Skip to main content
Wiley - PMC COVID-19 Collection logoLink to Wiley - PMC COVID-19 Collection
. 2006 Oct 27;11(2):303–313. doi: 10.1111/j.1365-2958.1994.tb00310.x

The function of a ribosomal frameshifting signal from human immunodeficiency virus‐1 in Escherichia coli

Elizabeth Yelverton 1, Dale Lindsley 1, Phil Yamauchi 1, Jonathan A Gallant 1,
PMCID: PMC7192232  PMID: 8170392

Summary

A 15‐17 nucleotide sequence from the gag‐pol ribosome frameshift site of HIV‐1 directs analogous ribosomal frameshifting in Escherichia coli. Limitation for leucine, which is encoded precisely at the frameshift site, dramatically increased the frequency of leftward frameshifting. Limitation for phenylaianine or arginine, which are encoded just before and just after the frameshift, did not significantly affect frameshifting. Protein sequence analysis demonstrated the occurrence of two closeiy related frameshift mechanisms. In the first, ribosomes appear to bind leucyl‐tRNA at the frameshift site and then slip leftward. This is the 'simultaneous slippage’mechanism. In the second, ribosomes appear to slip before binding amlnoacyl‐tRNA, and then bind phenylaianyl‐tRNA, which is encoded in the left‐shifted reading frame. This mechanism is identicai to the‘overlapping reading’we have demonstrated at other bacterial frameshift sites. The HIV‐1 sequence is prone to frame‐shifting by both mechanisms in E. coli.

