Skip to main content
Wiley - PMC COVID-19 Collection logoLink to Wiley - PMC COVID-19 Collection
. 2012 May 16;117(4):556–568. doi: 10.1002/j.2050-0416.2011.tb00504.x

Evaluation of ITS PCR and RFLP for Differentiation and Identification of Brewing Yeast and Brewery ‘Wild’ Yeast Contaminants

T Pham , T Wimalasena , W G Box , K Koivuranta , E Storgårds , K A Smart , B R Gibson ‡,
PMCID: PMC7197508  PMID: 32834175

ABSTRACT

A reference library of ITS PCR/RFLP profiles was collated and augmented to evaluate its potential for routine identification of domestic brewing yeast and known ‘wild’ yeast contaminants associated with wort, beer and brewing processes. This library contains information on band sizes generated by restriction digestion of the ribosomal RNA‐encoding DNA (rDNA) internal transcribed spacer (ITS) region consisting of the 5.8 rRNA gene and two flanking regions (ITS1 and ITS2) with the endonucleases CfoI, HaeIII, HinfI and includes strains from 39 non‐Saccharomyces yeast species as well as for brewing and non‐brewing strains of Saccharomyces. The efficacy of the technique was assessed by isolation of 59 wild yeasts from industrial fermentation vessels and conditioning tanks and by matching their ITS amplicon sizes and RFLP profiles with those of the constructed library. Five separate, non‐introduced yeast taxa were putatively identified. These included Pichia species, which were associated with conditioning tanks and Saccharomyces species isolated from fermentation vessels. Strains of the lager yeast S. pastorianus could be reliably identified as belonging to either the Saaz or Frohberg hybrid group by restriction digestion of the ITS amplicon with the enzyme HaeIII. Frohberg group strains could be further sub‐grouped depending on restriction profiles generated with HinfI.

