Skip to main content
Wiley - PMC COVID-19 Collection logoLink to Wiley - PMC COVID-19 Collection
. 2008 Jun 28;21(6):1340–1346. doi: 10.1111/j.1939-1676.2007.tb01957.x

Adjuvant Immunotherapy of Feline Fibrosarcoma with Recombinant Feline Interferon‐ω

Verena Hampel 1,, Bianca Schwarz 1,3, Christine Kempf 1,3, Roberto Köstlin 2, Ulrike Schillinger 3, Helmut Küchenhoff 4, Nora Fenske 4, Thomas Brill 3, Johannes Hirschberger 1
PMCID: PMC7197455  PMID: 18196745

Abstract

Background: Recombinant feline interferon‐ω (rFeIFN‐ω) was tested as a treatment option for cats with fibrosarcoma to assess safety and feasibility.

Hypothesis: Treatment with rFeIFN‐ω in cats with fibrosarcoma is safe and feasible.

Animals: Twenty domestic cats.

Methods: In an open‐labeled uncontrolled clinical trial 12 injections of 1 × 106 U/kg rFeIFN‐ω were administered over a 5‐week period: the 1st through 4th injections were given intratumorally, and the 5th through 12th injections were administered subcutaneously at the tumor excision site. Wide surgical excision of the tumors was carried out after the 4th injection and before the 5th injection of rFeIFN‐ω. A Common Terminology Criteria for Adverse Events (CTCAE) analysis was conducted. Flow cytometry of fibrosarcoma cells after incubation with rFeIFN‐ω and recombinant feline interferon‐γ was performed to assess the biological effect of rFeIFN‐ω.

Results: Changes in blood cell count, increases in serum aspartate‐amino‐transferase activity, serum bilirubin concentration, serum creatinine and serum electrolyte concentrations, weight loss, anorexia, increased body temperature, and reduced general condition were observed but were mostly minor (grade 1 and 2) and self limiting. Eosinophilia (P= .025), neutropenia (P= .021), and weight loss (P < .001) were statistically correlated with rFeIFN‐ω‐treatment (analysis of parameters before treatment and after 3 injections of rFeIFN‐ω). Flow cytometry of 5 unrelated feline fibrosarcoma cell lines showed increased expression of major histocompatibility complex (MHC) class I molecules (P= .026) in response to in vitro incubation with rFeIFN‐ω, whereas expression of MHC class II molecules was not affected significantly.

Conclusions and Clinical Importance: RFeIFN‐ω for the treatment of feline fibrosarcoma is safe, well tolerated, and can be easily performed in practice. To assess the efficacy of the treatment, it should be tested in a placebo‐controlled trial.

Keywords: Antitumor immunity, Cat, Cytokines, Major histocompatibility complex, Soft‐tissue sarcoma

