Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Apr 21;76(Pt 5):720–723. doi: 10.1107/S2056989020005381

Crystal structure and Hirshfeld surface analysis of 6-benzoyl-3,5-di­phenyl­cyclo­hex-2-en-1-one

Farid N Naghiyev a, Mehmet Akkurt b, Rizvan K Askerov a, Ibrahim G Mamedov a, Rovnag M Rzayev c, Taras Chyrka d,*, Abel M Maharramov a
PMCID: PMC7199244  PMID: 32431939

The central cyclo­hexenone ring of the non-planar title compound adopts an envelope conformation. The crystal structure of the compound is stabilized by C—H⋯O and C—H⋯π inter­actions, forming a three-dimensional network.

Keywords: crystal structure, Michael addition products, cyclo­hexen-1-one ring, envelope conformation, Hirshfeld surface analysis

Abstract

In the title compound, C25H20O2, the central cyclo­hexenone ring adopts an envelope conformation. The mean plane of the cyclo­hexenone ring makes dihedral angles of 87.66 (11) and 23.76 (12)°, respectively, with the two attached phenyl rings, while it is inclined by 69.55 (11)° to the phenyl ring of the benzoyl group. In the crystal, the mol­ecules are linked by C—H⋯O and C—H⋯π inter­actions, forming a three-dimensional network.

Chemical context  

There have been a series of significant examples of enone derivatives used as target products as well as synthetic inter­mediates (Abdelhamid et al., 2011; Asgarova et al., 2019; Khalilov et al., 2018a ,b ; Thomas, 2007). Moreover, a number of useful compounds containing enone moieties have been found in nature, such as cyanthiwigin U, (+)-cepharamine, phorbol and grandisine G, which were the object of a total synthesis (Pfeiffer et al., 2005; Schultz & Wang, 1998; Kawamura et al., 2016; Cuthbertson & Taylor, 2013). As part of a further study on the chemistry of α,β-unsaturated ketones (Naghiyev et al., 2016), we report herein the crystal structure and Hirshfeld surface analysis of the title compound.graphic file with name e-76-00720-scheme1.jpg

Structural commentary  

In the title compound (Fig. 1), the central cyclo­hexenone ring adopts an envelope conformation with puckering parameters Q T = 0.470 (2) Å, θ = 125.3 (2)° and φ = 300.8 (3)°. The mean plane of the cyclo­hexenone ring [maximum deviation = 0.335 (2) Å] makes dihedral angles of 87.66 (11) and 23.76 (12)°, respectively, with the C14–C18 and C20–C25 phenyl rings, whereas it is inclined by 69.55 (11)° to the C8–C13 phenyl ring of the benzoyl group.

Figure 1.

Figure 1

The mol­ecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. H atoms are shown as spheres of arbitrary radius.

Supra­molecular features and Hirshfeld surface analysis  

In the crystal, the mol­ecules are linked by C—H⋯O and C—H⋯π inter­actions (C2—H2A⋯O2i, C15—H15A⋯O1i, C22—H22A⋯O1ii and C11—H11ACg3iii; symmetry codes as given in Table 1; Cg3 is the centroid of the C14–C19 ring), forming layers parallel to the ab plane. The layers are further connected by another C—H⋯π inter­action (C24—H24ACg2 iv; Table 1; Cg2 is the centroid of the C8–C13 ring), forming a three-dimensional network (Fig. 2).

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 and Cg3 are the centroids of the C8–C13 and C14–C19 phenyl rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O2i 0.98 2.50 3.251 (3) 133
C15—H15A⋯O1i 0.93 2.55 3.369 (3) 148
C22—H22A⋯O1ii 0.93 2.54 3.472 (3) 175
C11—H11ACg3iii 0.93 2.88 3.717 (2) 150
C24—H24ACg2iv 0.93 2.78 3.667 (3) 159

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Figure 2.

Figure 2

A packing view of the title compound, formed by C—H⋯O and C—H⋯π inter­actions (dashed lines). [Symmetry codes: (a) x − 1, y, z; (b) x + 1, y, z; (c) −x + Inline graphic, y − Inline graphic, −z + Inline graphic; (d) x − Inline graphic, −y + Inline graphic, z + Inline graphic; (e) x + Inline graphic, −y + Inline graphic, z − Inline graphic.]

