Skip to main content
Wiley - PMC COVID-19 Collection logoLink to Wiley - PMC COVID-19 Collection
. 2007 May 2;45(1):45–54. doi: 10.1111/j.1550-7408.1998.tb05068.x

The Evolutionary History of the Genus Acanthamoeba and the Identification of Eight New 18S rRNA Gene Sequence Types

Diane R Stothard 1, Jill M Schroeder‐Diedrich 1, Mohammad H Awwad 2, Rebecca J Gast 3, Dolena R Ledee 4, Salvador Rodriguez‐Zaragoza 5, Chantal L Dean 1, Paul A Fuerst 1, Thomas J Byers
PMCID: PMC7194170  PMID: 9495032

Abstract

ABSTRACT The 18S rRNA gene (Rns) phylogeny of Acanthamoeba is being investigated as a basis for improvements in the nomenclature and taxonomy of the genus. We previously analyzed Rns sequences from 18 isolates from morphological groups 2 and 3 and found that they fell into four distinct evolutionary lineages we called sequence types T1‐T4. Here, we analyzed sequences from 53 isolates representing 16 species and including 35 new strains. Eight additional lineages (sequence types T5‐T12) were identified. Four of the 12 sequence types included strains from more than one nominal species. Thus, sequence types could be equated with species in some cases or with complexes of closely related species in others. The largest complex, sequence type T4, which contained six closely related nominal species, included 24 of 25 keratitis isolates. Rns sequence variation was insufficient for full phylogenetic resolution of branching orders within this complex, but the mixing of species observed at terminal nodes confirmed that traditional classification of isolates has been inconsistent. One solution to this problem would be to equate sequence types and single species. Alternatively, additional molecular information will be required to reliably differentiate species within the complexes. Three sequence types of morphological group 1 species represented the earliest divergence in the history of the genus and, based on their genetic distinctiveness, are candidates for reclassification as one or more novel genera.

Keywords: Classification, granulomatous amoebic encephalitis, keratitis, multiple rDNA alleles, opportunistic pathogen, phylogeny.