References

  • 1. Stiglmair‐Herb MT. Hauttumoren bei Katzen—Eine retrospektive studie. Tierärztl Umschau 1987;54:681–686. [Google Scholar]
  • 2. Macy DW, Couto CO. Review of treatment options for vaccine‐associated feline sarcoma. J Am Vet Med Assoc 1998;213:1426–1427. [PubMed] [Google Scholar]
  • 3. McEntee MC, Page RL. Feline vaccine‐associated sarcomas. J Vet Intern Med 2001;15:176–182. [DOI] [PubMed] [Google Scholar]
  • 4. Cohen M., Wright JC, Brawner WR, et al. Use of surgery and electron beam irradiation, with or without chemotherapy, for treatment of vaccine‐associated sarcomas in cats: 78 cases (1996–2000). J Am Vet Med Assoc 2001;219:1582–1589. [DOI] [PubMed] [Google Scholar]
  • 5. Esplin DG, McGill LD, Meininger AC, et al. Postvaccination sarcomas in cats. J Am Vet Med Assoc 1993;202:1245–1247. [PubMed] [Google Scholar]
  • 6. Hershey AE, Sorenmo KU, Hendrick MJ, et al. Prognosis for presumed feline vaccine‐associated sarcoma after excision: 61 cases (1986–1996). J Am Vet Med Assoc 2000;216:58–61. [DOI] [PubMed] [Google Scholar]
  • 7. Macy DW, Couto CO. Prevention and treatment of injection‐site sarcomas. J Feline Med Surg 2001;3:169–170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8. Davidson EB, Gregory C., Kass PH. Surgical excision of soft tissue fibrosarcomas in cats. Vet Surg 1997;26:265–269. [DOI] [PubMed] [Google Scholar]
  • 9. Dillon CJ, Mauldin ON, Baer KE. Outcome following surgical removal of nonvisceral soft tissue sarcomas in cats: 42 cases (1992–2000). J Am Vet Med Assoc 2005;227:1955–1957. [DOI] [PubMed] [Google Scholar]
  • 10. Steger‐Lieb A., Kostorz A., Hauser B., et al. Einsatz der Strahlentherapie beim vakzineassoziierten Sarkom der Katze. Erfahrungen aus 18 Fallen (1994–1999). Tierärztl Prax 2002: 30: 35–40. [Google Scholar]
  • 11. Kobayashi T., Hauck ML, Dodge R., et al. Preoperative radiotherapy for vaccine associated sarcoma in 92 cats. Vet Radiol Ultrasound 2002;43:473–479. [DOI] [PubMed] [Google Scholar]
  • 12. Barber LG, Sorenmo KU, Cronin KL, et al. Combined doxorubicin and cyclophosphamide chemotherapy for nonresectable feline fibrosarcoma. J Am Anim Hosp Assoc 2000;36:416–421. [DOI] [PubMed] [Google Scholar]
  • 13. Poirier VJ, Thamm DH, Kurzman ID, et al. Liposomeencapsulated doxorubicin (Doxil) and doxorubicin in the treatment of vaccine‐associated sarcoma in cats. J Vet Intern Med 2002;16:726–731. [PubMed] [Google Scholar]
  • 14. Martano M., Morello E., Ughetto M., et al. Surgery alone versus surgery and doxorubicin for the treatment of feline injection‐site sarcomas: A report on 69 cases. Vet J 2005;170:84–90. [DOI] [PubMed] [Google Scholar]
  • 15. Blattman JN, Greenberg PD. Cancer immunotherapy: A treatment for the masses. Science 2004;305:200–205. [DOI] [PubMed] [Google Scholar]
  • 16. Otsuki T., Yamada O., Sakaguchi H., et al. Human myeloma cell apoptosis induced by interferon‐alpha. Br J Haematol 1998;103:518–529. [DOI] [PubMed] [Google Scholar]
  • 17. Baldwin SL, Powell TD, Sellins KS, et al. The biological effects of five feline IFN‐α subtypes. Vet Immunol Immunopathol 2004;99:153–167. [DOI] [PubMed] [Google Scholar]
  • 18. Beatu TM, Hiscott J. On the TRAIL to apoptosis. Cytokine Growth Factor Rev 2002;13:199–207. [DOI] [PubMed] [Google Scholar]
  • 19. Taki S. Type I interferons and autoimmunity: Lessons from the clinic and from IRF‐2‐deficient mice. Cytokine Growth Factor Rev 2002;13:379–391. [DOI] [PubMed] [Google Scholar]
  • 20. Stark OR, Kerr IM, Williams BR, et al. How cells respond to interferons. Annu Rev Biochem 1998;67:227–264. [DOI] [PubMed] [Google Scholar]
