester, L. B. , LaFranchi, S. , & Shyng, S. L. (2002). Identification of a familial hyperinsulinism‐causing mutation in the sulfonylurea receptor 1 that prevents normal trafficking and function of KATP channels. Journal of Biological Chemistry, 277(19), 17139–17146. [DOI] [PubMed] [Google Scholar]
  101. Thomas, P. , Ye, Y. , & Lightner, E. (1996). Mutation of the pancreatic islet inward rectifier Kir6.2 also leads to familial persistent hyperinsulinemic hypoglycemia of infancy. Human Molecular Genetics, 5(11), 1809–1812. [DOI] [PubMed] [Google Scholar]
  102. Thomas, P. M. , Cote, G. J. , Wohllk, N. , Haddad, B. , Mathew, P. M. , Rabl, W. , … Bryan, J. (1995). Mutations in the sulfonylurea receptor gene in familial persistent hyperinsulinemic hypoglycemia of infancy. Science, 268(5209), 426–429. [DOI] [PubMed] [Google Scholar]
  103. Thornton, P. S. , Stanley, C. A. , De Leon, D. D. , Harris, D. , Haymond, M. W. , Hussain, K. , … Wolfsdorf, J. I. (2015). Recommendations from the pediatric endocrine society for evaluation and management of persistent hypoglycemia in neonates, infants, and children. Journal of Pediatrics, 167(2), 238–245. [DOI] [PubMed] [Google Scholar]
  104. Thurber, B. W. , Carmody, D. , Tadie, E. C. , Pastore, A. N. , Dickens, J. T. , Wroblewski, K. E. , … Greeley, S. A. , United States Neonatal Diabetes Working G. (2015). Age at the time of sulfonylurea initiation influences treatment outcomes in KCNJ11‐related neonatal diabetes. Diabetologia, 58(7), 1430–1435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  105. Tornovsky, S. , Crane, A. , Cosgrove, K. E. , Hussain, K. , Lavie, J. , Heyman, M. , … Glaser, B. (2004). Hyperinsulinism of infancy: Novel ABCC8 and KCNJ11 mutations and evidence for additional locus heterogeneity. Journal of Clinical Endocrinology and Metabolism, 89(12), 6224–6234. [DOI] [PubMed] [Google Scholar]
  106. Wiedemann, B. , Schober, E. , Waldhoer, T. , Koehle, J. , Flanagan, S. E. , Mackay, D. J. , … Hofer, S. (2010). Incidence of neonatal diabetes in Austria‐calculation based on the Austrian Diabetes Register. Pediatric Diabetes, 11(1), 18–23. [DOI] [PubMed] [Google Scholar]
  107. Zung, A. , Glaser, B. , Nimri, R. , & Zadik, Z. (2004). Glibenclamide treatment in permanent neonatal diabetes mellitus due to an activating mutation in Kir6.2. Journal of Clinical Endocrinology and Metabolism, 89(11), 5504–5507. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supporting information

Data Availability Statement

All the novel variants reported in this manuscript have been uploaded to LOVD (https://www.lovd.nl/).


Articles from Human Mutation are provided here courtesy of Wiley

RESOURCES