Keywords: brewery, contaminant, identification, ITS, rDNA, RFLP, yeast

REFERENCES

  • 1. Anonymous. European Brewing Convention. Analytica Microbiologica: Part II. Institute of Brewing: London, 1981, 87, 303–321. [Google Scholar]
  • 2. Anonymous. Copper media for wild yeast detection. J. Am. Soc. Brew. Chem., 1992, 50, 153–157. [Google Scholar]
  • 3. Arias, C. R. , Burns, J. K. , Friedrich, L. M. , Goodrich, R. M. and Parish, M. E. , Yeast species associated with orange juice: evaluation of different identification methods. Appl. Environ. Microbiol., 2002, 68, 1955–1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4. Barnett, J. A. and Lichtenthaler, F. W. , A history of research on yeasts 3: Emil Fischer, Eduard Buchner and their contemporaries, 1880–1900. Yeast, 2001, 18, 363–388. [DOI] [PubMed] [Google Scholar]
  • 5. Barnett, J. A. , Payne, R. W. and Yarrow, D. , Yeasts, Characteristics and Identification, 2nd edition, Cambridge University Press: Cambridge, 1990. [Google Scholar]
  • 6. Barszczewski, W. and Robak, M. , Differentiation of contaminating yeasts in brewery by PCR‐based techniques. Food Microbiol., 2004, 21, 227–231. [Google Scholar]
  • 7. Belloch, C. , Pérez‐Torrado, R. , Gonzalez, S. S. , Perez‐Ortín, J. E. , Martínez, J. G. , Querol, A. and Barrio, E. , Chimeric genomes of natural hybrids of Saccharomyces cerevisiae and Saccharomyces kudriavzevii. Appl. Environ. Microbiol., 2009, 75, 2534–2544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8. Briggs, D. E. , Boulton, C. A. , Brookes, P. A. and Stevens, R. , Brewing: Science and Practice. Woodhead Publishing Limited and CRC Press LLC: Cambridge, 2004. [Google Scholar]
  • 9. Campbell, I. , Wild yeasts in brewing and distilling. In: Brewing Microbiology, Priest F. and Campbell I., Eds., Chapman & Hall: London, 2000, pp. 248–266. [Google Scholar]
  • 10. Campbell, I. , Microbiological Methods in Brewing Analysis in Brewing Microbiology. 3rd edition, Kluwer Academic/Plenum Publishers: New York., 2003, pp. 367–392. [Google Scholar]
  • 11. CBS , CBS‐KNAW Fungal Biodiversity Centre database http://www.cbs.knaw.nl/ (Last accessed Nov. 2011).
  • 12. Ciani, M. and Ferraro, L. , Role of oxygen on acetic acid production by Brettanomyces/ Dekkera in winemaking. J. Sci. Food Agric., 1997, 75, 489–495. [Google Scholar]
  • 13. Combina, M. , Elía, A. , Mercado, L. , Catania, C. , Ganga, A. and Martinez, C. , Dynamics of indigenous yeast populations during spontaneous fermentation of wines from Mendoza, Argentina. Int. J. Food Microbiol., 2005, 99, 237–243. [DOI] [PubMed] [Google Scholar]
  • 14. Constantí, M. , Reguant, C. , Poblet, M. , Zamora, F. , Mas, A. and Guillamón, J. M. , Molecular analysis of yeast population dynamics: Effect of sulphur dioxide and inoculum on must fermentation. Int. J. Food Microbiol., 1998, 41, 169–175. [DOI] [PubMed] [Google Scholar]
  • 15. Coton, E. , Coton, M. , Levert, D. , Casaregola, S. and Sohier, D. , Yeast ecology in French cider and black olive natural fermentations. Int. J. Food Microbiol., 2006, 108, 130–135. [DOI] [PubMed] [Google Scholar]
  • 16. Dunn, B. and Sherlock, G. , Reconstruction of the genome origins and evolution of the hybrid lager yeast Saccharomyces pastorianus. Genome Res., 2008, 18, 1610–1623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17. Esteve‐Zarzoso, B. , Belloch, C. , Uruburu, F. and Querol, A. , Identification of yeasts by RFLP analysis of the 5.8S rRNA gene and the two ribosomal internal trancribed spacers. Int. J. Syst. Bacteriol., 1999, 49, 329–337. [DOI] [PubMed] [Google Scholar]
  • 18. Fernández‐Espinar, M. T. , Esteve‐Zarzoso, B. , Querol, A. and Barrio, E. , RFLP analysis of the ribosomal internal trancribed spacers and the 5.8S rRNA gene region of the genus Saccharomyces: a fast method for species identification and the differentiation of flor yeasts. Antonie van Leeuwenhoek, 2000, 78, 87–97. [DOI] [PubMed] [Google Scholar]
  • 19. Genbank , http://www.ncbi.nlm.nih.gov/genbank/ (Last accessed November 2011).
  • 20. Gilliland, R. B. , Yeast classification. J. Inst. Brew.,1971, 77, 276–284. [Google Scholar]
  • 21. Granchi, L. , Bosco, M. , Messini, A. and Vincenzini, M. , Rapid detetion and quantification of yeast species during spontaneous wine fermentation by PCR‐RFLP analysis of rDNA ITS region. J. Appl. Microbiol., 1999, 87, 947–956. [DOI] [PubMed] [Google Scholar]
  • 22. Guillamon, J. M. , Sabate, J. , Barrio, E. , Cano, J. and Querol, A. , Rapid identification of wine yeast species based on RFLP analysis of the ribosomal internal transcribed spacer (ITS) region. Arch. Microbiol., 1998, 169, 387–392. [DOI] [PubMed] [Google Scholar]