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) was performed using CrystalExplorer 3.1 (Wolff et al., 2012). The surface of the title compound mapped over d norm is shown in Fig. 3. The dark-red spots on the d norm surface arise as a result of short inter­atomic contacts, while the other weaker inter­molecular inter­actions appear as light-red spots. The Hirshfeld surface mapped over electrostatic potential (Spackman et al., 2008; Jayatilaka et al., 2005) is shown in Fig. 4. The blue regions indicate positive electrostatic potential (hydrogen-bond donors), while the red regions indicate negative electrostatic potential (hydrogen-bond acceptors). The overall two-dimensional fingerprint plot (Spackman & McKinnon, 2002), and those delineated into H⋯H (48.8%), C⋯H/H⋯C (34.9%) and O⋯H/H⋯O (15%) contacts are illustrated in Fig. 5 ad, respectively. The most significant inter­molecular contribution is from the H⋯H contact (48.8%) (Fig. 5 b). The other minor contributions to the Hirshfeld surface are by C⋯C (0.9%), O⋯C/C⋯O (0.5%) and O⋯O (0.1%) contacts. The large number of H⋯H, C⋯H/H⋯C and O⋯H/H⋯O inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).

Figure 3.

Figure 3

The Hirshfeld surface of the title compound plotted over d norm using a standard surface resolution with a fixed colour scale of −0.1582 (red) to 1.4399 a.u. (blue).

Figure 4.

Figure 4

The Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range from −0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory. Hydrogen-bond donors and acceptors are shown as blue and red regions around the atoms, corresponding to positive and negative potentials, respectively.

Figure 5.

Figure 5

The two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) O⋯H/H⋯O inter­actions. The d i and d e values are the closest inter­nal and external distances (Å) from given points on the Hirshfeld surface.

Database survey  

Although a search of the Cambridge Structural Database (CSD, Version 5.41, November 2019; Groom et al., 2016) for 3,5-di­phenyl­cyclo­hex-2-en-1-one derivatives gave 44 hits, no compound having a skeleton of 6-acetyl-3,5-di­phenyl­cyclo­hex-2-en-1-one was found. As related compounds, nine derivatives of ethyl 2-oxo-4,6-di­phenyl­cyclo­hex-3-ene carboxyl­ate were reported.

Synthesis and crystallization  

To a solution of 1,3-diphenyl-2-propen-1-one (1.90 mmol) in benzene (15 ml), 1-phenyl­butane-1,3-dione (1.90 mmol) and 0.05 ml of dry piperidine were added in this order, and the mixture was stirred at room temperature for 24 h. After completion of the reaction (as monitored by TLC), the solvent was removed under reduced pressure, and the residue was washed with hot water. Then, the products were recrystallized from ethanol (yield 72%, m.p. 446 K). IR (KBr): 2926, 2966, 3006 and 3062 ν(CH), 1610, 1650 and 1676 ν (C=O) cm−1; 1H NMR (300.130 MHz, DMSO-d6): δ 3.12 (dd, 2H, CH2, 2 J H–H = 16.3 Hz, 3 J H–H = 8.2 Hz), 3.91 (t, 1H, CH, 3 J H–H = 12.4 Hz), 5.52 (d, 1H, CH, 3 J H–H = 12.4 Hz), 6.56 (s, 1H, CH=), 7.1–7.92 (m, 15Harom, 3Ar); 13C NMR (75.468 MHz, DMSO-d 6): δ 199.4, 197.5, 159.6, 142.7, 138.3, 137.8, 133.7, 130.9, 129.3, 129.1, 128.8, 128.0, 127.2, 126.9, 124.2, 58.2, 43.9, 36.4; MS (ESI): m/z: 353.15 [M + H]+.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were placed at calculated positions using a riding model, with C—H = 0.93–0.98 Å, and with U iso(H) = 1.2U eq(C). Owing to poor agreement between observed and calculated intensities, eighteen outliers (Inline graphic 2 5) , (3 2 2) , (Inline graphic 2 2) , (5 0 3) , (0 1 1) , (5 1 3) , (Inline graphic 0 4) , (Inline graphic 1 7) , (Inline graphic 2 3) , (Inline graphic 3 5) , (Inline graphic 11 2) , (2 4 3), (4 8 7) , (Inline graphic 0 7) , (Inline graphic 10 5) , (2 5 5) , (Inline graphic 2 15) and (0 1 2) were omitted in the final cycle of refinement.