  • 21. Yang I., Kremen T., Giovannone A., et al. Modulation of major histocompatibility complex class I molecules and major histocompatibility complex‐bound immunogenic peptides induced by interferon‐α and interferon‐γ treatment of human glioblastoma multiforme. J Neurosurg 2004;100:310–319. [DOI] [PubMed] [Google Scholar]
  • 22. Ueda Y., Sakurai T., Yanai A. Homogeneous production of feline interferon in silkworm by replacing single amino acid code in signal peptide region in recombinant baculovirus and characterization of the product. J Vet Med Sci 1993;55:251–258. [DOI] [PubMed] [Google Scholar]
  • 23. Nieroda C., Pestka S., Schlom J., et al. Interferon‐ω augments major histocompatibility and human tumor‐associated antigen expression. Mol Cell Differ 1996;4:335–351. [Google Scholar]
  • 24. Tiefenthaler M., Geisen F., Schirmer M., et al. A comparison of the antiproliferative properties of recombinant human IFN‐α2 and IFN‐ω in human bone marrow culture. J Interferon Cytokine Res 1997;17:327–329. [DOI] [PubMed] [Google Scholar]
  • 25. Horton HM, Hernandez P., Parker SE, et al. Antitumor effects of Interferon‐ω: In vivo therapy of human tumor xenografts in nude mice. Cancer Res 1999;59:4064–4068. [PubMed] [Google Scholar]
  • 26. Nakamura N., Sudo T., Matsuda S., et al. Molecular cloning of feline interferon cDNA by direct expression. Biosci Biotech Biochem 1992;56:211–214. [DOI] [PubMed] [Google Scholar]
  • 27. Pirard D., Heenen M., Melot C., et al. Interferon alpha as adjuvant postsurgical treatment of melanoma: A meta analysis. Dermatology 2004;208:43–48. [DOI] [PubMed] [Google Scholar]
  • 28. Schwarz B. Klonieren der Felinen Zytokin‐Gene IL‐2, GMCSF und IFN‐γ zum Adjuvanten, Nonviralen Gentherapeutischen Einsatz beim Fibrosarkom der Katze. München , Germany : Universität München; 2005. Diss med vet. [Google Scholar]
  • 29. Whitley E., Bird A., Zucker K., et al. Modulation by canine interferon‐gamma of major histocompatibility complex and tumorassociated antigen expression in canine mammary tumor and melanoma cell lines. Anticancer Res 1995;15:923–929. [PubMed] [Google Scholar]
  • 30. Melero I., Bach N., Chen L. Costimulation, tolerance and ignorance of cytolytic T‐lymphocytes in immune responses to tumor antigens. Life Sci 1997;60:2035–2041. [DOI] [PubMed] [Google Scholar]
  • 31. Seliger B., Cabrera T., Garrido F., et al. HLA class I antigen abnormalities and immune escape by malignant cells. Semin Cancer Biol 2002;12:3–13. [DOI] [PubMed] [Google Scholar]
  • 32. Elmslie RE, Dow SW. Genetic immunotherapy for cancer. Semin Vet Med Surg (Small Anim) 1997;12:193–205. [DOI] [PubMed] [Google Scholar]
  • 33. Murgia C., Pritchard JK, Kim SY, et al. Clonal origin and evolution of a transmissible cancer. Cell 2006;126:477–487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34. Blaese M., Blankenstein T., Brenner M., et al. European School of Oncology position paper. Gene therapy for the medical oncologist. Eur J Cancer 1995; 31A: 1531–1537. [DOI] [PubMed] [Google Scholar]
  • 35. Hirschberger J., Kessler M. Das feline Fibrosarkom. Tierärztl Prax 2001;29:66–71. [Google Scholar]
  • 36. Virbac Product information Virbagen Omega. Virbac 2001.
  • 37. Vail D. Veterinary co‐operative oncology group—Common terminology criteria for adverse events (VCOG‐CTCAE) following chemotherapy or biological antineoplastic therapy in dogs and cats v1.0. Vet Comp Oncol 2004; 2, 4:194–213. [DOI] [PubMed] [Google Scholar]
  • 38. King GK, Yates KM, Greenlee PG, et al. The effect of acemannan immunostimulant in combination with surgery and radiation therapy on spontaneous canine and feline fibrosarcomas. J Am Anim Hosp Assoc 1995;31:439–447. [DOI] [PubMed] [Google Scholar]