  • 23. Harris, J. O. and Walson, W. , The use of control levels of actidione for brewing and non‐brewing strain differentiation. J. Inst. Brew., 1968, 74, 286–290. [Google Scholar]
  • 24. Ingledew, W. and Casey, G. , The use and understanding of media used in brewing microbiology. Media for wild yeast. Brew. Dig., 1982, 57, 18–22. [Google Scholar]
  • 25. Jespersen, L. and Jakobsen, M. , Specific spoilage organisms in breweries and laboratory media for their detection. Int. J. Food Microbiol., 1996, 33, 139–155. [DOI] [PubMed] [Google Scholar]
  • 26. Jespersen, L. , Lassen, S. and Jakobsen, M. , Flow cytometric detection of wild yeast in lager breweries. Int. J. Food Microbiol., 1993, 17, 321–328. [DOI] [PubMed] [Google Scholar]
  • 27. Jespersen, L. , van der Kuhle, Aa A. and Petersen, K. , Phenotypic and genetic diversity of Sacchaomyces contaminants isolates from lager breweries and their phylogenic relationship with brewing yeasts. Int. J. Food Microbiol., 2000, 63, 43–53. [DOI] [PubMed] [Google Scholar]
  • 28. Jeyaram, K. , Singh, W. M. , Capece, A. and Romano, P. , Molecular identification of yeast species associated with ‘Hamei’‐a traditional starter used for rice wine production in Manipur, India. Int. J. Food Microbiol., 2008, 124, 115–25. [DOI] [PubMed] [Google Scholar]
  • 29. Josepa, S. , Guillamon, J. M. and Cano, J. , PCR differentiation of Saccharomyces cerevisiae from Saccharomyces bayanus/Saccharomyces pastorianus using specific primers. FEMS Microbiol. Lett., 2000, 193, 255–259. [DOI] [PubMed] [Google Scholar]
  • 30. Kreger‐Van Rij, N. J. W. , Classification of yeasts. In: The Yeast, Rose A. H. and Harrison J. S., Eds., Academic press: London, 1987. [Google Scholar]
  • 31. Kurtzman, C. P. , Phylogenetic circumscription of Saccharomyces, Kluyveromyces and other members of the Saccharomycetaceae, and the proposal of the new genera Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and Zygotorulaspora. FEMS Yeast Res., 2003, 4, 233–245. [DOI] [PubMed] [Google Scholar]
  • 32. Heras‐Vazquez, F. J. Las , Mingorance‐Cazorla, L. , Clemente‐Jimenez, J. M. and Rodriguez‐Vico, F. , Identification of yeast species from orange fruit and juice by RFLP and sequence analysis of the 5.8S rRNA gene and the two internal transcribed spacers. FEMS Yeast Res., 2003, 3, 3–9. [DOI] [PubMed] [Google Scholar]
  • 33. Libkind, D. , Hittinger, C. T. , Valério, E. , Gonçalves, C. , Dover, J. , Johnston, M. , Gonçalves, P. and Sampaio, J. P. , Microbe domestication and the identification of the wild genetic stock of lager‐brewing yeast. Proc. Nat. Acad. Sci., 2011, 108, 14539–14544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34. Lin, C. C. and Fung, Y. , Conventional and rapid methods for yeast indentification. Crit. Rev. Microbiol., 1987, 14, 273–289. [DOI] [PubMed] [Google Scholar]
  • 35. Liti, G. , Barton, D. B. H. and Louis, E. J. , Sequence diversity, reproductive isolation and species concepts in Saccharomyces. Genetics, 2006, 174, 839–850. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36. Lopandic, K. , Tiefenbrunner, W. , Gangl, H. , Mandl, K. , Berger, S. , Leitner, G. , Abd‐Ellah, G. , Querol, A. , Gardner, R. and Sterflinger, K. , Molecular profiling of yeasts isolated during spontaneous fermentations of Austrian wines. FEMS Yeast Res., 2008, 8, 1063–1075. [DOI] [PubMed] [Google Scholar]
  • 37. Manzano, M. , Cocolin, L. , Longo, B. and Comi, G. , PCR‐DGGE differentiation of strains of Saccharomyces sensu stricto. Antonie van Leeuwenhoek, 2004, 85, 23–27. [DOI] [PubMed] [Google Scholar]
  • 38. McCullough, M. , Clemons, K. , McCusker, J. and Stevens, D. , Intergenic transcribed spacer PCR ripotyping for differentation of Saccharomyces species and interspecies hybrids. J. Clin. Microbiol., 1998, 36, 1035–1038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39. Morrissey, W. F. , Davenport, B. , Querol, A. and Dobson, A. D. , The role of indigenous yeasts in traditional Irish cider fermentations. J. Appl. Microbiol., 2004, 97, 647–655. [DOI] [PubMed] [Google Scholar]
  • 40. Mycobank , http://www.mycobank.org/ (Last accessed November 2011).
  • 41. Nakao, Y. , Kanamori, T. , Itoh, T. , Kodama, Y. , Rainieri, S. , Nakamura, N. , Shimonaga, T. , Hattori, M. and Ashikari, T. , Genome sequence of the lager brewing yeast, an Interspecies Hybrid. DNA Res., 2009, 16, 115–129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42. Naumova, E. S. , Naumov, G. I. , Masneuf‐Pomarède, I. , Aigle, M. and Dubourdieu, D. , Molecular genetic study of introgression between Saccharomyces bayanus and S. cerevisiae. Yeast, 2005, 22, 1099–1115. [DOI] [PubMed] [Google Scholar]