References

  1. Atkins, J.F. , Elseviers, D. , and Gorini, L. (1972) Low activity of β‐galactosidase in frameshift mutants of Escherichia coli . Proc Natl Acad Sci USA 69: 1192–1195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Atkins, J.F. , Gesteland, R.F. , Reid, B.R. , and Anderson, C.W. (1979) Normal tRNAs promote ribosomal frameshifting. Cell 18: 1119–1131. [DOI] [PubMed] [Google Scholar]
  3. Brierley, I. , Digard, P. , and Inglis, S.C. (1989) Characterization of an efficient coronavirus ribosomal frameshifting signal: requirement for an RNA pseudoknot. Cell 57: 537–547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bruce, A.G. , Atkins, J.F. , and Gesteland, R.F. (1986) tRNA anticodon replacement experiments show that ribosomal frameshifting can be caused by doublet decoding. Proc Natl Acad Sci USA 83: 5062–5066. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Buston, H.W. , and Bishop, J. (1955) Synthetic α‐amino‐β‐hydroxycaproic acids. J Biol Chem 215: 217–220. [PubMed] [Google Scholar]
  6. Cashel, M. , and Rudd, K.E. (1987) The Stringent Response . In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. Vol. 2 Neidhardt F., Ingraham J., Low B., Magasanik B., Schaechter M., and Umbarger E. (eds). pp. 1410–1438. [Google Scholar]
  7. Cattaneo, R. (1989) How ‘hidden’ reading frames are expressed. Trends Biochem Sci 14: 165–167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Clare, J.J. , Belcourt, M. , and Farabaugh, P.J. (1988) Efficient translational frameshifting occurs within a conserved sequence of the overlap between two genes of a yeast Tyl transposon. Proc Natl Acad Sci USA 85: 6816–6820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Craigen, W.J. , and Caskey, C.T. (1987) Translational frameshifting: where will it stop Cell 50: 1–2. [DOI] [PubMed] [Google Scholar]
  10. Craigen, W.J. , Cool, R.G. , Tate, W.P. , and Caskey, C.T. (1985) Bacterial peptide chain release factors: conserved primary structure and possible frameshift regulation of release factor 2. Proc Natl Acad Sci USA 82: 3616–3620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Crow, E.L. , Davis, Frances, A. , and Maxfield, M.W. (1960) Statistics Manual. New York : Dover Publications. [Google Scholar]
  12. Curran, J.F. , and Yarus, M. (1988) Use of tRNA suppressors to probe regulation of Escherichia coli release factor 2. J Mol Biol 203: 75–83. [DOI] [PubMed] [Google Scholar]
  13. Foley, D.P. , Dennis, P. , and Gallant, J. (1982) Mechanism of the rel defect in beta‐galactosidase synthesis. J Bacteriol 145: 641–643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gallant, J. (1979) Stringent Control in E. coli . Annu Rev Genet 13: 393–415. [DOI] [PubMed] [Google Scholar]
  15. Gallant, J. , and Foley, D. (1980) On the causes and prevention of mistranslation In Ribosomes: Structure, Function and Genetics, (ed.). Chambliss G. et al. Baltimore : University Park Press, pp. 615–638. [Google Scholar]
  16. Gallant, J. , and Lindsiey, D. (1992) Leftward ribosome frameshifting at a hungry codon. J Mol Biol 223: 31–40. [DOI] [PubMed] [Google Scholar]
  17. Gallant, J. , Weiss, R. , Murphy, J. , and Brown, M. (1985) Some puzzle of translational accuracy. In Molecular Biology of Bacterial Growth . Schaechter M., Neidhardt F.C., Ingraham J.L., and Kjeldgaard N.O. (eds). pp. 92–107.
  18. Grunberg‐Manago, M. (1987) Regulation of the expression of aminoacyl‐tRNA synthetases and translation factors. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology Vol. 2. Neidhardt F.C., Ingraham J.L., Low B., Magasanik B., Schaechter M., and Umbarger E. (eds). pp. 1386–1409.
  19. Hatfield, D. , and Oroszlan, S. (1990) The where, what, and how of ribosomal frameshifting in retroviral protein synthesis. Trends Biochem Sci 15, 186–190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hunkapiller, M.W. (1986) Automated amino acid sequence assignment: Development of a fully automated protein sequencer using edman degradation In Methods in Protein Sequence Anaiysis. (ed.) Walsh K.A. pp. 367–384. [Google Scholar]
  21. Jacks, T. , Madhani, H.D. , Masiarz, F.R. , and Varmus, H.E. (1988a) Signals for ribosomal frameshifting in the Rous sarcoma virus gag‐pol region. Cell 55: 447–458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Jacks, T. , Power, M.D. , Masiarz, F.R. , Luciw, P.A. , Barr, P.J. , and Varmus, H.E. (1988b) Characterization of ribosomal frameshifting in HIV‐1 gag‐pol expression. Nature 331, 280–283. [DOI] [PubMed] [Google Scholar]
  23. Kolor, K. , Lindsley, D. , and Gallant, J. A. (1993) On the role of the P‐site in leftward ribosome frameshifting at a hungry codon. J Mol Biol 230, 1–5. [DOI] [PubMed] [Google Scholar]
  24. Kurland, C. and Gallant, J. (1986) The secret life of the ribosome In Accuracy in Biology. Galas D. (ed). London : Chapman and Hall. [Google Scholar]
  25. Landick, R. , and Yanofsky, C. (1987) Transcription Attenuation In Escherichia coli and Salmonella Typhimurium: Cellular and Molecular Biology Vol. 2 (eds) Neidhardt X., Ingraham X., Low X., Magasanik X., Schaechter X., and Umbarger X. pp. 1276–1301. [Google Scholar]
  26. Lindsley, D. , and Gallant, J.A. (1993) On the directional specificity of ribosome frameshifting at a hungry codon. Proc Natl Acad Sci USA, in press. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lowry, D.H. , Rosebrough, N.J. , Farr, A.L. , and Randall, R. (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–274. [PubMed] [Google Scholar]
  28. Madhani, H.D. , Jacks, T. , Varmus, H.E. (1988) Signals for expression of HIV pol gene by ribosomal frameshifting In The Control of Human Retroviral Gene Expression. Franza R., Cullen B., Wong‐Staal F. (eds). Cold Spring Harbor , New York : Cold Spring Harbor. Laboratory Press; pp. 119–125. [Google Scholar]
  29. Parker, J. (1989) Errors and alternatives in reading the universal genetic code. American Society for Microbiology 53: 273–291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Peter, K. , Lindsley, D. , Peng, L. , and Gallant, J. (1992) Context rules of rightward overlapping reading. New Biologist 4: 1–7. [PubMed] [Google Scholar]
  31. Primakoff, P. (1981) In vivo role of the relA + gene in the regulation of the lac operon. J Bacteriol 145: 410–416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Primakoff, P. , and Artz, S.W. (1979) Positive control of lac operon expression in vitro by guanosine 5′‐diphosphate 3′‐diphosphate. Proc Natl Acad Sci USA 76: 1726–1730. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Ratner, L. , Haseltine, W. , Patarca, R. , Livak, K. , Starcich, B. , Josephs, S. , Doran, E. , Rafalski, J. , Whitehorn, E. , Baumeister, K. , Ivanoff, L. , Petteway. Jr., S. , Pearson, M. , Lautenberger, J. , Papas, T. , Ghrayeb, J. , Chang, N. , Gallo, R. , and Wong‐Staal, F. (1985) Complete nucleotide sequence of the AIDS virus, HTLV‐III. Nature 313: 277–284. [DOI] [PubMed] [Google Scholar]
  34. Vieira, J. , and Messing J. (1982) The pUC plasmids, a M13mp7 derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19, 259. [DOI] [PubMed] [Google Scholar]
  35. Weiss, R. , and Gallant, J. (1983) Mechanism of ribosome frameshifting during translation of the genetic code. Nature 302: 389–393. [DOI] [PubMed] [Google Scholar]
  36. Weiss, R. , and Gallant, J. (1986) Frameshifting suppression in aminoacyl‐tRNA limited cells. Genetics 112, 727–739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Weiss, R.B. , Dunn, D.M. , Atkins, J.F. , and Gesteland, R.F. (1987) Slippery runs, shifty stops, backward steps, and forward hops: ‐2,‐1, +1, +2, +5, and +6 ribosomal frameshifting. Coid Spring Harbor Symp Quant 52: 687–693. [DOI] [PubMed] [Google Scholar]
  38. Weiss, R. , Lindsiey, D. , Falahee, B. , and Gallant, J. (1988) On the mechanism of ribosomal frameshifting at hungry codons. J Mol Biol 203: 403–410. [DOI] [PubMed] [Google Scholar]
  39. Weiss, R.B. , Dunn, D.M. , Shuh, M. , Atkins, J.F. , and Gesteland, R.F. (1989) E. coli ribosomes re‐phase on retroviral frameshift signals at rates ranging from 2 to 50 percent. The New Biologist 1: 159–169. [PubMed] [Google Scholar]
  40. Wilson, W. , Braddock, M. , Adams, S.E. , Rathjen, P.D. , Kingsman, S.M. , Kingsman, A.J. (1988) HIV expression strategies: ribosomal frameshifting is directed by a short sequence in both mammalian and yeast systems. Celt 55: 1159–1169. [DOI] [PubMed] [Google Scholar]
  41. Yang, H. , Heller, K. , Gellert, M. , and Zubay, G. (1979) Differential sensitivity of gene expression in vitro io inhibitation of DNA gyrase. Proc Natl Sci USA 76: 3304–3308. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Molecular Microbiology are provided here courtesy of Wiley

RESOURCES