Table 2. Experimental details.

Crystal data
Chemical formula C25H20O2
M r 352.41
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 10.2365 (4), 9.7989 (4), 19.3759 (8)
β (°) 103.333 (2)
V3) 1891.14 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.23 × 0.20 × 0.12
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2003)
T min, T max 0.660, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 23764, 4102, 2471
R int 0.073
(sin θ/λ)max−1) 0.639
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.059, 0.149, 1.01
No. of reflections 4102
No. of parameters 244
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.19, −0.19

Computer programs: APEX2 and SAINT (Bruker, 2003), SHELXT (Sheldrick, 2015a ) and SHELXL2018 (Sheldrick, 2015b ).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989020005381/is5536sup1.cif

e-76-00720-sup1.cif (950.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020005381/is5536Isup2.hkl

e-76-00720-Isup2.hkl (327KB, hkl)

CCDC reference: 1983451

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C25H20O2 F(000) = 744
Mr = 352.41 Dx = 1.238 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 10.2365 (4) Å Cell parameters from 3243 reflections
b = 9.7989 (4) Å θ = 2.5–25.0°
c = 19.3759 (8) Å µ = 0.08 mm1
β = 103.333 (2)° T = 296 K
V = 1891.14 (13) Å3 Prism, colourless
Z = 4 0.23 × 0.20 × 0.12 mm

Data collection

Bruker APEXII CCD diffractometer 2471 reflections with I > 2σ(I)
φ and ω scans Rint = 0.073
Absorption correction: multi-scan (SADABS; Bruker, 2003) θmax = 27.0°, θmin = 2.1°
Tmin = 0.660, Tmax = 0.746 h = −13→13
23764 measured reflections k = −12→12
4102 independent reflections l = −24→24