  • 43. Nisiotou, A. A. and Nychas, G.‐J. E. , Yeast populations residing on healthy or Botrytis‐infected grapes from a vineyard in Attica, Greece. Appl. Environ. Microbiol., 2007, 73, 82765–2768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44. Parapouli, M. , Hatziloukas, E. , Drainas, C. and Perisynakis, A. , The effect of Debina grapevine indigenous yeast strains of Metschnikowia and Saccharomyces on wine flavour. J. Ind. Microbiol. Biotechnol., 2010, 37, 85–93. [DOI] [PubMed] [Google Scholar]
  • 45. Passoth, V. , Fredlund, E. , Druvefors, U. and Schnürer, J. , Biotechnology, physiology and genetics of the yeast Pichia anomala. FEMS Yeast Res., 2005, 6, 3–13. [DOI] [PubMed] [Google Scholar]
  • 46. Powell, C. D. and Smart, K. A. , A comparison of new and traditional techniques for the detection of brewery contaminants. Proceedings of the European Brewing Convention, Congress, Dublin, 2003, Verlag Hans Carl Getränke‐Fachverlag: Nürnberg, 2003, 29(115), 1–13. [Google Scholar]
  • 47. Querol, A. and Bond, U. , The complex and dynamic genomes of industrial yeasts. FEMS Microbiol lett., 2009, 293, 1–10. [DOI] [PubMed] [Google Scholar]
  • 48. Renard, A. , Gómez di Marco, P. , Egea‐Cortines, M. and Weiss, J. , Application of whole genome amplification and quantitative PCR for detection and quantification of spoilage yeasts in orange juice. Int. J. Food Microbiol., 2008, 126, 195–201. [DOI] [PubMed] [Google Scholar]
  • 49. Ryder, D. S. , Murray, J. P. and Stewart, M. , Phenolic off‐flavour problems caused by Saccharomyces wild yeast. Tech. Q. Master Brew. Assoc. Am., 1978, 15, 79–86. [Google Scholar]
  • 50. Sato, M. , Watari, J. and Takashio, M. , Effect of growth media and strains on structural stability in small chromosomes (Chromosome I, VI and III) of bottom‐fermenting yeast. J. Inst. Brew., 2002, 108, 283–285. [Google Scholar]
  • 51. Smart, K. A. and Powell, C. D. , Wild yeasts in brewing: a review. The Inst. of Brewing & Distilling Africa Sect. — Proc. 10th Brewing Convention, Pilanesberg, South Africa 2005, 34–39.
  • 52. Storgårds, E. , Tapani, K. , Hartwall, P. , Saleva, R. and Suihko, M.‐L. , Microbial attachment and biofilm formation in brewery bottling plants. J. Am. Soc. Brew. Chem., 2006, 64, 8–15. [Google Scholar]
  • 53. Tornai‐Lehoczki, J. and Dlauchy, D. , Delimination of brewing yeast strains using different molecular techniques. Int. J. Food Microbiol., 2000, 62, 37–45. [DOI] [PubMed] [Google Scholar]
  • 54. Tracey, R. , van Vuuren, H. and Du Toit, D. , A method for the detection of Issatchenkia orientalis in a baker's yeast factory. Appl. Microbiol. Biotechnol., 1984, 19, 131–133. [Google Scholar]
  • 55. van der Kühle, A. Aa and Jespersen, L. , Detection and identification of wild yeasts in lager breweries. Int. J. Food Microbiol., 1998, 43, 205–213. [DOI] [PubMed] [Google Scholar]
  • 56. Walsh, R. M. and Martin, P. A. , Growth of Saccharomyces cerevisiae and Saccharomyce uvarum in a temperature gradient incubator. J. Inst. Brew., 1977, 83, 169–172. [Google Scholar]
  • 57. Walters, L. S. and Thiselton, M. R. , Utilisation of lysine by yeasts. J. Inst. Brew., 1953, 59, 401–404. [Google Scholar]
  • 58. Wang, S. A. and Bai, F. Y. , Saccharomyces arboricolus sp. nov., a yeast species from tree bark. Int. J. Syst. Evol. Microbiol., 2008, 58, 510–514. [DOI] [PubMed] [Google Scholar]
  • 59. White, T. J. , Bruns, T. , Lee, S. and Taylor, J. W. , Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: A Guide to Methods and Applications, Innis M. A., Gelfand D. H., Sninsky J. J., and White T. J., Eds., Academic Press, Inc: New York, 1990, pp. 315–322. [Google Scholar]
  • 60. Yamagishi, H. , Funahashi, O. , Ogata, T. and Sakai, K. , Differentiation between brewing and non‐brewing yeasts using a combination of PCR and RFLP. J. Appl. Microbiol., 1999, 86, 505–513. [DOI] [PubMed] [Google Scholar]
  • 61. Young, T. W. , The Yeasts. Rose A. H. and Harrison K., Eds., Academic Press: London, 1987. [Google Scholar]
  • 62. Zott, K. , Miot‐Sertier, C. , Claisse, O. , Lonvaud‐Funel, A. and Masneuf‐Pomarede, I. I. , Dynamics and diversity of non‐Sacchar‐omyces yeasts during the early stages in winemaking. Int. J. Food Microbiol., 2008, 125, 197–203. [DOI] [PubMed] [Google Scholar]

Articles from Journal of the Institute of Brewing. Institute of Brewing (Great Britain) are provided here courtesy of Wiley

RESOURCES