References

  • 1. Bilofsky, H. S. & Burks, C. 1988. The GenBank genetic sequence data bank. Nucl. Acids Res., 16:1861–1864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2. Bogler, S. A. , Zarley, C. D. , Burianek, L. L. , Fuerst, P. A. & Byers, T. J. 1983. Interisolate mitochondrial DNA polymorphism detected in Acanthamoeba by restriction endonuclease analysis. Mol. Biochem. Parasitol., 8:145–163. [DOI] [PubMed] [Google Scholar]
  • 3. Byers. T. J. , Hugo, E. R. & Stewart, V. J. 1990. Genes of Acanthamoeba: DNA, RNA and protein sequences (A review). J. Protozool., 37:17S–25S. [DOI] [PubMed] [Google Scholar]
  • 4. Byers. T. J. , Akins, R. A. , Maynard, B. J. , Lefken, R. A. & Martin, S. M. 1980. Rapid growth at Acanthamoeba in defined media; induction of encystment by glucose–acetate starvation. J. Prolozool., 27:216–219. [DOI] [PubMed] [Google Scholar]
  • 5. Cabot, E. L. & Beckenbach, A. T. 1989. Simultaneous editing of multiple nucleic acid and protein sequences with ESEE. Comput. Appl. Biosci., 5: 233–234. [DOI] [PubMed] [Google Scholar]
  • 6. Costas, M. & Griffiths, A. J. 1986. Physiological characterization of Acanthamoeba isolates. J. Protozool., 33: 304–309. [Google Scholar]
  • 7. Daggett, P.–M. , Lipscomb. D. S. , Thomas, K. & Nerad, T. A. 1985. A molecular approach to the phylogeny of Acanthamoeba. Biosystems, 18:399–405. [DOI] [PubMed] [Google Scholar]
  • 8. De Jonckheere, J. F. 1983. Isoenzyme and total protein analysis by agarose isoelectric focusing, and taxonomy of the genus Acanthamoeba. J. Protozool., 30:701–706. [Google Scholar]
  • 9. Felsenstein, J. 1989. PHYLIP: Phylogeny inference package (Version 3.5). Cladistics, 5:164–166. [Google Scholar]
  • 10. Gast, R. J. & Byers, T. J. 1995. Genus– and subgenus–specific oligonucleotide probes for Acamhamoeba. Molec. Biochem. Parasitol., 71:255–260. [DOI] [PubMed] [Google Scholar]
  • 11. Gast, R. J. , Fuerst, P. A. & Byers, T. J. 1994. Discovery of group I introns in the nuclear small subunit ribosomal RNA genes of Acanthamoeba. Nucl. Acids Res., 22:592–596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12. Gast, R. J. , Ledee, D. R. , Fuerst, P. A. & Byers, T. J. 1996. Subgenus systematics of Acanthamoeba: Four nuclear 18S rDNA sequence types. J. Euk. Micobiol. 43:498–504. [DOI] [PubMed] [Google Scholar]
  • 13. Gunderson, J. H. & Sogin, M. L. 1986. Length variation in eukaryotic rRNAs: small–subunit rRNAs from the protists Acanthamoeba castellanii and Euglena gracilis. Gene, 44:63–70. [DOI] [PubMed] [Google Scholar]
  • 14. Gutell, R. R. 1994. Collection of small subunit (16S and 16S–like) ribosomal RNA structures. Nucl. Acids Res., 22:3502–3507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15. Hugo E. R., Stewart V. J., Gast R. J. & Byers T. J. 1992. Purification of amoeba mtDNA using the UNSET procedure In: Soldo A. T. & Lee J. J. (ed.), Protocols in Protozoology. Allen Press, Lawrence , KS . Pp. D–7.1. [Google Scholar]
  • 16. John, D. T. 1993. Opportunistically pathogenic free–living ameba In: (ed). Parasitic Protozoa. Academic Press Inc., San Diego , CA . Pp. 143–246. [Google Scholar]
  • 17. Johnson, A. M. , Feikle. R. , Christy, P. E. , Robinson, B. & Baverstock, P R. 1990. Small subunit ribosomal RNA evolution in the genus Acanthamoeba. J. Gen. Microbiol., 136:1689–1698. [DOI] [PubMed] [Google Scholar]
  • 18. Ledee, D. R. , Hay, J. , Byers, T. J. , Seal, D. V. & Kirkness, C. M. 1996. Acanthamoeba griffini: molecular characterization of a new corneal pathogen. Invest. Ophthalmol. Vis. Sci., 37:544–550. [PubMed] [Google Scholar]
  • 19. Ma, P. , Visvesvara, G. S. , Martinez, A. J. , Theodore, F. H. , Daggett, P.–M. & Sawyer, T. K. 1990. Naegleria and Acanthamoeba infections: A review. Rev. Infect. Dis., 12:490–513. [DOI] [PubMed] [Google Scholar]
  • 20. Martinez, A. J. & Visvesvara, G. S. 1997. Free–living amphizoic and opportunistic amebas. Brain Pathology, 7:583–598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21. Mishler, B. D. 1984. Cladistic analysis of molecular and morphological data. Am. J. Phys. Anthropol., 1:143–56. [DOI] [PubMed] [Google Scholar]
  • 22. Moura, H. , Wallace, S. & Visvesvara, G. S. 1992. Acanthamoeba healyi n. sp. and the isoenzyme and immunoblot profiles of Acanthamoeba spp., Groups 1 and 3. J. Protozool., 39:573–583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23. Murakawa, G. J. , McCalmont, T. , Altman, J. , Telang, G. H. , Hoffman, M. D. , Kanter, G. R. & Berger, T. G. 1995. Disseminated Acanthamebiasis in patients with AIDS. A report of five cases and a review of the literature. Arch. Dermatol., 131:1291–1296. [PubMed] [Google Scholar]
  • 24. Neefs, J.–M. , Van de Peer, Y. D. , De Rijk, P. , Chapelle, S. & De Wachter, R. 1993. Compilation of small ribosomal subunit RNA structures. Nucl. Acids Res., 21:3025–3049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25. Nerad. T. A. , Sawyer, T. K. , Lewis, E. J. & McLaughlin, S. M. 1995. Acanthamoeba pearcei n. sp.(Protozoa: Amoebida) from sewage contaminated sediments. J. Euk. Microbiol., 42:702–705. [DOI] [PubMed] [Google Scholar]
  • 26. Pussard, M. & Pons, R. 1977. Morphologie de la paroi kystique et taxonomie du genre Acanthamoeba (Protozoa, Amoebida). Protistologica, 8:557–598. [Google Scholar]
  • 27. Sawyer, T. 1971. Acanthamoeba griffini, a new species of marine amoeba. J. Protozool., 18:650–654. [Google Scholar]
  • 28. Sawyer, T. & Griffin, J. L. 1975. A proposed new family, Acanthamoebidae n. fam. (order Amoebida) for certain cyst–forming filose amoebae. Trans. Amer. Microsc. Soc., 94:93–98. [Google Scholar]
  • 29. Sogin, M. L. 1989. Evolution of eukaryotic microorganisms and their small subunit ribosomal RNAs. Amer. Zool., 29:487–499. [Google Scholar]
  • 30. Visvesvara, G. S. 1991. Classification of Acanthamoeba. Rev. Infect. Dis., 13 (S5):S369–S372. [DOI] [PubMed] [Google Scholar]
  • 31. Visvesvara, G. S. & Stehr–Green, J. K. 1990. Epidemiology of free–living ameba infections. J. Protozool., 37:25S–33S. [DOI] [PubMed] [Google Scholar]
  • 32. Weekers, P. H. H. , Gast, R. J. , Fuerst, P. A. & Byers, T. J. 1994. Sequence variations in small–subunit ribosomal RNAs of Hartmannella vermiformis and their phylogenetic implications. Mol. Biol. Evol., 11:684–690. [DOI] [PubMed] [Google Scholar]
  • 33. Yagita, K. & Endo, T. 1990. Restriction enzyme analysis of mitochondrial DNA of Acanthamoeba strains in Japan. J. Protozool., 37:570–575. [DOI] [PubMed] [Google Scholar]
  • 34. Zucker, M. & Stiegler, P. 1981. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucl. Acids Res., 9: 133. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Eukaryotic Microbiology are provided here courtesy of Wiley

RESOURCES