Refinement

Refinement on F2 Primary atom site location: difference Fourier map
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0717P)2 + 0.020P] where P = (Fo2 + 2Fc2)/3
4102 reflections (Δ/σ)max < 0.001
244 parameters Δρmax = 0.19 e Å3
0 restraints Δρmin = −0.19 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.84873 (15) 0.4571 (2) 0.84508 (9) 0.0662 (5)
O2 0.73311 (16) 0.59881 (16) 0.68577 (9) 0.0556 (4)
C1 0.7327 (2) 0.4250 (2) 0.81963 (11) 0.0432 (5)
C2 0.68555 (19) 0.3941 (2) 0.74035 (11) 0.0377 (5)
H2A 0.703396 0.297799 0.732533 0.045*
C3 0.53461 (19) 0.4203 (2) 0.71377 (10) 0.0380 (5)
H3A 0.519851 0.518223 0.718969 0.046*
C4 0.4572 (2) 0.3451 (3) 0.76099 (11) 0.0471 (6)
H4A 0.362962 0.369151 0.746260 0.056*
H4B 0.464862 0.247638 0.754221 0.056*
C5 0.5064 (2) 0.3775 (2) 0.83834 (10) 0.0388 (5)
C6 0.6339 (2) 0.4151 (2) 0.86315 (11) 0.0442 (5)
H6A 0.661662 0.436354 0.911083 0.053*
C7 0.7682 (2) 0.4818 (2) 0.70074 (11) 0.0401 (5)
C8 0.89014 (19) 0.4261 (2) 0.68142 (11) 0.0403 (5)
C9 0.9499 (2) 0.5025 (3) 0.63619 (12) 0.0532 (6)
H9A 0.912888 0.586024 0.619070 0.064*
C10 1.0629 (2) 0.4558 (3) 0.61664 (13) 0.0612 (7)
H10A 1.101409 0.507482 0.586302 0.073*
C11 1.1189 (2) 0.3329 (3) 0.64180 (13) 0.0580 (7)
H11A 1.194874 0.301126 0.628243 0.070*
C12 1.0623 (2) 0.2568 (3) 0.68717 (13) 0.0570 (6)
H12A 1.101121 0.174324 0.704782 0.068*
C13 0.9480 (2) 0.3026 (2) 0.70664 (12) 0.0486 (6)
H13A 0.909822 0.250122 0.736835 0.058*
C14 0.47921 (18) 0.3846 (2) 0.63661 (10) 0.0375 (5)
C15 0.4852 (2) 0.2530 (3) 0.61136 (12) 0.0515 (6)
H15A 0.529328 0.185343 0.641574 0.062*
C16 0.4257 (2) 0.2214 (3) 0.54103 (13) 0.0604 (7)
H16A 0.429682 0.132362 0.525007 0.073*
C17 0.3615 (2) 0.3190 (3) 0.49526 (13) 0.0620 (7)
H17A 0.322732 0.297407 0.448269 0.074*
C18 0.3552 (3) 0.4496 (3) 0.51981 (13) 0.0625 (7)
H18A 0.311330 0.516816 0.489171 0.075*
C19 0.4131 (2) 0.4825 (2) 0.58944 (12) 0.0491 (6)
H19A 0.407775 0.571668 0.604998 0.059*
C20 0.4106 (2) 0.3634 (2) 0.88513 (11) 0.0398 (5)
C21 0.2742 (2) 0.3877 (3) 0.86040 (13) 0.0550 (6)
H21A 0.241528 0.412364 0.813221 0.066*
C22 0.1862 (2) 0.3760 (3) 0.90421 (15) 0.0667 (8)
H22A 0.095277 0.393434 0.886588 0.080*
C23 0.2324 (3) 0.3389 (3) 0.97356 (15) 0.0662 (7)
H23A 0.173169 0.331066 1.003253 0.079*