  • 39. Jourdier TM, Moste C., Bonnet MC, et al. Local immunotherapy of spontanoues feline fibrosarcomas using recombinant poxviruses expressing interleukin 2 (IL2). Gene Ther 2003;10:2126–2132. [DOI] [PubMed] [Google Scholar]
  • 40. Truyen U., Blewaska S., Schultheiss U. Untersuchung der antiviralen Wirksamkeit von Interferon‐Omega gegen ausgewählte Viren von Hund und Katze. Prakt Tierarzt 2002;83:862–865. [Google Scholar]
  • 41. Siebeck N., Hurley DJ, Garcia M., et al. Effects of human recombinant alpha‐2b interferon and feline recombinant omega interferon on in vitro replication of feline herpesvirus‐1. Am J Vet Res 2006;67:1406–1411. [DOI] [PubMed] [Google Scholar]
  • 42. Priosoeryanto BP, Tateyama S., Yamaguchi R., et al. Antiproliferation and colony‐forming inhibition activities of recombinant feline interferon on various cells in vitro. Can J Vet Res 1995;59:67–69. [PMC free article] [PubMed] [Google Scholar]
  • 43. Tateyama S., Priosoeryanto BP, Yamaguchi R., et al. In vitro growth inhibition activities of recombinant feline interferon on all lines derived from canine tumors. Res Vet Sci 1995;59:275–277. [DOI] [PubMed] [Google Scholar]
  • 44. Gaskell R., Dawson S. Feline respiratory disease In: Greene C., ed. Infectious Diseases of the Dog and Cat. 2nd ed. Philadephia , PA : WB Sanders; 1998: 97–106. [Google Scholar]
  • 45. Verneuil M. Topical application of feline interferon omega in the treatment of herpetic keratitis in the cat: Preliminary study. Proceedings of European College of Veterinary Opthalmologists, Munich, Germany, June 2004.
  • 46. de Mari K., Maynard L., Sanquer A., et al. Therapeutic effects of recombinant feline interferon‐to on feline leukemia virus (FeLV)‐infected and FeLV/feline immunodeficiency virus (FIV)‐coinfected symptomatic cats. J Vet Intern Med 2004;18:477–482. [DOI] [PubMed] [Google Scholar]
  • 47. Ishida T., Shibancia A., Tonaha S., et al. Recombinant feline interferon therapy of feline infectious peritonitis. Proceedings of the 2nd International Feline Coronavirus (FcoV)/Feline Infectious Peritonitis (FIP)‐Symposium, Glasgow, UK, August 2002: 17.
  • 48. Mihaljevic S. First clinical experiences with omega‐interferon in the treatment of chronic gingivitis‐stomatitis‐oropharyngitis of cats. Prakt Tierarzt 2003;84:350–361. [Google Scholar]
  • 49. de Mari K., Maynard L., Eun H., et al. Treatment of canine parvoviral enteritis with interferon‐omega in a placebo‐controlled field trial. Vet Rec 2003;152:105–108. [DOI] [PubMed] [Google Scholar]
  • 50. Hendrick MJ, Shofer FS, Goldschmidt MH, et al. Comparison of fibrosarcomas that developed at vaccination sites and at nonvaccination sites in cats: 239 cases (1991–1992). J Am Vet Med Assoc 1994;205:1425–1429. [PubMed] [Google Scholar]
  • 51. Slingsby L., Waterman‐Pearson A. Comparison between meloxicam and carprofen for postoperative analgesia after feline ovariohysterectomy. J Small Anim Pract 2002;43:286–289. [DOI] [PubMed] [Google Scholar]
  • 52. Robertson S., Taylor P. Pain management in cats—Past, present and future. Part 2. Treatment of pain—clinical pharmacology. J Feline Med Surg 2004: 6: 321–333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53. Knapp D., Richardson R., Chan T., et al. Piroxicam therapy in 34 dogs with transitional cell carcinoma of the urinary bladder. J Vet Intern Med 1994;8:273–278. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Veterinary Internal Medicine are provided here courtesy of Wiley

RESOURCES