C24 0.3663 (3) 0.3132 (3) 0.99904 (14) 0.0625 (7)
H24A 0.397718 0.287297 1.046135 0.075*
C25 0.4553 (2) 0.3253 (3) 0.95566 (12) 0.0516 (6)
H25A 0.545976 0.307812 0.973826 0.062*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0359 (9) 0.1016 (15) 0.0586 (10) −0.0170 (9) 0.0056 (8) −0.0036 (9)
O2 0.0606 (10) 0.0407 (10) 0.0728 (11) 0.0030 (8) 0.0305 (9) 0.0069 (8)
C1 0.0342 (11) 0.0494 (13) 0.0456 (13) −0.0024 (10) 0.0084 (9) 0.0009 (10)
C2 0.0310 (10) 0.0410 (12) 0.0426 (12) −0.0015 (9) 0.0115 (9) 0.0000 (9)
C3 0.0340 (10) 0.0434 (12) 0.0379 (11) 0.0018 (9) 0.0107 (9) −0.0001 (9)
C4 0.0342 (11) 0.0680 (16) 0.0398 (12) −0.0073 (10) 0.0101 (9) 0.0004 (11)
C5 0.0367 (11) 0.0434 (13) 0.0376 (12) 0.0024 (9) 0.0112 (9) 0.0001 (9)
C6 0.0398 (12) 0.0545 (14) 0.0378 (12) 0.0003 (10) 0.0074 (9) −0.0019 (10)
C7 0.0383 (11) 0.0404 (13) 0.0428 (12) −0.0034 (10) 0.0118 (9) −0.0003 (9)
C8 0.0354 (11) 0.0432 (12) 0.0434 (12) −0.0054 (9) 0.0111 (9) −0.0038 (10)
C9 0.0485 (13) 0.0566 (15) 0.0587 (15) −0.0081 (11) 0.0211 (11) 0.0045 (12)
C10 0.0459 (14) 0.0793 (19) 0.0643 (17) −0.0090 (13) 0.0248 (12) 0.0062 (14)
C11 0.0313 (11) 0.082 (2) 0.0644 (16) −0.0024 (12) 0.0176 (11) −0.0128 (14)
C12 0.0389 (12) 0.0618 (16) 0.0717 (16) 0.0052 (11) 0.0159 (12) 0.0005 (13)
C13 0.0407 (12) 0.0528 (15) 0.0557 (14) −0.0018 (10) 0.0183 (10) 0.0054 (11)
C14 0.0298 (10) 0.0491 (13) 0.0365 (11) −0.0019 (9) 0.0136 (8) −0.0015 (9)
C15 0.0490 (13) 0.0568 (15) 0.0501 (14) 0.0037 (11) 0.0141 (11) −0.0028 (12)
C16 0.0615 (16) 0.0654 (17) 0.0603 (16) −0.0112 (13) 0.0261 (13) −0.0215 (13)
C17 0.0562 (15) 0.092 (2) 0.0387 (13) −0.0195 (15) 0.0123 (11) −0.0051 (14)
C18 0.0600 (16) 0.0763 (19) 0.0468 (14) −0.0068 (13) 0.0035 (12) 0.0123 (13)
C19 0.0496 (13) 0.0522 (14) 0.0455 (13) −0.0026 (11) 0.0110 (10) 0.0046 (11)
C20 0.0369 (11) 0.0449 (12) 0.0393 (12) 0.0016 (9) 0.0122 (9) −0.0039 (9)
C21 0.0421 (12) 0.0775 (18) 0.0470 (14) 0.0041 (12) 0.0137 (11) −0.0002 (12)
C22 0.0405 (13) 0.099 (2) 0.0657 (18) 0.0000 (13) 0.0214 (12) −0.0073 (15)
C23 0.0624 (16) 0.083 (2) 0.0653 (18) 0.0023 (14) 0.0404 (14) −0.0014 (14)
C24 0.0645 (16) 0.0813 (19) 0.0476 (14) 0.0096 (14) 0.0254 (12) 0.0091 (13)
C25 0.0429 (12) 0.0707 (17) 0.0434 (13) 0.0104 (11) 0.0146 (10) 0.0034 (11)

Geometric parameters (Å, º)

O1—C1 1.218 (2) C12—C13 1.384 (3)
O2—C7 1.217 (2) C12—H12A 0.9300
C1—C6 1.461 (3) C13—H13A 0.9300
C1—C2 1.530 (3) C14—C15 1.385 (3)
C2—C7 1.530 (3) C14—C19 1.389 (3)
C2—C3 1.533 (3) C15—C16 1.393 (3)
C2—H2A 0.9800 C15—H15A 0.9300
C3—C14 1.513 (3) C16—C17 1.366 (4)
C3—C4 1.530 (3) C16—H16A 0.9300
C3—H3A 0.9800 C17—C18 1.371 (4)
C4—C5 1.501 (3) C17—H17A 0.9300
C4—H4A 0.9700 C18—C19 1.381 (3)
C4—H4B 0.9700 C18—H18A 0.9300
C5—C6 1.335 (3) C19—H19A 0.9300
C5—C20 1.487 (3) C20—C25 1.388 (3)
C6—H6A 0.9300 C20—C21 1.388 (3)
C7—C8 1.487 (3) C21—C22 1.378 (3)
C8—C13 1.387 (3) C21—H21A 0.9300
C8—C9 1.396 (3) C22—C23 1.367 (4)
C9—C10 1.376 (3) C22—H22A 0.9300
C9—H9A 0.9300 C23—C24 1.370 (3)
C10—C11 1.374 (4) C23—H23A 0.9300
C10—H10A 0.9300 C24—C25 1.379 (3)
C11—C12 1.378 (3) C24—H24A 0.9300
C11—H11A 0.9300 C25—H25A 0.9300
O1—C1—C6 121.6 (2) C11—C12—C13 120.3 (2)
O1—C1—C2 120.64 (19) C11—C12—H12A 119.8
C6—C1—C2 117.80 (17) C13—C12—H12A 119.8
C1—C2—C7 108.05 (16) C12—C13—C8 120.4 (2)
C1—C2—C3 111.34 (16) C12—C13—H13A 119.8
C7—C2—C3 111.64 (17) C8—C13—H13A 119.8
C1—C2—H2A 108.6 C15—C14—C19 117.7 (2)
C7—C2—H2A 108.6 C15—C14—C3 121.83 (19)
C3—C2—H2A 108.6 C19—C14—C3 120.35 (19)
C14—C3—C4 110.59 (16) C14—C15—C16 120.5 (2)
C14—C3—C2 114.35 (16) C14—C15—H15A 119.7
C4—C3—C2 109.83 (16) C16—C15—H15A 119.7
C14—C3—H3A 107.2 C17—C16—C15 121.0 (2)
C4—C3—H3A 107.2 C17—C16—H16A 119.5
C2—C3—H3A 107.2 C15—C16—H16A 119.5
C5—C4—C3 113.23 (17) C16—C17—C18 118.8 (2)
C5—C4—H4A 108.9 C16—C17—H17A 120.6
C3—C4—H4A 108.9 C18—C17—H17A 120.6
C5—C4—H4B 108.9 C17—C18—C19 120.8 (2)
C3—C4—H4B 108.9 C17—C18—H18A 119.6
H4A—C4—H4B 107.7 C19—C18—H18A 119.6
C6—C5—C20 122.24 (19) C18—C19—C14 121.1 (2)
C6—C5—C4 119.54 (18) C18—C19—H19A 119.5
C20—C5—C4 118.20 (17) C14—C19—H19A 119.5
C5—C6—C1 124.03 (19) C25—C20—C21 117.5 (2)
C5—C6—H6A 118.0 C25—C20—C5 120.77 (18)
C1—C6—H6A 118.0 C21—C20—C5 121.71 (19)
O2—C7—C8 120.30 (19) C22—C21—C20 121.5 (2)
O2—C7—C2 118.76 (18) C22—C21—H21A 119.3
C8—C7—C2 120.94 (19) C20—C21—H21A 119.3
C13—C8—C9 118.4 (2) C23—C22—C21 120.0 (2)
C13—C8—C7 123.14 (19) C23—C22—H22A 120.0
C9—C8—C7 118.4 (2) C21—C22—H22A 120.0
C10—C9—C8 120.8 (2) C22—C23—C24 119.6 (2)
C10—C9—H9A 119.6 C22—C23—H23A 120.2
C8—C9—H9A 119.6 C24—C23—H23A 120.2
C11—C10—C9 120.2 (2) C23—C24—C25 120.7 (2)
C11—C10—H10A 119.9 C23—C24—H24A 119.6
C9—C10—H10A 119.9 C25—C24—H24A 119.6
C10—C11—C12 119.9 (2) C24—C25—C20 120.6 (2)
C10—C11—H11A 120.1 C24—C25—H25A 119.7
C12—C11—H11A 120.1 C20—C25—H25A 119.7
O1—C1—C2—C7 −31.1 (3) C10—C11—C12—C13 1.0 (4)
C6—C1—C2—C7 148.64 (19) C11—C12—C13—C8 −0.8 (4)
O1—C1—C2—C3 −154.1 (2) C9—C8—C13—C12 0.0 (3)
C6—C1—C2—C3 25.7 (3) C7—C8—C13—C12 −179.4 (2)
C1—C2—C3—C14 −176.81 (17) C4—C3—C14—C15 −63.8 (2)
C7—C2—C3—C14 62.3 (2) C2—C3—C14—C15 60.8 (3)
C1—C2—C3—C4 −51.8 (2) C4—C3—C14—C19 112.4 (2)
C7—C2—C3—C4 −172.67 (17) C2—C3—C14—C19 −123.0 (2)
C14—C3—C4—C5 −179.34 (18) C19—C14—C15—C16 −0.4 (3)
C2—C3—C4—C5 53.5 (2) C3—C14—C15—C16 175.84 (19)
C3—C4—C5—C6 −27.3 (3) C14—C15—C16—C17 0.7 (3)
C3—C4—C5—C20 153.97 (19) C15—C16—C17—C18 −0.6 (4)
C20—C5—C6—C1 177.5 (2) C16—C17—C18—C19 0.3 (4)
C4—C5—C6—C1 −1.2 (3) C17—C18—C19—C14 −0.1 (4)
O1—C1—C6—C5 −178.4 (2) C15—C14—C19—C18 0.1 (3)
C2—C1—C6—C5 1.8 (3) C3—C14—C19—C18 −176.2 (2)
C1—C2—C7—O2 −83.9 (2) C6—C5—C20—C25 −30.6 (3)
C3—C2—C7—O2 38.9 (3) C4—C5—C20—C25 148.1 (2)
C1—C2—C7—C8 95.4 (2) C6—C5—C20—C21 149.3 (2)
C3—C2—C7—C8 −141.80 (19) C4—C5—C20—C21 −32.0 (3)
O2—C7—C8—C13 169.2 (2) C25—C20—C21—C22 0.7 (4)
C2—C7—C8—C13 −10.2 (3) C5—C20—C21—C22 −179.2 (2)
O2—C7—C8—C9 −10.3 (3) C20—C21—C22—C23 −0.5 (4)
C2—C7—C8—C9 170.39 (19) C21—C22—C23—C24 −0.1 (4)
C13—C8—C9—C10 0.5 (3) C22—C23—C24—C25 0.4 (4)
C7—C8—C9—C10 180.0 (2) C23—C24—C25—C20 −0.2 (4)
C8—C9—C10—C11 −0.3 (4) C21—C20—C25—C24 −0.4 (4)
C9—C10—C11—C12 −0.5 (4) C5—C20—C25—C24 179.6 (2)

Hydrogen-bond geometry (Å, º)

Cg2 and Cg3 are the centroids of the C8–C13 and C14–C19 phenyl rings, respectively.

D—H···A D—H H···A D···A D—H···A
C2—H2A···O2i 0.98 2.50 3.251 (3) 133
C15—H15A···O1i 0.93 2.55 3.369 (3) 148
C22—H22A···O1ii 0.93 2.54 3.472 (3) 175
C11—H11A···Cg3iii 0.93 2.88 3.717 (2) 150
C24—H24A···Cg2iv 0.93 2.78 3.667 (3) 159

Symmetry codes: (i) −x+3/2, y−1/2, −z+3/2; (ii) x−1, y, z; (iii) x+1, y, z; (iv) x−3/2, −y−1/2, z−1/2.

References

  1. Abdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o2830. [DOI] [PMC free article] [PubMed]
  2. Asgarova, A. R., Khalilov, A. N., Brito, I., Maharramov, A. M., Shikhaliyev, N. G., Cisterna, J., Cárdenas, A., Gurbanov, A. V., Zubkov, F. I. & Mahmudov, K. T. (2019). Acta Cryst. C75, 342–347. [DOI] [PubMed]
  3. Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cuthbertson, J. D. & Taylor, R. J. K. (2013). Angew. Chem. Int. Ed. 52, 1490–1493. [DOI] [PubMed]
  5. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  6. Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. [DOI] [PMC free article] [PubMed]
  7. Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: http://hirshfeldsurface.net/
  8. Kawamura, S., Chu, H., Felding, J. & Baran, P. S. (2016). Nature, 532, 90–93. [DOI] [PMC free article] [PubMed]
  9. Khalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Maharramov, A. M., Nagiyev, F. N. & Brito, I. (2018a). Z. Kristallogr. New Cryst. Struct. 233, 1019–1020.
  10. Khalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Nagiyev, F. N. & Brito, I. (2018b). Z. Kristallogr. New Cryst. Struct. 233, 947–948.
  11. Naghiyev, F. N., Gurbanov, A. V., Maharramov, A. M., Mamedov, I. G., Allahverdiyev, M. A. & Mahmudov, K. T. (2016). J. Iran. Chem. Soc. 13, 1–6.
  12. Pfeiffer, M. W. B. & Phillips, A. J. (2005). J. Am. Chem. Soc. 127, 5334–5335. [DOI] [PubMed]
  13. Schultz, A. G. & Wang, A. (1998). J. Am. Chem. Soc. 120, 8259–8260.
  14. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  15. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  16. Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.
  17. Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.
  18. Spackman, M. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  19. Thomas, A. W. (2007). Science of Synthesis, Vol. 31a, pp. 337–401. Stuttgart: Thieme.
  20. Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989020005381/is5536sup1.cif

e-76-00720-sup1.cif (950.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020005381/is5536Isup2.hkl

e-76-00720-Isup2.hkl (327KB, hkl)

CCDC reference: 1983451

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES