Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Apr 21;76(Pt 5):703–709. doi: 10.1107/S2056989020005034

Synthesis and crystal structures of tetra­meric [2-(4,4-dimethyl-2-oxazolin-2-yl)anilido]sodium and tris­[2-(4,4-dimethyl-2-oxazolin-2-yl)anilido]ytterbium(III)

Leah Gajecki a, Brendan Twamley b, David J Berg a,*
PMCID: PMC7199245  PMID: 32431936

The reaction of 2-(4′,4′-dimethyl-2′-oxazolin­yl)aniline (H2-L1) with Na[N(SiMe3)2] afforded colourless crystals of tetra­meric Na4(H-L1)4 (2). Reaction of either Na4(H-L1)4 (2) with YbCl3 or reaction of H2-L1 with Yb[N(SiMe3)2]3 afforded yellow crystals of the highly distorted octa­hedral complex Yb(H-L1)3 (3).

Keywords: crystal structure, synthesis, ytterbium, oxazoline, amide

Abstract

Reaction of 2-(4,4-dimethyl-2-oxazolin-2-yl)aniline (H2-L1) with one equivalent of Na[N(SiMe3)2] in toluene afforded pale-yellow crystals of tetra­meric poly[bis­[μ3-2-(4,4-dimethyl-2-oxazolin-2-yl)anilinido][μ2-2-(4,4-dimethyl-2-oxa­zolin-2-yl)aniline]tetra­sodium(I)], [Na4(C11H13N2O)4]n or [Na4(H-L1)4]n (2), in excellent yield. Subsequent reaction of [Na4(H-L1)4]n (2) with 1.33 equivalents of anhydrous YbCl3 in a 50:50 mixture of toluene–THF afforded yellow crystals of tris­[2-(4,4-dimethyl-2-oxazolin-2-yl)anilinido]ytterbium(III), [Yb(C11H13N2O)3] or Yb(H-L1)3 (3) in moderate yield. Direct reaction of three equivalents of 2-(4′,4′-dimethyl-2′-oxazolin­yl)aniline (H2-L1) with Yb[N(SiMe3)2]3 in toluene resulted in elimination of hexa­methyl­disilazane, HN(SiMe3)2, and produced Yb(H-L1)3 (3) in excellent yield. The structure of 2 consists of tetra­meric Na4(H-L1)4 subunits in which each Na+ cation is bound to two H-L1 bridging bidentate ligands and these subunits are connected into a polymeric chain by two of the four oxazoline O atoms bridging to Na+ cations in the adjacent tetra­mer. This results in two 4-coordinate and two 5-coordinate Na+ cations within each tetra­meric unit. The structure of 3 consists of a distorted octa­hedron where the bite angle of ligand L1 ranges between 74.72 (11) and 77.79 (11) degrees. The oxazoline (and anilide) N atoms occupy meridional sites such that for one ligand an anilide nitro­gen is trans to an oxazoline nitro­gen while for the other two oxazoline N atoms are trans to each other. This results in a significantly longer Yb—N(oxazoline) distance [2.468 (3) Å] for the bond trans to the anilide compared to those for the oxazoline N atoms trans to one another [2.376 (3), 2.390 (3) Å].

Chemical context  

The parent ligand 2-(4′,4′-dimethyl-2′-oxazolin­yl)aniline (H2-L1), easily prepared in high yield using established procedures (Gossage, 2009), has been used as a precursor to biologically active quinilones [see, for example, Hong et al. (2018)] and to make catalytically active transition-metal complexes (Saiyed et al., 2011; Resanović et al., 2011; Decken et al., 2005). There are many examples of transition metals containing N-substituted variants of L1, either as neutral ligands (HR-L1) or as deprotonated anilido anions (R-L1 ). However, the only example of a transition-metal structure containing the deprotonated and unsubstituted anilido parent ligand (H-L1 ) is an Ru carbonyl hydride dimer (Cabeza et al., 2006). No lanthanide complexes of this ligand have been reported, although there are several related lanthanide and yttrium complexes bearing oxazoline groups ortho to an anilido-like anionic centre. These complexes fall into two main ligand frameworks: di­phenyl­amido ligands bearing ortho-oxazoline functionality (Fig. 1 a: Bennett et al., 2013, 2014; Liu et al., 2013) or carbazolide-bis­(oxazolines) (Fig. 1 b: Zou et al., 2011, 2013). The crystal structure of the tetra­meric sodium salt of this ligand, [Na4(H-L1)4]n (2), and its 6-coordinate, monomeric ytterbium complex, Yb(H-L1)3 (3) are reported in this communication. The ytterbium complex 3 can be prepared by either the salt metathesis reaction between 2 and YbCl3 or by the acid–base (protonolysis) reaction of Yb[N(SiMe3)2]3 with three equivalents of H2-L1. The yields and purity of 3 are better for the protonolysis reaction (Fig. 2).graphic file with name e-76-00703-scheme1.jpg

Figure 1.

Figure 1

Related ligand types: (a) oxazoline-di­phenyl­amides and (b) carbazolide-bis­(oxazolines).

Figure 2.

Figure 2

Synthetic routes to [Na4(H-L1)4]n (2) and Yb(H-L1)3 (3) used in this work.

Structural commentary  

The structure of 2 consists of tetra­meric Na4(H-L1)4 subunits in which each Na+ cation is bound to two H-L1 bridging bidentate ligands (Fig. 3 a and 3b). The tetra­meric subunits are connected into polymeric chains by two of the four oxazoline oxygens (O9 and O37) bridging to Na+ cations (Na1 and Na3, respectively) in the adjacent tetra­mer (Fig. 4). This results in two 4-coordinate (Na2, Na4) and two 5-coordinate (Na1, Na3) Na+ cations within each tetra­meric unit. There are only four examples of an oxazoline ligand bonding through the oxygen atom and in all cases this involves an electropositive metal ion [Li: Pawilkowski et al. (2009) and Mukherjee et al. (2010); Na: Zou et al. (2013); Nd: Kanbur et al. (2018)]. Significant bond lengths and angles for 2 are collected in Table 1. The bridging Na—O(oxazoline) distances of 2.4003 (15) and 2.4099 (14) Å compare well the Na—O(oxazoline) distance of 2.432 (2) Å in NaCzx [Czx = 1,8-bis­(4′,4′-di­methyl­oxazolin-2′-yl)-3,6-di-tert-butyl­carbazole anion; Zou et al., 2013]. The Na—N distances from the anilide N center to the 4- and 5-coordinate Na ions are essentially the same [2.3411 (18)–2.3701 (18) versus 2.3360 (18)–2.3611 (17) Å, respectively]. In sharp contrast, the distance between the oxazoline N and the Na ions is much shorter for the 4-coordinate Na centres [non-O-bridging oxazoline: 2.3626 (17), 2.3396 (17); O-bridging oxazoline: 2.4407 (17), 2.4035 (17) Å] than for the 5-coordinate Na [non-O-bridging oxazoline: 2.5515 (16), 2.7348 (17); O-bridging oxazoline: 2.9532 (18), 3.0327 (18) Å]. It is clear that the oxazoline nitro­gen is much more weakly coordinating to the 5-coordinate Na cation. In fact, for the O-bridging oxazoline, this distance is so long that it is debatable whether there is a significant bonding inter­action. However, this result is consistent with localization of electron density on the bridging oxygen at the expense of the nitro­gen atom in the same oxazoline ring.

Figure 3.

Figure 3

Mol­ecular structure of polymeric [Na4(H-L1)4 n (2): (a) asymmetric unit, top view and (b) asymmetric unit, side view. Probability ellipsoids are at 50% and hydrogen atoms are omitted for clarity (except the aniline NH).

Figure 4.

Figure 4

Mol­ecular structure of polymeric [Na4(H-L1)4]n (2) showing the polymeric chain structure for three asymmetric units (top view). Probability ellipsoids are at 50% and hydrogen atoms are omitted for clarity (except the aniline NH).

Table 1. Selected geometric parameters (Å, °) for Na4(H-L1)4 .

Na1—O9i 2.4003 (15) Na3—O37ii 2.4099 (14)
Na1—N1 2.3465 (18) Na3—N15 2.3360 (18)
Na1—N12 2.9532 (18) Na3—N26 2.5515 (16)
Na1—N43 2.3432 (17) Na3—N29 2.3611 (17)
Na1—N54 2.7348 (17) Na3—N40 3.0327 (18)
Na2—N1 2.3619 (18) Na4—N29 2.3701 (18)
Na2—N12 2.3626 (17) Na4—N40 2.3396 (17)
Na2—N15 2.3411 (18) Na4—N43 2.3519 (18)
Na2—N26 2.4407 (17) Na4—N54 2.4035 (17)
       
O9i—Na1—N12 107.61 (5) O37ii—Na3—N26 107.75 (5)
O9i—Na1—N54 103.04 (5) O37ii—Na3—N40 104.03 (5)
N1—Na1—O9i 105.11 (6) N15—Na3—O37ii 141.85 (6)
N1—Na1—N12 65.92 (5) N15—Na3—N26 72.56 (5)
N1—Na1—N54 92.92 (6) N15—Na3—N29 108.71 (6)
N43—Na1—O9i 142.94 (6) N15—Na3—N40 85.90 (5)
N43—Na1—N1 111.31 (6) N26—Na3—N40 147.75 (5)
N43—Na1—N12 93.51 (6) N29—Na3—O37ii 108.68 (6)
N43—Na1—N54 69.08 (5) N29—Na3—N26 100.25 (6)
N54—Na1—N12 146.27 (5) N29—Na3—N40 63.74 (5)
N1—Na2—N12 76.60 (6) N29—Na4—N54 119.12 (6)
N1—Na2—N26 125.43 (6) N40—Na4—N29 76.15 (6)
N12—Na2—N26 135.48 (6) N40—Na4—N43 113.77 (6)
N15—Na2—N1 138.81 (6) N40—Na4—N54 121.58 (6)
N15—Na2—N12 116.21 (7) N43—Na4—N29 156.58 (6)
N15—Na2—N26 74.56 (6) N43—Na4—N54 75.06 (6)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

The structure of Yb(H-L1)3 (3) is a distorted octa­hedron where all three H-L1 ligands are distinct (Fig. 5). Significant geometric parameters for this compound are given in Table 2. The bite angles of the H-L1 ligand range from 74.72 (11)–77.79 (11)°, which sits between that of the di­phenyl­amido-oxazoline [see Fig. 1 a: range 69.97 (11)–80.1 (5)°, median 74.3°; Bennett et al. (2013, 2014); Liu et al. (2013)] and carbazolide-bis­(oxazoline) [see Fig. 1 b: range 77.99 (4)–81.18 (10)°, median 80.3°; Zou et al. (2011, 2013)] ligands. The oxazoline (and anilide) nitro­gens occupy meridional sites such that for one ligand an anilide nitro­gen is trans to an oxazoline nitro­gen while the other two oxazoline nitro­gens are trans to each other. This results in a significantly longer Yb—N(oxazoline) distance [2.468 (3) Å] for the bond trans to the anilide compared to those for the oxazolines trans to one another [2.376 (3), 2.390 (3) Å]. The Yb—N(anilide) distances [2.234 (3)–2.260 (3) Å] show less variation although the Yb—N(anilide) distance trans to the oxazoline N atom is slightly shorter than those trans to each other. Overall, this is consistent with a stronger trans influence for the anionic anilide nitro­gens as might be expected. The torsion angles representing twisting from coplanarity of the oxazoline and benzene units all fall between −9.3 (6) and +8.4 (6)° so the distortions from planarity of the H-L1 ligands in 3 are relatively small.

Figure 5.

Figure 5

Mol­ecular structure of Yb(H-L1)3 (3). Probability ellipsoids are at 50% and hydrogen atoms are omitted for clarity (except the aniline NH).

Table 2. Selected geometric parameters (Å, °) for Yb(H-L1)3 .

N1—Yb1 2.252 (3) N26—Yb1 2.376 (3)
N12—Yb1 2.468 (3) N29—Yb1 2.234 (3)
N15—Yb1 2.260 (3) N40—Yb1 2.390 (3)
       
N1—Yb1—N12 74.72 (11) N26—Yb1—N40 153.87 (10)
N1—Yb1—N15 167.59 (12) N29—Yb1—N1 89.28 (12)
N1—Yb1—N26 109.02 (11) N29—Yb1—N12 159.71 (11)
N1—Yb1—N40 86.61 (11) N29—Yb1—N15 102.04 (12)
N15—Yb1—N12 95.23 (11) N29—Yb1—N26 82.94 (11)
N15—Yb1—N26 77.79 (11) N29—Yb1—N40 76.28 (11)
N15—Yb1—N40 91.10 (11) N40—Yb1—N12 114.28 (10)
N26—Yb1—N12 90.47 (10)    
       
C2—C7—C8—N12 8.6 (7) C30—C35—C36—N40 −9.3 (6)
C16—C21—C22—N26 8.4 (6)    

Supra­molecular features  

The structure of 2 consists of polymeric chains of Na4(H-L1)4 subunits connected through bridging oxazoline oxygen atoms (Fig. 4). There are two different types of close contacts between adjacent polymer chains through the non-O-bridging oxazoline rings (Fig. 6, Table 3). One type involves the close approach of one H atom of two different oxazoline CH2 groups to a non-bridging O atom of an adjacent chain (H10A⋯O51iii, 2.64 Å; H52B⋯O51iv, 2.58 Å; see Table 3 for symmetry operators). A C—H⋯π type contact is also observed between one H of the other non-O-bridged oxazoline ring and a carbon of an aromatic ring on a parallel chain (H24B⋯C20v, 2.82 Å; see Table 3 for symmetry operator). Similarly, the structure of 3 shows two types of close contacts between mol­ecules. One type is between a methyl hydrogen on an oxazoline ring and an oxazoline O atom of an adjacent mol­ecule (H28A⋯O9ii, 2.55 Å; see Table 4 for symmetry operator). Structure 3 also shows a close C—H⋯π contacts between the H atom of a CH2 group in one oxazoline ring with the aromatic ring of an adjacent mol­ecule (H38A⋯C17i, 3.01 Å; H38A⋯C18i, 2.58 Å; see Table 4 for symmetry operator), resulting in a zigzag chain of Yb(H-L1)3 units in the solid state (Fig. 7).

Figure 6.

Figure 6

Close contacts between polymeric chains of Na4(H-L1)4 (2): inter­chain contacts consisting of C—H⋯O and C—H⋯π inter­actions are shown in teal; the chain direction is indicated by the arrow.

Table 3. Significant inter­molecular inter­actions (Å) in (2) and (3).

Compound D—H⋯A H⋯A DA D—H⋯A
Na4(H-L1)4 (2) C10—H10A⋯O51iii 2.64 3.413 (2) 135.3
  C52—H52B⋯O51iv 2.58 3.439 (2) 145.2
  C24—H24B⋯C20v 2.82 3.720 (3) 151.4
         
Yb(H-L1)3 (3) C28—H28A⋯O9ii 2.55 3.382 (5) 142.8
  C38—H38A⋯C17i 3.01 3.501 (6) 149.0
  C38—H38A⋯C18i 2.58 3.548 (6) 165.8

Symmetry codes: (i) −x + Inline graphic, y + Inline graphic, −z + Inline graphic; (ii) x, y − 1, z; (iii) x, y + 1, z; (iv) −x + 2, −y, −z + 1; (v) −x + 2, −y + 1, −z.

Table 4. Experimental details.

  Na4(H-L1)4 Yb(H-L1)3
Crystal data
Chemical formula [Na4(C11H13N2O)4] [Yb(C11H13N2O)3]
M r 848.89 740.74
Crystal system, space group Triclinic, P Inline graphic Monoclinic, P21/n
Temperature (K) 87 86
a, b, c (Å) 10.9545 (5), 11.8785 (5), 18.8415 (8) 10.9428 (5), 9.8253 (5), 28.6089 (14)
α, β, γ (°) 105.266 (1), 97.446 (1), 106.120 (1) 90, 94.722 (1), 90
V3) 2217.20 (17) 3065.5 (3)
Z 2 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.12 3.10
Crystal size (mm) 0.26 × 0.18 × 0.15 0.22 × 0.18 × 0.05
 
Data collection
Diffractometer SMART APEX CCD area detector SMART APEX CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2016) Multi-scan (SADABS; Bruker, 2016)
T min, T max 0.776, 0.983 0.219, 0.262
No. of measured, independent and observed [I > 2σ(I)] reflections 33551, 12487, 8858 39651, 7061, 5882
R int 0.054 0.059
(sin θ/λ)max−1) 0.704 0.651
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.066, 0.158, 1.05 0.032, 0.073, 1.07
No. of reflections 12487 7061
No. of parameters 565 394
No. of restraints 4 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.49, −0.31 0.83, −1.19

Computer programs: SMART and SAINT (Bruker, 2003), SHELXS (Sheldrick, 2008), SHELXL (Sheldrick, 2015) and OLEX2 (Dolomanov et al., 2009).

Figure 7.

Figure 7

Close contacts between mol­ecules of Yb(H-L1)3 (3) in the solid state: C—H⋯O and C—H⋯π inter­actions between adjacent mol­ecules are shown in teal.

Database survey  

There are 68 structure in the CSD (version 5.39, update of November, 2018; Groom et al., 2016) containing a substituted anilido-oxazoline ligand (R-L1 ) coordinated to a transition or main group metal. [COZFIH (Coeffard et al., 2009); DEJHIK (Cabeza et al., 2006); EDEBOG (Niwa & Nakada, 2012); EFICON (Bian et al., 2014); FONYAI (Mikami et al., 1999); GIWYES (Chen et al., 2014); GUTTOF (Inagaki et al., 2010); ISEWAG (Abbina et al., 2016); LUNGOS (Bauer et al., 2015a ); LUNHAF (Bauer et al., 2015a ); MALVUS, MALWAZ and MALWED (Kieltsch et al., 2010); MICTID, MICTOJ, MICTUP, MICVAX and MICVEB (Lu et al., 2013); MUQNAN and MUQNER (Wan et al., 2002); NANFEP, NANFIT, NANFOZ, NANFUF, NANGAM, NANGEQ, NANGIU and NANGOA (Peng & Chen, 2011); OCIHOX, OCIHUD and OCIJAL (Cabaleiro et al., 2001); PUDKUV, PUDLAC, PUDLEG and PUDLIK (Chen et al., 2009a ); QIFFES and QIFFIW (Abbina & Du, 2012); RAKTAA (McKeon et al., 2011); RAMFIW, RAMFOC, RAMFUI, RAMGAP and RAMGET (Chen & Chen, 2011); RAMKEY (Huang et al., 2017); ROGWAM (Nakada & Inoue, 2007); SELVIQ (Nixon & Ward, 2012); SUYQOS, SUYQUY, SUYRAF and SUYREJ (Castro et al., 2001); TIMLIL and TIMLOR (Chen et al., 2007); VOZZOB, VOZZUH and VUBBAX (Bauer et al., 2015b ); VUQZAK (O’Reilly et al., 2015); WUGQOF, WUGQUL, WUGRAS and WUGREW (Chen et al., 2009b ); XIGYEU (Wu et al., 2018); XOQVEG and XOQVIK (He et al., 2014); XOYVOW, XOYVUC, XOYWAJ, XOYWEN and XOYWIR (Castro et al., 2002)]. In contrast, there is only one structure of an unsubstituted anilido-oxazoline ligand (H-L1 ) coordinated to a transition metal (Cabeza et al., 2006) and there are no structures of this type with a lanthanide metal. There are 10 lanthanide complexes that have been structurally characterized with the related ligands shown in Fig. 1 a and 1b as discussed in the Chemical context.

Synthesis and crystallization  

General. All solvents were purchased from Sigma–Aldrich Chemicals and dried by distillation from sodium under nitro­gen. 2-(4′,4′-Dimethyl-2′-oxazolin­yl)aniline was prepared according to Gossage (2009) and purified by recrystallization from hot toluene. Yb[N(SiMe)3)2]3 was prepared by analogy to the procedure of Bradley et al. (1973) using NaN(SiMe3)2 and YbCl3 and was recrystallized from a hot mixture of hexane and toluene. NMR spectra were recorded on a Bruker AV III 300 MHz Spectrometer in sealable Teflon-valved tubes and were referenced to residual solvent resonances. The line widths at half maximum (ν1/2 in Hz) were measured for all paramagnetic resonances in 3 and are reported below. Elemental analyses were performed by Canadian Microanalytical Ltd.

Synthesis of [Na4(L1)4]n. One equivalent of Na[N(SiMe3)2] (0.183 g, 1.00 mmol) was dissolved in toluene (10 mL) and to this was added 1 equivalent of 2-(4′,4′-dimethyl-2′-oxazolin­yl)aniline (H2-L1, 0.190 g, 1.00 mmol) in 20 mL toluene under vigorous stirring. The colourless reaction mixture was stirred overnight, filtered through Celite on a sintered glass frit and the solvent removed under reduced pressure to leave a tacky white solid. Recrystallization of the product from a hot mixture of toluene and hexane afforded clear pale-yellow crystals of [Na4(L1)4]n (2). Yield: 0.178 g (84%). 1H NMR (THF-d 8, 300 MHz, 296 K): δ 7.568 (1H, d, 3-ar­ylH), 7.067 (1H, t, 5-ar­ylH), 6.635 (1H, d, 6-ar­ylH), 6.62 (1H, br s, NH, overlaps previous resonance), 6.459 (1H, t, 4-ar­ylH), 3.954 (2H, s, OCH2), 1.315 (6H, s, C(CH3)2); 13C{1H} (THF-d 8, 75 MHz, 296 K): δ 163.12 (C=N), 150.79 (ar­ylCNH), 132.31 (5-ar­ylCH), 130.04 (3-ar­ylCH), 115.90 (6-ar­ylCH), 115.15 (4-ar­ylCH), 109.27 (2-ar­ylC—C=N), 77.82 (OCH2), 68.58 [NC(CH3)2], 28.99 [NC(CH3)2].

Synthesis of Yb(H-L1)3 (3) Method A: A solution of [Na4(L1)4]n (2) (0.250 g, 0.295 mmol) in THF (10 mL) was added to a suspension of YbCl3 (0.062 g, 0.22 mmol) in THF (5 mL) under vigorous stirring. The suspension was stirred overnight at room temperature, filtered through Celite on a sintered glass frit and the filtrate was evaporated to dryness under reduced pressure. The yellow solid was recrystallized from a mixture of toluene and hexane at 243 K overnight. Yield: 0.102 g (63%). Method B: A solution of 2-(4′,4′-dimethyl-2′-oxazolin­yl)aniline (0.250 g, 1.31 mmol) in 25 mL toluene was prepared in the glovebox and added by Pasteur pipette to a vigorously stirred solution of Yb[N(SiMe)3)2]3 (0.287 g, 0.438 mmol) in 15 mL of toluene. The pale-yellow solution darkened to golden yellow on stirring overnight. The solution was filtered through Celite on a sintered glass frit and the filtrate was evaporated to dryness under reduced pressure. The orange–yellow solid was recrystallized from a mixture of toluene and hexane at 243 K yielding yellow crystals. Yield: 0.301 g (93%). 1H NMR (C6D6, 300 MHz, 296 K): δ 88.4 (6H, ν1/2 = 700 Hz), 49.4 (3H, overlaps next resonance), 47.9 (6H, ν1/2 = 350 Hz, overlaps previous resonance), 12.86 (2H, ν1/2 = 9 Hz), 11.70 (4H, ν1/2 = 12 Hz), 10.93 (4H, ν1/2 = 12 Hz), 10.00 (4H, ν1/2 = 25 Hz), 9.30 (4H, ν1/2 = 70 Hz), 1.26 (2H, t), 0.96 (2H, t), −2.77 (3H, ν1/2 = 100 Hz), −3.89 (2H, ν1/2 = 14 Hz), −5.38 (2H, ν1/2 = 20 Hz), −11.2 (6H, ν1/2 ∼150 Hz, overlaps next resonance), −11.4 (6H, ν1/2 ∼300 Hz, overlaps previous resonance), −16.0 (3H, ν1/2 = 140 Hz), −24.4 (3H, ν1/2 = 800 Hz), −77.2 (3H, ν1/2 = 600 Hz). Analysis calculated for C33H39N6O3Yb (%): C, 53.49; H, 5.31; N, 11.35. Found: C, 53.39; H, 5.22; N, 11.11.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 4. In Na4(H-L1)4 (2), the H atoms on N1, N15, N29 and N43 were located in a difference map and refined with distance restraints of 0.88 (1) Å. U iso(H) were freely refined. In Yb(H-L1)3 (3), the H atoms on N1, N15 were added geometrically and refined with distance restraints of 0.88 (1) Å, with U iso(H) = 1.2U eq(N). H29 was located in the difference map for geometrical considerations and refined with coordinates riding on N29 with U iso(H) = 1.2U eq(N). All the H atoms bonded to carbon were refined in geometrically calculated positions, with C—H= 0.95 (methine), 0.99 (methyl­ene), and 0.98 Å (meth­yl), and with U iso(H) = 1.2U eq(C) (methine and methyl­ene) or 1.5U eq(C) (meth­yl).

Supplementary Material

Crystal structure: contains datablock(s) Na4H-L142, YbH-L133, global. DOI: 10.1107/S2056989020005034/zl2777sup1.cif

e-76-00703-sup1.cif (2.1MB, cif)

Structure factors: contains datablock(s) Na4H-L142. DOI: 10.1107/S2056989020005034/zl2777Na4H-L142sup2.hkl

Supporting information file. DOI: 10.1107/S2056989020005034/zl2777Na4H-L142sup5.mol

Structure factors: contains datablock(s) YbH-L133. DOI: 10.1107/S2056989020005034/zl2777YbH-L133sup3.hkl

Supporting information file. DOI: 10.1107/S2056989020005034/zl2777YbH-L133sup6.mol

CCDC references: 1996037, 1996036

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors wish to acknowledge the assistance of Mrs Chris Greenwood in obtaining the NMR spectra and Karen Button for preliminary investigations of this ligand with lanthanide metals.

supplementary crystallographic information

Poly[bis[µ3-2-(4,4-dimethyl-2-oxazolin-2-yl)anilinido][µ2-2-(4,4-dimethyl-2-oxazolin-2-yl)aniline]tetrasodium(I)] (Na4H-L142) . Crystal data

[Na4(C11H13N2O)4] Z = 2
Mr = 848.89 F(000) = 896
Triclinic, P1 Dx = 1.272 Mg m3
a = 10.9545 (5) Å Mo Kα radiation, λ = 0.71073 Å
b = 11.8785 (5) Å Cell parameters from 9632 reflections
c = 18.8415 (8) Å θ = 2.2–29.9°
α = 105.266 (1)° µ = 0.12 mm1
β = 97.446 (1)° T = 87 K
γ = 106.120 (1)° Needle, pale yellow
V = 2217.20 (17) Å3 0.26 × 0.18 × 0.15 mm

Poly[bis[µ3-2-(4,4-dimethyl-2-oxazolin-2-yl)anilinido][µ2-2-(4,4-dimethyl-2-oxazolin-2-yl)aniline]tetrasodium(I)] (Na4H-L142) . Data collection

SMART APEX CCD area detector diffractometer 12487 independent reflections
Radiation source: sealed X-ray tube 8858 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.054
Detector resolution: 8.3 pixels mm-1 θmax = 30.1°, θmin = 1.9°
φ and ω scans h = −15→14
Absorption correction: multi-scan (SADABS; Bruker, 2016) k = −16→16
Tmin = 0.776, Tmax = 0.983 l = −26→26
33551 measured reflections

Poly[bis[µ3-2-(4,4-dimethyl-2-oxazolin-2-yl)anilinido][µ2-2-(4,4-dimethyl-2-oxazolin-2-yl)aniline]tetrasodium(I)] (Na4H-L142) . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066 Hydrogen site location: mixed
wR(F2) = 0.158 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0734P)2 + 0.1127P] where P = (Fo2 + 2Fc2)/3
12487 reflections (Δ/σ)max < 0.001
565 parameters Δρmax = 0.49 e Å3
4 restraints Δρmin = −0.31 e Å3

Poly[bis[µ3-2-(4,4-dimethyl-2-oxazolin-2-yl)anilinido][µ2-2-(4,4-dimethyl-2-oxazolin-2-yl)aniline]tetrasodium(I)] (Na4H-L142) . Special details

Experimental. The data collection nominally covered a full sphere of reciprocal space by a combination of 5 sets of ω scans each set at different φ and/or 2θ angles and each scan (10 s exposure) covering -0.300° degrees in ω. The crystal to detector distance was 5.0 cm.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Donor N-H hydrogen atoms located on the difference map and refined with restraints (DFIX).

Poly[bis[µ3-2-(4,4-dimethyl-2-oxazolin-2-yl)anilinido][µ2-2-(4,4-dimethyl-2-oxazolin-2-yl)aniline]tetrasodium(I)] (Na4H-L142) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Na1 0.95553 (8) 0.27949 (7) 0.39918 (4) 0.02273 (18)
Na2 1.00695 (7) 0.40238 (7) 0.25656 (4) 0.01977 (17)
Na3 1.01274 (8) 0.22441 (7) 0.09593 (4) 0.01954 (17)
Na4 0.96731 (7) 0.11951 (7) 0.24031 (4) 0.01974 (17)
O9 0.97838 (14) 0.66218 (12) 0.46616 (7) 0.0223 (3)
O23 1.05206 (13) 0.61390 (12) 0.11145 (8) 0.0240 (3)
O37 0.92170 (12) −0.17535 (11) 0.02263 (7) 0.0172 (3)
O51 0.93031 (13) −0.09390 (12) 0.40245 (7) 0.0190 (3)
N1 1.13690 (16) 0.38393 (14) 0.36039 (9) 0.0194 (3)
H1 1.1910 (17) 0.3417 (18) 0.3515 (12) 0.023 (6)*
N12 0.93307 (16) 0.49954 (15) 0.36081 (9) 0.0210 (3)
N15 0.84608 (16) 0.27468 (14) 0.14907 (9) 0.0188 (3)
H15 0.7835 (15) 0.2151 (14) 0.1541 (11) 0.016 (5)*
N26 1.08503 (15) 0.45903 (13) 0.15111 (8) 0.0154 (3)
N29 1.14745 (16) 0.17884 (14) 0.18512 (9) 0.0187 (3)
H29 1.2125 (16) 0.2441 (15) 0.2135 (11) 0.032 (6)*
N40 0.90467 (15) −0.02419 (14) 0.11936 (9) 0.0188 (3)
N43 0.79137 (16) 0.14194 (14) 0.29563 (9) 0.0177 (3)
H43 0.7403 (18) 0.1721 (19) 0.2724 (11) 0.025 (6)*
N54 0.99785 (15) 0.05812 (14) 0.35133 (8) 0.0157 (3)
C2 1.21029 (19) 0.49537 (17) 0.40943 (10) 0.0185 (4)
C3 1.3480 (2) 0.52674 (19) 0.43478 (11) 0.0240 (4)
H3 1.387659 0.465981 0.417427 0.029*
C4 1.4255 (2) 0.6402 (2) 0.48287 (12) 0.0294 (5)
H4 1.516605 0.656142 0.497231 0.035*
C5 1.3727 (2) 0.7324 (2) 0.51099 (11) 0.0307 (5)
H5 1.426790 0.811193 0.543908 0.037*
C6 1.2407 (2) 0.70662 (18) 0.48998 (11) 0.0244 (4)
H6 1.204232 0.768938 0.509515 0.029*
C7 1.1568 (2) 0.59127 (17) 0.44049 (10) 0.0192 (4)
C8 1.01968 (19) 0.57690 (16) 0.41890 (10) 0.0179 (4)
C10 0.8393 (2) 0.62951 (19) 0.43632 (11) 0.0235 (4)
H10A 0.816298 0.703301 0.433271 0.028*
H10B 0.787910 0.591249 0.468432 0.028*
C11 0.8141 (2) 0.53719 (18) 0.35752 (11) 0.0210 (4)
C13 0.6923 (2) 0.4263 (2) 0.34069 (13) 0.0300 (5)
H13A 0.682024 0.369426 0.290390 0.045*
H13B 0.616121 0.454057 0.342445 0.045*
H13C 0.700305 0.384032 0.378366 0.045*
C14 0.8081 (2) 0.59894 (19) 0.29623 (11) 0.0285 (5)
H14A 0.886600 0.670811 0.308121 0.043*
H14B 0.731041 0.625564 0.293703 0.043*
H14C 0.802784 0.540086 0.247512 0.043*
C16 0.78884 (18) 0.34087 (16) 0.11669 (10) 0.0159 (4)
C17 0.64991 (19) 0.30802 (17) 0.09628 (11) 0.0214 (4)
H17 0.598324 0.236507 0.105205 0.026*
C18 0.5880 (2) 0.37338 (19) 0.06493 (12) 0.0256 (4)
H18 0.495521 0.347610 0.053331 0.031*
C19 0.6594 (2) 0.4787 (2) 0.04951 (13) 0.0289 (5)
H19 0.616576 0.524673 0.027426 0.035*
C20 0.7927 (2) 0.51362 (19) 0.06716 (12) 0.0251 (4)
H20 0.841448 0.584382 0.056354 0.030*
C21 0.86026 (18) 0.44926 (17) 0.10054 (10) 0.0169 (4)
C22 1.00186 (19) 0.50168 (16) 0.12171 (10) 0.0165 (4)
C24 1.19172 (19) 0.64358 (18) 0.12865 (12) 0.0226 (4)
H24A 1.234644 0.730969 0.159843 0.027*
H24B 1.225242 0.628660 0.081893 0.027*
C25 1.21513 (18) 0.55680 (17) 0.17229 (11) 0.0191 (4)
C27 1.2462 (2) 0.6203 (2) 0.25726 (12) 0.0300 (5)
H27A 1.176504 0.652862 0.270847 0.045*
H27B 1.328909 0.688172 0.271962 0.045*
H27C 1.253007 0.560475 0.283555 0.045*
C28 1.3196 (2) 0.5025 (2) 0.14974 (13) 0.0284 (5)
H28A 1.325909 0.442906 0.176312 0.043*
H28B 1.403489 0.568677 0.163127 0.043*
H28C 1.297027 0.460680 0.095216 0.043*
C30 1.20008 (18) 0.09568 (17) 0.15045 (10) 0.0157 (4)
C31 1.33777 (19) 0.12026 (18) 0.16195 (11) 0.0215 (4)
H31 1.393351 0.198458 0.194834 0.026*
C32 1.3932 (2) 0.03672 (19) 0.12792 (12) 0.0253 (4)
H32 1.485371 0.058376 0.137784 0.030*
C33 1.3172 (2) −0.08002 (19) 0.07886 (12) 0.0254 (4)
H33 1.356161 −0.138164 0.055791 0.031*
C34 1.18429 (19) −0.10787 (18) 0.06512 (11) 0.0200 (4)
H34 1.131534 −0.186644 0.031580 0.024*
C35 1.12306 (18) −0.02447 (16) 0.09871 (10) 0.0153 (4)
C36 0.98178 (18) −0.06778 (16) 0.08327 (10) 0.0148 (4)
C38 0.78300 (18) −0.19763 (17) 0.01536 (10) 0.0176 (4)
H38A 0.736096 −0.285692 0.007473 0.021*
H38B 0.747054 −0.173973 −0.027352 0.021*
C39 0.77194 (18) −0.11577 (17) 0.09051 (11) 0.0192 (4)
C41 0.7463 (2) −0.1871 (2) 0.14685 (12) 0.0301 (5)
H41A 0.810457 −0.229695 0.150809 0.045*
H41B 0.658504 −0.247779 0.129470 0.045*
H41C 0.753363 −0.129417 0.196360 0.045*
C42 0.6701 (2) −0.0533 (2) 0.08068 (13) 0.0298 (5)
H42A 0.667093 −0.001814 0.130065 0.045*
H42B 0.584663 −0.116216 0.057219 0.045*
H42C 0.692872 −0.001556 0.048415 0.045*
C44 0.71576 (18) 0.05709 (16) 0.32088 (10) 0.0165 (4)
C45 0.57763 (19) 0.03168 (18) 0.31010 (11) 0.0233 (4)
H45 0.538590 0.074141 0.282748 0.028*
C46 0.4998 (2) −0.05047 (19) 0.33726 (13) 0.0285 (5)
H46 0.408827 −0.063596 0.328368 0.034*
C47 0.5513 (2) −0.11577 (19) 0.37792 (12) 0.0274 (5)
H47 0.496904 −0.171305 0.397908 0.033*
C48 0.68180 (19) −0.09766 (17) 0.38817 (11) 0.0210 (4)
H48 0.717283 −0.142442 0.415335 0.025*
C49 0.76637 (18) −0.01501 (16) 0.36004 (10) 0.0157 (4)
C50 0.90186 (18) −0.01006 (16) 0.37005 (9) 0.0149 (4)
C52 1.07034 (19) −0.06290 (19) 0.41603 (11) 0.0210 (4)
H52A 1.095885 −0.138279 0.404131 0.025*
H52B 1.111240 −0.012808 0.469199 0.025*
C53 1.10936 (18) 0.01097 (17) 0.36303 (10) 0.0172 (4)
C55 1.1135 (2) −0.07327 (18) 0.28694 (11) 0.0220 (4)
H55A 1.030049 −0.140126 0.266136 0.033*
H55B 1.183594 −0.108335 0.293956 0.033*
H55C 1.129591 −0.025254 0.252043 0.033*
C56 1.23701 (19) 0.11658 (18) 0.39697 (12) 0.0262 (5)
H56A 1.260152 0.157776 0.359531 0.039*
H56B 1.305850 0.084140 0.411950 0.039*
H56C 1.227343 0.175941 0.441303 0.039*

Poly[bis[µ3-2-(4,4-dimethyl-2-oxazolin-2-yl)anilinido][µ2-2-(4,4-dimethyl-2-oxazolin-2-yl)aniline]tetrasodium(I)] (Na4H-L142) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Na1 0.0299 (4) 0.0196 (4) 0.0135 (4) 0.0026 (3) 0.0046 (3) 0.0024 (3)
Na2 0.0246 (4) 0.0207 (4) 0.0128 (4) 0.0069 (3) 0.0036 (3) 0.0040 (3)
Na3 0.0284 (4) 0.0190 (4) 0.0132 (4) 0.0111 (3) 0.0049 (3) 0.0044 (3)
Na4 0.0248 (4) 0.0210 (4) 0.0134 (4) 0.0075 (3) 0.0063 (3) 0.0044 (3)
O9 0.0364 (8) 0.0185 (7) 0.0140 (6) 0.0137 (6) 0.0065 (6) 0.0028 (5)
O23 0.0216 (7) 0.0206 (7) 0.0333 (8) 0.0055 (6) 0.0045 (6) 0.0163 (6)
O37 0.0198 (7) 0.0163 (6) 0.0137 (6) 0.0057 (5) 0.0036 (5) 0.0019 (5)
O51 0.0212 (7) 0.0197 (6) 0.0201 (7) 0.0083 (6) 0.0038 (5) 0.0111 (5)
N1 0.0244 (9) 0.0151 (7) 0.0181 (8) 0.0072 (7) 0.0044 (7) 0.0037 (6)
N12 0.0238 (9) 0.0190 (8) 0.0191 (8) 0.0081 (7) 0.0062 (7) 0.0025 (6)
N15 0.0197 (8) 0.0137 (7) 0.0219 (8) 0.0022 (6) 0.0036 (7) 0.0076 (6)
N26 0.0159 (8) 0.0129 (7) 0.0157 (7) 0.0030 (6) 0.0023 (6) 0.0039 (6)
N29 0.0207 (8) 0.0160 (8) 0.0162 (8) 0.0050 (7) 0.0011 (6) 0.0022 (6)
N40 0.0178 (8) 0.0199 (8) 0.0160 (8) 0.0048 (7) 0.0033 (6) 0.0025 (6)
N43 0.0234 (9) 0.0169 (7) 0.0152 (8) 0.0108 (7) 0.0015 (6) 0.0057 (6)
N54 0.0153 (8) 0.0162 (7) 0.0158 (7) 0.0058 (6) 0.0023 (6) 0.0052 (6)
C2 0.0253 (10) 0.0165 (9) 0.0153 (9) 0.0040 (8) 0.0053 (8) 0.0100 (7)
C3 0.0244 (11) 0.0277 (10) 0.0219 (10) 0.0082 (9) 0.0048 (8) 0.0114 (8)
C4 0.0234 (11) 0.0357 (12) 0.0221 (10) −0.0005 (9) −0.0001 (9) 0.0108 (9)
C5 0.0346 (12) 0.0255 (11) 0.0178 (10) −0.0072 (9) 0.0033 (9) 0.0029 (8)
C6 0.0349 (12) 0.0184 (9) 0.0143 (9) 0.0016 (9) 0.0069 (8) 0.0029 (7)
C7 0.0281 (11) 0.0155 (8) 0.0115 (8) 0.0024 (8) 0.0045 (7) 0.0051 (7)
C8 0.0311 (11) 0.0117 (8) 0.0135 (8) 0.0076 (8) 0.0084 (8) 0.0057 (7)
C10 0.0350 (12) 0.0239 (10) 0.0184 (9) 0.0161 (9) 0.0109 (9) 0.0085 (8)
C11 0.0279 (11) 0.0195 (9) 0.0200 (9) 0.0124 (8) 0.0084 (8) 0.0071 (8)
C13 0.0275 (12) 0.0257 (11) 0.0405 (13) 0.0120 (9) 0.0083 (10) 0.0125 (10)
C14 0.0452 (14) 0.0234 (10) 0.0173 (10) 0.0123 (10) 0.0067 (9) 0.0057 (8)
C16 0.0197 (9) 0.0127 (8) 0.0124 (8) 0.0050 (7) 0.0026 (7) 0.0000 (7)
C17 0.0194 (10) 0.0155 (9) 0.0254 (10) 0.0028 (8) 0.0047 (8) 0.0032 (8)
C18 0.0170 (10) 0.0257 (10) 0.0317 (11) 0.0089 (8) 0.0022 (8) 0.0046 (9)
C19 0.0252 (11) 0.0305 (11) 0.0373 (12) 0.0143 (9) 0.0038 (9) 0.0168 (10)
C20 0.0267 (11) 0.0251 (10) 0.0291 (11) 0.0108 (9) 0.0064 (9) 0.0150 (9)
C21 0.0203 (10) 0.0164 (8) 0.0135 (8) 0.0063 (7) 0.0034 (7) 0.0037 (7)
C22 0.0227 (10) 0.0123 (8) 0.0142 (8) 0.0036 (7) 0.0062 (7) 0.0048 (7)
C24 0.0217 (10) 0.0189 (9) 0.0267 (10) 0.0031 (8) 0.0046 (8) 0.0104 (8)
C25 0.0184 (9) 0.0153 (9) 0.0198 (9) 0.0011 (7) 0.0004 (7) 0.0059 (7)
C27 0.0312 (12) 0.0237 (10) 0.0235 (11) −0.0032 (9) −0.0030 (9) 0.0058 (9)
C28 0.0193 (10) 0.0258 (10) 0.0429 (13) 0.0077 (9) 0.0075 (9) 0.0147 (10)
C30 0.0188 (9) 0.0173 (8) 0.0132 (8) 0.0051 (7) 0.0029 (7) 0.0095 (7)
C31 0.0181 (10) 0.0207 (9) 0.0227 (10) 0.0023 (8) 0.0009 (8) 0.0080 (8)
C32 0.0165 (10) 0.0299 (11) 0.0329 (11) 0.0081 (8) 0.0057 (8) 0.0145 (9)
C33 0.0244 (11) 0.0261 (10) 0.0318 (11) 0.0137 (9) 0.0102 (9) 0.0111 (9)
C34 0.0228 (10) 0.0194 (9) 0.0183 (9) 0.0077 (8) 0.0044 (8) 0.0059 (7)
C35 0.0172 (9) 0.0178 (9) 0.0131 (8) 0.0065 (7) 0.0036 (7) 0.0074 (7)
C36 0.0214 (9) 0.0135 (8) 0.0105 (8) 0.0063 (7) 0.0023 (7) 0.0054 (7)
C38 0.0168 (9) 0.0178 (9) 0.0156 (9) 0.0035 (7) 0.0009 (7) 0.0045 (7)
C39 0.0177 (9) 0.0172 (9) 0.0185 (9) 0.0032 (7) 0.0046 (7) 0.0015 (7)
C41 0.0381 (13) 0.0269 (11) 0.0210 (10) 0.0044 (10) 0.0120 (9) 0.0045 (9)
C42 0.0164 (10) 0.0243 (10) 0.0412 (13) 0.0054 (8) 0.0034 (9) 0.0007 (9)
C44 0.0197 (9) 0.0156 (8) 0.0106 (8) 0.0066 (7) 0.0021 (7) −0.0018 (7)
C45 0.0201 (10) 0.0223 (10) 0.0234 (10) 0.0098 (8) −0.0018 (8) 0.0007 (8)
C46 0.0149 (10) 0.0254 (10) 0.0363 (12) 0.0032 (8) 0.0040 (9) −0.0007 (9)
C47 0.0217 (11) 0.0253 (10) 0.0290 (11) −0.0001 (9) 0.0083 (9) 0.0055 (9)
C48 0.0233 (10) 0.0183 (9) 0.0179 (9) 0.0031 (8) 0.0033 (8) 0.0045 (7)
C49 0.0180 (9) 0.0152 (8) 0.0107 (8) 0.0040 (7) 0.0021 (7) 0.0009 (7)
C50 0.0200 (9) 0.0132 (8) 0.0100 (8) 0.0055 (7) 0.0005 (7) 0.0025 (6)
C52 0.0203 (10) 0.0259 (10) 0.0191 (9) 0.0110 (8) 0.0017 (8) 0.0083 (8)
C53 0.0179 (9) 0.0161 (8) 0.0178 (9) 0.0077 (7) 0.0019 (7) 0.0041 (7)
C55 0.0232 (10) 0.0239 (10) 0.0214 (10) 0.0116 (8) 0.0062 (8) 0.0066 (8)
C56 0.0169 (10) 0.0215 (10) 0.0355 (12) 0.0059 (8) 0.0026 (9) 0.0031 (9)

Poly[bis[µ3-2-(4,4-dimethyl-2-oxazolin-2-yl)anilinido][µ2-2-(4,4-dimethyl-2-oxazolin-2-yl)aniline]tetrasodium(I)] (Na4H-L142) . Geometric parameters (Å, º)

Na1—O9i 2.4003 (15) C16—C17 1.434 (3)
Na1—N1 2.3465 (18) C16—C21 1.439 (3)
Na1—N12 2.9532 (18) C17—H17 0.9500
Na1—N43 2.3432 (17) C17—C18 1.357 (3)
Na1—N54 2.7348 (17) C18—H18 0.9500
Na2—N1 2.3619 (18) C18—C19 1.403 (3)
Na2—N12 2.3626 (17) C19—H19 0.9500
Na2—N15 2.3411 (18) C19—C20 1.370 (3)
Na2—N26 2.4407 (17) C20—H20 0.9500
Na3—O37ii 2.4099 (14) C20—C21 1.405 (3)
Na3—N15 2.3360 (18) C21—C22 1.458 (3)
Na3—N26 2.5515 (16) C24—H24A 0.9900
Na3—N29 2.3611 (17) C24—H24B 0.9900
Na3—N40 3.0327 (18) C24—C25 1.531 (3)
Na4—N29 2.3701 (18) C25—C27 1.526 (3)
Na4—N40 2.3396 (17) C25—C28 1.516 (3)
Na4—N43 2.3519 (18) C27—H27A 0.9800
Na4—N54 2.4035 (17) C27—H27B 0.9800
O9—C8 1.381 (2) C27—H27C 0.9800
O9—C10 1.457 (3) C28—H28A 0.9800
O23—C22 1.369 (2) C28—H28B 0.9800
O23—C24 1.443 (2) C28—H28C 0.9800
O37—C36 1.393 (2) C30—C31 1.430 (3)
O37—C38 1.450 (2) C30—C35 1.444 (2)
O51—C50 1.380 (2) C31—H31 0.9500
O51—C52 1.445 (2) C31—C32 1.366 (3)
N1—H1 0.882 (9) C32—H32 0.9500
N1—C2 1.351 (2) C32—C33 1.398 (3)
N12—C8 1.288 (2) C33—H33 0.9500
N12—C11 1.490 (3) C33—C34 1.373 (3)
N15—H15 0.873 (9) C34—H34 0.9500
N15—C16 1.346 (2) C34—C35 1.407 (3)
N26—C22 1.291 (2) C35—C36 1.452 (3)
N26—C25 1.493 (2) C38—H38A 0.9900
N29—H29 0.878 (10) C38—H38B 0.9900
N29—C30 1.345 (2) C38—C39 1.533 (3)
N40—C36 1.285 (2) C39—C41 1.530 (3)
N40—C39 1.483 (2) C39—C42 1.519 (3)
N43—H43 0.873 (9) C41—H41A 0.9800
N43—C44 1.349 (2) C41—H41C 0.9800
N54—C50 1.288 (2) C42—H42A 0.9800
N54—C53 1.493 (2) C42—H42B 0.9800
C2—C3 1.432 (3) C42—H42C 0.9800
C2—C7 1.446 (3) C44—C45 1.434 (3)
C3—H3 0.9500 C44—C49 1.441 (3)
C3—C4 1.371 (3) C45—H45 0.9500
C4—H4 0.9500 C45—C46 1.362 (3)
C4—C5 1.393 (3) C46—H46 0.9500
C5—H5 0.9500 C46—C47 1.397 (3)
C5—C6 1.372 (3) C47—H47 0.9500
C6—H6 0.9500 C47—C48 1.365 (3)
C6—C7 1.413 (3) C48—H48 0.9500
C7—C8 1.454 (3) C48—C49 1.414 (3)
C10—H10A 0.9900 C49—C50 1.454 (3)
C10—H10B 0.9900 C52—H52A 0.9900
C10—C11 1.533 (3) C52—H52B 0.9900
C11—C13 1.519 (3) C52—C53 1.521 (3)
C11—C14 1.526 (3) C53—C55 1.532 (3)
C13—H13A 0.9800 C53—C56 1.520 (3)
C13—H13B 0.9800 C55—H55B 0.9800
C13—H13C 0.9800 C55—H55C 0.9800
C14—H14A 0.9800 C56—H56A 0.9800
C14—H14B 0.9800 C56—H56B 0.9800
C14—H14C 0.9800
O9i—Na1—N12 107.61 (5) N15—C16—C21 123.45 (17)
O9i—Na1—N54 103.04 (5) C17—C16—C21 114.92 (17)
N1—Na1—O9i 105.11 (6) C16—C17—H17 118.2
N1—Na1—N12 65.92 (5) C18—C17—C16 123.67 (18)
N1—Na1—N54 92.92 (6) C18—C17—H17 118.2
N43—Na1—O9i 142.94 (6) C17—C18—H18 119.7
N43—Na1—N1 111.31 (6) C17—C18—C19 120.53 (19)
N43—Na1—N12 93.51 (6) C19—C18—H18 119.7
N43—Na1—N54 69.08 (5) C18—C19—H19 120.9
N54—Na1—N12 146.27 (5) C20—C19—C18 118.25 (19)
N1—Na2—N12 76.60 (6) C20—C19—H19 120.9
N1—Na2—N26 125.43 (6) C19—C20—H20 118.6
N12—Na2—N26 135.48 (6) C19—C20—C21 122.87 (19)
N15—Na2—N1 138.81 (6) C21—C20—H20 118.6
N15—Na2—N12 116.21 (7) C16—C21—C22 122.91 (16)
N15—Na2—N26 74.56 (6) C20—C21—C16 119.76 (18)
O37ii—Na3—N26 107.75 (5) C20—C21—C22 117.22 (17)
O37ii—Na3—N40 104.03 (5) O23—C22—C21 114.87 (16)
N15—Na3—O37ii 141.85 (6) N26—C22—O23 116.13 (16)
N15—Na3—N26 72.56 (5) N26—C22—C21 128.95 (16)
N15—Na3—N29 108.71 (6) O23—C24—H24A 110.9
N15—Na3—N40 85.90 (5) O23—C24—H24B 110.9
N26—Na3—N40 147.75 (5) O23—C24—C25 104.31 (15)
N29—Na3—O37ii 108.68 (6) H24A—C24—H24B 108.9
N29—Na3—N26 100.25 (6) C25—C24—H24A 110.9
N29—Na3—N40 63.74 (5) C25—C24—H24B 110.9
N29—Na4—N54 119.12 (6) N26—C25—C24 102.30 (14)
N40—Na4—N29 76.15 (6) N26—C25—C27 108.12 (16)
N40—Na4—N43 113.77 (6) N26—C25—C28 111.12 (15)
N40—Na4—N54 121.58 (6) C27—C25—C24 111.40 (16)
N43—Na4—N29 156.58 (6) C28—C25—C24 112.81 (16)
N43—Na4—N54 75.06 (6) C28—C25—C27 110.72 (17)
C8—O9—Na1i 121.72 (11) C25—C27—H27A 109.5
C8—O9—C10 106.14 (14) C25—C27—H27B 109.5
C10—O9—Na1i 115.61 (11) C25—C27—H27C 109.5
C22—O23—C24 106.11 (14) H27A—C27—H27B 109.5
C36—O37—Na3ii 125.75 (11) H27A—C27—H27C 109.5
C36—O37—C38 105.65 (13) H27B—C27—H27C 109.5
C38—O37—Na3ii 114.12 (10) C25—C28—H28A 109.5
C50—O51—C52 105.58 (14) C25—C28—H28B 109.5
Na1—N1—Na2 93.03 (7) C25—C28—H28C 109.5
Na1—N1—H1 113.0 (14) H28A—C28—H28B 109.5
Na2—N1—H1 118.3 (14) H28A—C28—H28C 109.5
C2—N1—Na1 115.17 (12) H28B—C28—H28C 109.5
C2—N1—Na2 111.80 (12) N29—C30—C31 122.19 (17)
C2—N1—H1 105.6 (14) N29—C30—C35 123.07 (17)
Na2—N12—Na1 79.12 (5) C31—C30—C35 114.74 (17)
C8—N12—Na1 94.47 (11) C30—C31—H31 118.4
C8—N12—Na2 117.61 (13) C32—C31—C30 123.14 (18)
C8—N12—C11 108.22 (15) C32—C31—H31 118.4
C11—N12—Na1 124.85 (12) C31—C32—H32 119.3
C11—N12—Na2 126.23 (12) C31—C32—C33 121.42 (19)
Na2—N15—H15 117.9 (13) C33—C32—H32 119.3
Na3—N15—Na2 87.12 (6) C32—C33—H33 121.1
Na3—N15—H15 118.1 (13) C34—C33—C32 117.83 (19)
C16—N15—Na2 111.22 (11) C34—C33—H33 121.1
C16—N15—Na3 115.06 (12) C33—C34—H34 118.7
C16—N15—H15 106.7 (14) C33—C34—C35 122.67 (18)
Na2—N26—Na3 80.39 (5) C35—C34—H34 118.7
C22—N26—Na2 106.64 (12) C30—C35—C36 122.34 (16)
C22—N26—Na3 110.53 (11) C34—C35—C30 120.20 (17)
C22—N26—C25 107.27 (15) C34—C35—C36 117.32 (16)
C25—N26—Na2 114.75 (11) O37—C36—C35 115.12 (15)
C25—N26—Na3 132.60 (12) N40—C36—O37 115.49 (16)
Na3—N29—Na4 88.98 (6) N40—C36—C35 129.31 (16)
Na3—N29—H29 112.6 (15) O37—C38—H38A 110.9
Na4—N29—H29 115.7 (15) O37—C38—H38B 110.9
C30—N29—Na3 110.70 (12) O37—C38—C39 104.18 (14)
C30—N29—Na4 121.06 (12) H38A—C38—H38B 108.9
C30—N29—H29 106.8 (16) C39—C38—H38A 110.9
Na4—N40—Na3 74.97 (5) C39—C38—H38B 110.9
C36—N40—Na3 91.91 (11) N40—C39—C38 102.51 (14)
C36—N40—Na4 125.10 (13) N40—C39—C41 107.69 (16)
C36—N40—C39 107.94 (15) N40—C39—C42 111.29 (16)
C39—N40—Na3 129.29 (11) C41—C39—C38 111.86 (16)
C39—N40—Na4 121.69 (11) C42—C39—C38 112.55 (17)
Na1—N43—Na4 83.79 (6) C42—C39—C41 110.59 (17)
Na1—N43—H43 117.7 (15) C39—C41—H41A 109.5
Na4—N43—H43 114.4 (15) C39—C41—H41B 109.5
C44—N43—Na1 106.88 (11) C39—C41—H41C 109.5
C44—N43—Na4 125.00 (12) H41A—C41—H41B 109.5
C44—N43—H43 107.5 (15) H41A—C41—H41C 109.5
Na4—N54—Na1 74.89 (5) H41B—C41—H41C 109.5
C50—N54—Na1 99.29 (11) C39—C42—H42A 109.5
C50—N54—Na4 121.60 (12) C39—C42—H42B 109.5
C50—N54—C53 107.20 (15) C39—C42—H42C 109.5
C53—N54—Na1 136.32 (11) H42A—C42—H42B 109.5
C53—N54—Na4 116.25 (11) H42A—C42—H42C 109.5
N1—C2—C3 121.90 (18) H42B—C42—H42C 109.5
N1—C2—C7 123.10 (18) N43—C44—C45 121.95 (17)
C3—C2—C7 115.00 (17) N43—C44—C49 123.11 (17)
C2—C3—H3 118.4 C45—C44—C49 114.95 (17)
C4—C3—C2 123.2 (2) C44—C45—H45 118.5
C4—C3—H3 118.4 C46—C45—C44 123.07 (19)
C3—C4—H4 119.5 C46—C45—H45 118.5
C3—C4—C5 121.0 (2) C45—C46—H46 119.4
C5—C4—H4 119.5 C45—C46—C47 121.23 (19)
C4—C5—H5 120.8 C47—C46—H46 119.4
C6—C5—C4 118.36 (19) C46—C47—H47 120.9
C6—C5—H5 120.8 C48—C47—C46 118.22 (19)
C5—C6—H6 118.6 C48—C47—H47 120.9
C5—C6—C7 122.8 (2) C47—C48—H48 118.6
C7—C6—H6 118.6 C47—C48—C49 122.72 (19)
C2—C7—C8 122.39 (16) C49—C48—H48 118.6
C6—C7—C2 119.62 (19) C44—C49—C50 122.67 (16)
C6—C7—C8 117.86 (18) C48—C49—C44 119.72 (17)
O9—C8—C7 114.85 (16) C48—C49—C50 117.57 (17)
N12—C8—O9 115.72 (17) O51—C50—C49 114.72 (15)
N12—C8—C7 129.38 (17) N54—C50—O51 115.49 (16)
O9—C10—H10A 110.8 N54—C50—C49 129.76 (17)
O9—C10—H10B 110.8 O51—C52—H52A 111.0
O9—C10—C11 104.51 (15) O51—C52—H52B 111.0
H10A—C10—H10B 108.9 O51—C52—C53 103.90 (14)
C11—C10—H10A 110.9 H52A—C52—H52B 109.0
C11—C10—H10B 110.8 C53—C52—H52A 111.0
N12—C11—C10 102.57 (16) C53—C52—H52B 111.0
N12—C11—C13 110.96 (16) N54—C53—C52 102.01 (14)
N12—C11—C14 108.21 (16) N54—C53—C55 108.32 (15)
C13—C11—C10 112.78 (17) N54—C53—C56 111.15 (15)
C13—C11—C14 110.34 (18) C52—C53—C55 110.98 (16)
C14—C11—C10 111.67 (16) C56—C53—C52 112.86 (16)
C11—C13—H13A 109.5 C56—C53—C55 111.09 (16)
C11—C13—H13B 109.5 C53—C55—H55A 109.5
C11—C13—H13C 109.5 C53—C55—H55B 109.5
H13A—C13—H13B 109.5 C53—C55—H55C 109.5
H13A—C13—H13C 109.5 H55A—C55—H55B 109.5
H13B—C13—H13C 109.5 H55A—C55—H55C 109.5
C11—C14—H14A 109.5 H55B—C55—H55C 109.5
C11—C14—H14B 109.5 C53—C56—H56A 109.5
C11—C14—H14C 109.5 C53—C56—H56B 109.5
H14A—C14—H14B 109.5 C53—C56—H56C 109.5
H14A—C14—H14C 109.5 H56A—C56—H56B 109.5
H14B—C14—H14C 109.5 H56A—C56—H56C 109.5
N15—C16—C17 121.62 (17) H56B—C56—H56C 109.5
Na1i—O9—C8—N12 139.42 (14) N43—C44—C45—C46 −177.71 (18)
Na1i—O9—C8—C7 −43.15 (19) N43—C44—C49—C48 176.76 (16)
Na1i—O9—C10—C11 −151.40 (11) N43—C44—C49—C50 −5.4 (3)
Na1—N1—C2—C3 127.34 (16) C2—C3—C4—C5 0.9 (3)
Na1—N1—C2—C7 −52.4 (2) C2—C7—C8—O9 164.80 (16)
Na1—N12—C8—O9 −121.99 (13) C2—C7—C8—N12 −18.2 (3)
Na1—N12—C8—C7 61.0 (2) C3—C2—C7—C6 2.0 (2)
Na1—N12—C11—C10 94.69 (15) C3—C2—C7—C8 177.76 (16)
Na1—N12—C11—C13 −26.0 (2) C3—C4—C5—C6 0.6 (3)
Na1—N12—C11—C14 −147.17 (13) C4—C5—C6—C7 −0.7 (3)
Na1—N43—C44—C45 125.50 (15) C5—C6—C7—C2 −0.6 (3)
Na1—N43—C44—C49 −54.82 (19) C5—C6—C7—C8 −176.61 (18)
Na1—N54—C50—O51 −137.84 (12) C6—C7—C8—O9 −19.3 (2)
Na1—N54—C50—C49 44.4 (2) C6—C7—C8—N12 157.67 (19)
Na1—N54—C53—C52 105.62 (16) C7—C2—C3—C4 −2.1 (3)
Na1—N54—C53—C55 −137.24 (14) C8—O9—C10—C11 −13.18 (18)
Na1—N54—C53—C56 −14.9 (2) C8—N12—C11—C10 −14.5 (2)
Na2—N1—C2—C3 −128.14 (16) C8—N12—C11—C13 −135.21 (18)
Na2—N1—C2—C7 52.2 (2) C8—N12—C11—C14 103.60 (18)
Na2—N12—C8—O9 157.96 (12) C10—O9—C8—N12 4.4 (2)
Na2—N12—C8—C7 −19.0 (3) C10—O9—C8—C7 −178.22 (15)
Na2—N12—C11—C10 −162.31 (12) C11—N12—C8—O9 7.0 (2)
Na2—N12—C11—C13 77.02 (19) C11—N12—C8—C7 −169.98 (18)
Na2—N12—C11—C14 −44.2 (2) C16—C17—C18—C19 0.9 (3)
Na2—N15—C16—C17 −130.62 (15) C16—C21—C22—O23 −171.28 (16)
Na2—N15—C16—C21 48.8 (2) C16—C21—C22—N26 5.9 (3)
Na2—N26—C22—O23 128.93 (14) C17—C16—C21—C20 0.0 (2)
Na2—N26—C22—C21 −48.2 (2) C17—C16—C21—C22 175.84 (16)
Na2—N26—C25—C24 −133.65 (12) C17—C18—C19—C20 −0.2 (3)
Na2—N26—C25—C27 −15.98 (19) C18—C19—C20—C21 −0.6 (3)
Na2—N26—C25—C28 105.72 (15) C19—C20—C21—C16 0.8 (3)
Na3ii—O37—C36—N40 142.02 (13) C19—C20—C21—C22 −175.37 (19)
Na3ii—O37—C36—C35 −40.80 (19) C20—C21—C22—O23 4.7 (2)
Na3ii—O37—C38—C39 −158.32 (11) C20—C21—C22—N26 −178.11 (19)
Na3—N15—C16—C17 132.37 (15) C21—C16—C17—C18 −0.8 (3)
Na3—N15—C16—C21 −48.3 (2) C22—O23—C24—C25 −16.83 (19)
Na3—N26—C22—O23 −145.32 (13) C22—N26—C25—C24 −15.39 (19)
Na3—N26—C22—C21 37.5 (2) C22—N26—C25—C27 102.28 (18)
Na3—N26—C25—C24 126.32 (14) C22—N26—C25—C28 −136.02 (17)
Na3—N26—C25—C27 −116.02 (16) C24—O23—C22—N26 7.7 (2)
Na3—N26—C25—C28 5.7 (2) C24—O23—C22—C21 −174.71 (15)
Na3—N29—C30—C31 122.47 (16) C25—N26—C22—O23 5.5 (2)
Na3—N29—C30—C35 −57.2 (2) C25—N26—C22—C21 −171.62 (17)
Na3—N40—C36—O37 −124.35 (13) C30—C31—C32—C33 0.0 (3)
Na3—N40—C36—C35 58.96 (19) C30—C35—C36—O37 169.03 (15)
Na3—N40—C39—C38 90.53 (16) C30—C35—C36—N40 −14.3 (3)
Na3—N40—C39—C41 −151.36 (13) C31—C30—C35—C34 1.2 (2)
Na3—N40—C39—C42 −30.0 (2) C31—C30—C35—C36 176.71 (16)
Na4—N29—C30—C31 −135.69 (15) C31—C32—C33—C34 0.8 (3)
Na4—N29—C30—C35 44.7 (2) C32—C33—C34—C35 −0.5 (3)
Na4—N40—C36—O37 162.73 (11) C33—C34—C35—C30 −0.5 (3)
Na4—N40—C36—C35 −14.0 (3) C33—C34—C35—C36 −176.24 (18)
Na4—N40—C39—C38 −173.06 (11) C34—C35—C36—O37 −15.3 (2)
Na4—N40—C39—C41 −54.96 (19) C34—C35—C36—N40 161.36 (19)
Na4—N40—C39—C42 66.40 (19) C35—C30—C31—C32 −1.0 (3)
Na4—N43—C44—C45 −140.23 (15) C36—O37—C38—C39 −16.11 (17)
Na4—N43—C44—C49 39.4 (2) C36—N40—C39—C38 −17.54 (19)
Na4—N54—C50—O51 144.26 (12) C36—N40—C39—C41 100.57 (18)
Na4—N54—C50—C49 −33.5 (2) C36—N40—C39—C42 −138.07 (17)
Na4—N54—C53—C52 −158.89 (11) C38—O37—C36—N40 5.6 (2)
Na4—N54—C53—C55 −41.75 (17) C38—O37—C36—C35 −177.25 (14)
Na4—N54—C53—C56 80.56 (17) C39—N40—C36—O37 8.2 (2)
O9—C10—C11—N12 16.47 (18) C39—N40—C36—C35 −168.45 (17)
O9—C10—C11—C13 135.88 (17) C44—C45—C46—C47 0.0 (3)
O9—C10—C11—C14 −99.20 (19) C44—C49—C50—O51 −174.02 (15)
O23—C24—C25—N26 19.30 (18) C44—C49—C50—N54 3.8 (3)
O23—C24—C25—C27 −96.01 (18) C45—C44—C49—C48 −3.5 (2)
O23—C24—C25—C28 138.75 (16) C45—C44—C49—C50 174.26 (16)
O37—C38—C39—N40 20.13 (18) C45—C46—C47—C48 −1.7 (3)
O37—C38—C39—C41 −94.98 (18) C46—C47—C48—C49 0.6 (3)
O37—C38—C39—C42 139.79 (16) C47—C48—C49—C44 2.1 (3)
O51—C52—C53—N54 23.61 (17) C47—C48—C49—C50 −175.82 (18)
O51—C52—C53—C55 −91.59 (18) C48—C49—C50—O51 3.8 (2)
O51—C52—C53—C56 142.96 (16) C48—C49—C50—N54 −178.38 (18)
N1—C2—C3—C4 178.15 (18) C49—C44—C45—C46 2.6 (3)
N1—C2—C7—C6 −178.33 (17) C50—O51—C52—C53 −20.39 (18)
N1—C2—C7—C8 −2.5 (3) C50—N54—C53—C52 −19.05 (18)
N15—C16—C17—C18 178.63 (19) C50—N54—C53—C55 98.09 (17)
N15—C16—C21—C20 −179.45 (17) C50—N54—C53—C56 −139.59 (17)
N15—C16—C21—C22 −3.6 (3) C52—O51—C50—N54 9.1 (2)
N29—C30—C31—C32 179.32 (18) C52—O51—C50—C49 −172.80 (15)
N29—C30—C35—C34 −179.10 (17) C53—N54—C50—O51 7.0 (2)
N29—C30—C35—C36 −3.6 (3) C53—N54—C50—C49 −170.76 (17)

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+2, −y, −z.

Tris[2-(4,4-dimethyl-2-oxazolin-2-yl)anilinido]ytterbium(III) (YbH-L133). Crystal data

[Yb(C11H13N2O)3] F(000) = 1492
Mr = 740.74 Dx = 1.605 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 10.9428 (5) Å Cell parameters from 7270 reflections
b = 9.8253 (5) Å θ = 2.2–24.6°
c = 28.6089 (14) Å µ = 3.10 mm1
β = 94.722 (1)° T = 86 K
V = 3065.5 (3) Å3 Plate, yellow
Z = 4 0.22 × 0.18 × 0.05 mm

Tris[2-(4,4-dimethyl-2-oxazolin-2-yl)anilinido]ytterbium(III) (YbH-L133). Data collection

SMART APEX CCD area detector diffractometer 7061 independent reflections
Radiation source: sealed X-ray tube 5882 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.059
Detector resolution: 8.3 pixels mm-1 θmax = 27.6°, θmin = 1.9°
φ and ω scans h = −14→14
Absorption correction: multi-scan (SADABS; Bruker, 2016) k = −12→12
Tmin = 0.219, Tmax = 0.262 l = −37→37
39651 measured reflections

Tris[2-(4,4-dimethyl-2-oxazolin-2-yl)anilinido]ytterbium(III) (YbH-L133). Refinement

Refinement on F2 Primary atom site location: heavy-atom method
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.032 H-atom parameters constrained
wR(F2) = 0.073 w = 1/[σ2(Fo2) + (0.0248P)2 + 4.5847P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max = 0.002
7061 reflections Δρmax = 0.83 e Å3
394 parameters Δρmin = −1.19 e Å3
0 restraints

Tris[2-(4,4-dimethyl-2-oxazolin-2-yl)anilinido]ytterbium(III) (YbH-L133). Special details

Experimental. The data collection nominally covered a full sphere of reciprocal space by a combination of 5 sets of ω scans each set at different φ and/or 2θ angles and each scan (20 s exposure) covering -0.300° degrees in ω. The crystal to detector distance was 5.0 cm.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Tris[2-(4,4-dimethyl-2-oxazolin-2-yl)anilinido]ytterbium(III) (YbH-L133). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C2 1.0818 (3) 0.2384 (4) 0.10704 (13) 0.0200 (8)
C3 1.2109 (4) 0.2483 (4) 0.11734 (15) 0.0262 (9)
H3 1.253065 0.173718 0.132394 0.031*
C4 1.2766 (4) 0.3596 (5) 0.10659 (16) 0.0316 (10)
H4 1.362244 0.362906 0.115191 0.038*
C5 1.2190 (4) 0.4686 (5) 0.08310 (17) 0.0340 (11)
H5 1.265345 0.544940 0.074364 0.041*
C6 1.0945 (4) 0.4649 (4) 0.07264 (16) 0.0283 (10)
H6 1.055257 0.539088 0.056247 0.034*
C7 1.0229 (4) 0.3534 (4) 0.08564 (13) 0.0199 (8)
C8 0.8911 (4) 0.3647 (4) 0.07860 (14) 0.0240 (9)
C10 0.7215 (4) 0.4633 (5) 0.0446 (2) 0.0415 (13)
H10A 0.700654 0.427434 0.012561 0.050*
H10B 0.679548 0.551716 0.047774 0.050*
C11 0.6856 (4) 0.3624 (4) 0.08159 (16) 0.0261 (9)
C13 0.6499 (4) 0.4350 (5) 0.12536 (18) 0.0402 (12)
H13A 0.717992 0.492735 0.137852 0.060*
H13B 0.631465 0.367551 0.149013 0.060*
H13C 0.577374 0.491481 0.117436 0.060*
C14 0.5842 (4) 0.2703 (4) 0.06114 (15) 0.0267 (9)
H14A 0.512628 0.325250 0.050405 0.040*
H14B 0.561617 0.206075 0.085192 0.040*
H14C 0.612722 0.219744 0.034575 0.040*
C16 0.5330 (3) −0.0138 (4) 0.14097 (13) 0.0178 (8)
C17 0.4277 (3) −0.0117 (4) 0.16733 (14) 0.0215 (8)
H17 0.428448 0.045669 0.194088 0.026*
C18 0.3261 (4) −0.0887 (4) 0.15562 (15) 0.0244 (9)
H18 0.258888 −0.085095 0.174572 0.029*
C19 0.3196 (4) −0.1728 (4) 0.11627 (15) 0.0270 (9)
H19 0.248910 −0.226754 0.108288 0.032*
C20 0.4175 (4) −0.1757 (4) 0.08933 (14) 0.0238 (9)
H20 0.413171 −0.232525 0.062388 0.029*
C21 0.5241 (3) −0.0979 (4) 0.09994 (13) 0.0178 (8)
C22 0.6183 (4) −0.0995 (4) 0.06692 (13) 0.0195 (8)
C24 0.6760 (4) −0.1389 (5) −0.00564 (14) 0.0298 (10)
H24A 0.643468 −0.071623 −0.029244 0.036*
H24B 0.700649 −0.221940 −0.022058 0.036*
C25 0.7847 (3) −0.0797 (4) 0.02494 (13) 0.0211 (8)
C27 0.8359 (4) 0.0464 (4) 0.00316 (14) 0.0243 (9)
H27A 0.870264 0.021891 −0.026275 0.036*
H27B 0.900484 0.085664 0.024844 0.036*
H27C 0.770182 0.113260 −0.003178 0.036*
C28 0.8841 (4) −0.1848 (4) 0.03572 (15) 0.0270 (9)
H28A 0.849832 −0.263196 0.051309 0.041*
H28B 0.950454 −0.144768 0.056380 0.041*
H28C 0.916454 −0.214532 0.006452 0.041*
C30 0.9880 (3) −0.1928 (4) 0.18242 (13) 0.0203 (8)
C31 1.0439 (4) −0.3196 (4) 0.17370 (15) 0.0272 (9)
H31 1.013838 −0.370665 0.146990 0.033*
C32 1.1392 (4) −0.3713 (5) 0.20210 (16) 0.0311 (10)
H32 1.175725 −0.454914 0.194121 0.037*
C33 1.1835 (4) −0.3025 (5) 0.24272 (16) 0.0309 (10)
H33 1.249963 −0.338361 0.262385 0.037*
C34 1.1293 (4) −0.1827 (5) 0.25362 (15) 0.0267 (9)
H34 1.157426 −0.137272 0.281780 0.032*
C35 1.0322 (3) −0.1236 (4) 0.22427 (14) 0.0207 (8)
C36 0.9814 (3) 0.0058 (4) 0.23845 (13) 0.0191 (8)
C38 0.9638 (5) 0.1729 (5) 0.29017 (16) 0.0433 (13)
H38A 1.024830 0.244297 0.299462 0.052*
H38B 0.908083 0.162360 0.315504 0.052*
C39 0.8918 (4) 0.2105 (4) 0.24440 (13) 0.0230 (8)
C41 0.9493 (5) 0.3302 (4) 0.22070 (15) 0.0340 (11)
H41A 0.906794 0.344554 0.189583 0.051*
H41B 1.036097 0.311041 0.217469 0.051*
H41C 0.942135 0.412284 0.239752 0.051*
C42 0.7588 (4) 0.2413 (6) 0.2513 (2) 0.0558 (17)
H42A 0.719510 0.159755 0.262947 0.084*
H42B 0.716179 0.269040 0.221383 0.084*
H42C 0.754580 0.315123 0.274210 0.084*
N1 1.0186 (3) 0.1251 (3) 0.11733 (12) 0.0216 (7)
H1 1.065691 0.052590 0.117092 0.026*
N12 0.8051 (3) 0.2885 (3) 0.09365 (11) 0.0186 (7)
N15 0.6330 (3) 0.0598 (3) 0.15501 (11) 0.0215 (7)
H15 0.619157 0.118443 0.177229 0.026*
N26 0.7256 (3) −0.0444 (3) 0.06940 (11) 0.0177 (7)
N29 0.8955 (3) −0.1416 (3) 0.15281 (11) 0.0190 (7)
H29 0.891440 −0.201964 0.130248 0.023*
N40 0.9045 (3) 0.0857 (3) 0.21535 (11) 0.0176 (7)
O9 0.8521 (3) 0.4775 (3) 0.05403 (12) 0.0371 (8)
O23 0.5856 (3) −0.1705 (3) 0.02681 (9) 0.0294 (7)
O37 1.0238 (3) 0.0466 (3) 0.28185 (10) 0.0272 (7)
Yb1 0.82829 (2) 0.06815 (2) 0.13487 (2) 0.01617 (6)

Tris[2-(4,4-dimethyl-2-oxazolin-2-yl)anilinido]ytterbium(III) (YbH-L133). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C2 0.0199 (19) 0.026 (2) 0.0154 (19) −0.0011 (16) 0.0074 (15) −0.0038 (15)
C3 0.019 (2) 0.034 (2) 0.027 (2) 0.0026 (17) 0.0050 (16) −0.0058 (18)
C4 0.022 (2) 0.038 (3) 0.036 (3) −0.0077 (19) 0.0092 (19) −0.013 (2)
C5 0.031 (2) 0.028 (2) 0.046 (3) −0.0154 (19) 0.019 (2) −0.012 (2)
C6 0.030 (2) 0.022 (2) 0.034 (2) −0.0019 (17) 0.0083 (19) −0.0054 (18)
C7 0.027 (2) 0.0137 (18) 0.020 (2) −0.0045 (16) 0.0076 (16) −0.0064 (15)
C8 0.027 (2) 0.024 (2) 0.021 (2) 0.0000 (17) 0.0040 (17) 0.0031 (17)
C10 0.028 (2) 0.036 (3) 0.060 (3) −0.002 (2) −0.004 (2) 0.020 (2)
C11 0.021 (2) 0.020 (2) 0.037 (2) 0.0027 (17) 0.0009 (18) 0.0040 (18)
C13 0.027 (2) 0.041 (3) 0.051 (3) 0.010 (2) −0.007 (2) −0.019 (2)
C14 0.021 (2) 0.027 (2) 0.031 (2) 0.0041 (17) −0.0044 (17) −0.0010 (18)
C16 0.0172 (18) 0.0188 (19) 0.0175 (19) 0.0030 (15) 0.0036 (15) 0.0049 (15)
C17 0.0190 (19) 0.023 (2) 0.023 (2) 0.0040 (16) 0.0076 (16) 0.0048 (16)
C18 0.0184 (19) 0.029 (2) 0.027 (2) 0.0004 (17) 0.0082 (16) 0.0060 (18)
C19 0.019 (2) 0.029 (2) 0.033 (2) −0.0079 (17) 0.0036 (17) 0.0047 (18)
C20 0.024 (2) 0.026 (2) 0.022 (2) −0.0082 (17) 0.0027 (16) −0.0005 (17)
C21 0.0153 (17) 0.0195 (19) 0.0188 (19) −0.0020 (15) 0.0025 (14) 0.0048 (15)
C22 0.021 (2) 0.022 (2) 0.0148 (18) −0.0023 (15) −0.0011 (15) −0.0010 (15)
C24 0.026 (2) 0.045 (3) 0.020 (2) −0.011 (2) 0.0099 (17) −0.0054 (19)
C25 0.0186 (18) 0.030 (2) 0.0156 (18) −0.0018 (17) 0.0047 (14) −0.0025 (16)
C27 0.022 (2) 0.032 (2) 0.021 (2) 0.0011 (17) 0.0077 (16) 0.0048 (17)
C28 0.029 (2) 0.026 (2) 0.027 (2) 0.0031 (18) 0.0125 (18) −0.0013 (18)
C30 0.0196 (19) 0.021 (2) 0.0220 (19) −0.0042 (16) 0.0103 (15) 0.0046 (16)
C31 0.029 (2) 0.023 (2) 0.032 (2) 0.0011 (17) 0.0144 (18) 0.0046 (18)
C32 0.028 (2) 0.026 (2) 0.042 (3) 0.0071 (18) 0.019 (2) 0.015 (2)
C33 0.020 (2) 0.035 (2) 0.039 (3) 0.0008 (18) 0.0069 (18) 0.021 (2)
C34 0.0170 (19) 0.038 (3) 0.025 (2) −0.0059 (18) 0.0050 (16) 0.0090 (19)
C35 0.0177 (19) 0.022 (2) 0.024 (2) −0.0038 (15) 0.0083 (16) 0.0059 (16)
C36 0.0165 (18) 0.028 (2) 0.0130 (18) −0.0071 (16) 0.0037 (14) 0.0002 (16)
C38 0.082 (4) 0.021 (2) 0.025 (2) −0.004 (2) −0.006 (2) −0.0028 (19)
C39 0.023 (2) 0.026 (2) 0.020 (2) −0.0036 (17) 0.0037 (16) −0.0083 (17)
C41 0.054 (3) 0.022 (2) 0.026 (2) −0.004 (2) −0.001 (2) −0.0008 (18)
C42 0.032 (3) 0.072 (4) 0.066 (4) −0.006 (3) 0.018 (3) −0.048 (3)
N1 0.0143 (16) 0.0217 (17) 0.0293 (19) 0.0022 (13) 0.0052 (14) 0.0059 (14)
N12 0.0147 (15) 0.0190 (16) 0.0220 (17) −0.0015 (13) 0.0012 (12) 0.0013 (13)
N15 0.0207 (16) 0.0261 (18) 0.0183 (16) −0.0050 (14) 0.0057 (13) −0.0072 (14)
N26 0.0175 (16) 0.0219 (18) 0.0143 (15) 0.0006 (13) 0.0040 (12) −0.0007 (13)
N29 0.0249 (17) 0.0176 (16) 0.0149 (16) 0.0008 (13) 0.0035 (13) −0.0014 (13)
N40 0.0203 (16) 0.0175 (16) 0.0154 (15) −0.0047 (13) 0.0038 (12) −0.0019 (13)
O9 0.0285 (17) 0.0294 (17) 0.053 (2) −0.0036 (13) −0.0018 (15) 0.0204 (15)
O23 0.0247 (15) 0.0445 (19) 0.0197 (15) −0.0152 (13) 0.0070 (12) −0.0109 (13)
O37 0.0274 (15) 0.0358 (18) 0.0178 (14) −0.0039 (13) −0.0018 (12) −0.0018 (12)
Yb1 0.01452 (8) 0.01806 (9) 0.01624 (9) −0.00202 (7) 0.00307 (6) 0.00040 (7)

Tris[2-(4,4-dimethyl-2-oxazolin-2-yl)anilinido]ytterbium(III) (YbH-L133). Geometric parameters (Å, º)

C2—C3 1.423 (5) C25—C28 1.513 (6)
C2—C7 1.414 (5) C25—N26 1.514 (5)
C2—N1 1.356 (5) C27—H27A 0.9800
C3—H3 0.9500 C27—H27B 0.9800
C3—C4 1.358 (6) C27—H27C 0.9800
C4—H4 0.9500 C28—H28A 0.9800
C4—C5 1.388 (7) C28—H28B 0.9800
C5—H5 0.9500 C28—H28C 0.9800
C5—C6 1.372 (6) C30—C31 1.419 (6)
C6—H6 0.9500 C30—C35 1.427 (6)
C6—C7 1.414 (5) C30—N29 1.361 (5)
C7—C8 1.445 (6) C31—H31 0.9500
C8—N12 1.303 (5) C31—C32 1.366 (6)
C8—O9 1.362 (5) C32—H32 0.9500
C10—H10A 0.9900 C32—C33 1.396 (7)
C10—H10B 0.9900 C33—H33 0.9500
C10—C11 1.526 (6) C33—C34 1.365 (6)
C10—O9 1.439 (5) C34—H34 0.9500
C11—C13 1.519 (6) C34—C35 1.423 (6)
C11—C14 1.512 (6) C35—C36 1.458 (6)
C11—N12 1.511 (5) C36—N40 1.292 (5)
C13—H13A 0.9800 C36—O37 1.350 (4)
C13—H13B 0.9800 C38—H38A 0.9900
C13—H13C 0.9800 C38—H38B 0.9900
C14—H14A 0.9800 C38—C39 1.517 (6)
C14—H14B 0.9800 C38—O37 1.433 (5)
C14—H14C 0.9800 C39—C41 1.520 (6)
C16—C17 1.429 (5) C39—C42 1.516 (6)
C16—C21 1.432 (5) C39—N40 1.495 (5)
C16—N15 1.345 (5) C41—H41A 0.9800
C17—H17 0.9500 C41—H41B 0.9800
C17—C18 1.364 (6) C41—H41C 0.9800
C18—H18 0.9500 C42—H42A 0.9800
C18—C19 1.393 (6) C42—H42B 0.9800
C19—H19 0.9500 C42—H42C 0.9800
C19—C20 1.371 (5) N1—H1 0.8800
C20—H20 0.9500 N1—Yb1 2.252 (3)
C20—C21 1.406 (5) N12—Yb1 2.468 (3)
C21—C22 1.455 (5) N15—H15 0.8800
C22—N26 1.289 (5) N15—Yb1 2.260 (3)
C22—O23 1.366 (4) N26—Yb1 2.376 (3)
C24—H24A 0.9900 N29—H29 0.8749
C24—H24B 0.9900 N29—Yb1 2.234 (3)
C24—C25 1.532 (5) N40—Yb1 2.390 (3)
C24—O23 1.445 (5) Yb1—H29 2.7484
C25—C27 1.515 (5)
C7—C2—C3 116.4 (4) H28B—C28—H28C 109.5
N1—C2—C3 121.8 (4) C31—C30—C35 116.4 (4)
N1—C2—C7 121.8 (3) N29—C30—C31 121.6 (4)
C2—C3—H3 118.6 N29—C30—C35 122.0 (4)
C4—C3—C2 122.9 (4) C30—C31—H31 118.6
C4—C3—H3 118.6 C32—C31—C30 122.8 (4)
C3—C4—H4 119.9 C32—C31—H31 118.6
C3—C4—C5 120.3 (4) C31—C32—H32 119.6
C5—C4—H4 119.9 C31—C32—C33 120.7 (4)
C4—C5—H5 120.4 C33—C32—H32 119.6
C6—C5—C4 119.2 (4) C32—C33—H33 120.7
C6—C5—H5 120.4 C34—C33—C32 118.7 (4)
C5—C6—H6 119.2 C34—C33—H33 120.7
C5—C6—C7 121.7 (4) C33—C34—H34 118.8
C7—C6—H6 119.2 C33—C34—C35 122.3 (4)
C2—C7—C8 122.4 (3) C35—C34—H34 118.8
C6—C7—C2 119.4 (4) C30—C35—C36 122.6 (4)
C6—C7—C8 118.2 (4) C34—C35—C30 119.1 (4)
N12—C8—C7 130.5 (4) C34—C35—C36 118.4 (4)
N12—C8—O9 115.7 (4) N40—C36—C35 129.4 (4)
O9—C8—C7 113.7 (3) N40—C36—O37 116.7 (4)
H10A—C10—H10B 109.0 O37—C36—C35 113.9 (3)
C11—C10—H10A 111.0 H38A—C38—H38B 108.7
C11—C10—H10B 111.0 C39—C38—H38A 110.5
O9—C10—H10A 111.0 C39—C38—H38B 110.5
O9—C10—H10B 111.0 O37—C38—H38A 110.5
O9—C10—C11 103.9 (4) O37—C38—H38B 110.5
C13—C11—C10 111.4 (4) O37—C38—C39 106.3 (3)
C14—C11—C10 110.1 (4) C38—C39—C41 111.7 (4)
C14—C11—C13 111.7 (4) C42—C39—C38 111.8 (4)
N12—C11—C10 101.8 (3) C42—C39—C41 110.0 (4)
N12—C11—C13 108.3 (3) N40—C39—C38 102.4 (3)
N12—C11—C14 113.2 (3) N40—C39—C41 109.0 (3)
C11—C13—H13A 109.5 N40—C39—C42 111.8 (3)
C11—C13—H13B 109.5 C39—C41—H41A 109.5
C11—C13—H13C 109.5 C39—C41—H41B 109.5
H13A—C13—H13B 109.5 C39—C41—H41C 109.5
H13A—C13—H13C 109.5 H41A—C41—H41B 109.5
H13B—C13—H13C 109.5 H41A—C41—H41C 109.5
C11—C14—H14A 109.5 H41B—C41—H41C 109.5
C11—C14—H14B 109.5 C39—C42—H42A 109.5
C11—C14—H14C 109.5 C39—C42—H42B 109.5
H14A—C14—H14B 109.5 C39—C42—H42C 109.5
H14A—C14—H14C 109.5 H42A—C42—H42B 109.5
H14B—C14—H14C 109.5 H42A—C42—H42C 109.5
C17—C16—C21 115.9 (3) H42B—C42—H42C 109.5
N15—C16—C17 120.4 (4) C2—N1—H1 110.7
N15—C16—C21 123.7 (3) C2—N1—Yb1 138.6 (3)
C16—C17—H17 118.7 Yb1—N1—H1 110.7
C18—C17—C16 122.6 (4) C8—N12—C11 106.4 (3)
C18—C17—H17 118.7 C8—N12—Yb1 127.8 (3)
C17—C18—H18 119.5 C11—N12—Yb1 125.7 (2)
C17—C18—C19 121.0 (4) C16—N15—H15 112.5
C19—C18—H18 119.5 C16—N15—Yb1 134.9 (3)
C18—C19—H19 120.8 Yb1—N15—H15 112.5
C20—C19—C18 118.4 (4) C22—N26—C25 107.9 (3)
C20—C19—H19 120.8 C22—N26—Yb1 127.4 (3)
C19—C20—H20 118.7 C25—N26—Yb1 124.2 (2)
C19—C20—C21 122.7 (4) C30—N29—H29 101.5
C21—C20—H20 118.7 C30—N29—Yb1 134.3 (3)
C16—C21—C22 122.2 (3) Yb1—N29—H29 117.4
C20—C21—C16 119.3 (3) C36—N40—C39 107.5 (3)
C20—C21—C22 118.3 (3) C36—N40—Yb1 127.6 (3)
N26—C22—C21 130.6 (3) C39—N40—Yb1 123.6 (2)
N26—C22—O23 115.8 (3) C8—O9—C10 106.4 (3)
O23—C22—C21 113.6 (3) C22—O23—C24 106.5 (3)
H24A—C24—H24B 108.9 C36—O37—C38 106.4 (3)
C25—C24—H24A 110.8 N1—Yb1—N12 74.72 (11)
C25—C24—H24B 110.8 N1—Yb1—N15 167.59 (12)
O23—C24—H24A 110.8 N1—Yb1—N26 109.02 (11)
O23—C24—H24B 110.8 N1—Yb1—H29 89.3
O23—C24—C25 104.8 (3) N1—Yb1—N40 86.61 (11)
C27—C25—C24 111.8 (3) N12—Yb1—H29 147.2
C28—C25—C24 111.6 (4) N15—Yb1—N12 95.23 (11)
C28—C25—C27 111.0 (3) N15—Yb1—N26 77.79 (11)
C28—C25—N26 109.6 (3) N15—Yb1—H29 103.0
N26—C25—C24 101.6 (3) N15—Yb1—N40 91.10 (11)
N26—C25—C27 110.9 (3) N26—Yb1—N12 90.47 (10)
C25—C27—H27A 109.5 N26—Yb1—H29 67.5
C25—C27—H27B 109.5 N26—Yb1—N40 153.87 (10)
C25—C27—H27C 109.5 N29—Yb1—N1 89.28 (12)
H27A—C27—H27B 109.5 N29—Yb1—N12 159.71 (11)
H27A—C27—H27C 109.5 N29—Yb1—N15 102.04 (12)
H27B—C27—H27C 109.5 N29—Yb1—N26 82.94 (11)
C25—C28—H28A 109.5 N29—Yb1—H29 16.4
C25—C28—H28B 109.5 N29—Yb1—N40 76.28 (11)
C25—C28—H28C 109.5 N40—Yb1—N12 114.28 (10)
H28A—C28—H28B 109.5 N40—Yb1—H29 92.7
H28A—C28—H28C 109.5
C2—C3—C4—C5 −2.3 (7) C30—C35—C36—O37 171.8 (3)
C2—C7—C8—N12 8.6 (7) C31—C30—C35—C34 1.3 (5)
C2—C7—C8—O9 −174.9 (4) C31—C30—C35—C36 −178.4 (3)
C3—C2—C7—C6 4.7 (5) C31—C30—N29—Yb1 −152.8 (3)
C3—C2—C7—C8 −172.0 (4) C31—C32—C33—C34 0.3 (6)
C3—C2—N1—Yb1 152.0 (3) C32—C33—C34—C35 −2.1 (6)
C3—C4—C5—C6 2.7 (7) C33—C34—C35—C30 1.2 (6)
C4—C5—C6—C7 0.7 (7) C33—C34—C35—C36 −179.0 (4)
C5—C6—C7—C2 −4.5 (6) C34—C35—C36—N40 171.0 (4)
C5—C6—C7—C8 172.4 (4) C34—C35—C36—O37 −7.9 (5)
C6—C7—C8—N12 −168.2 (4) C35—C30—C31—C32 −3.2 (6)
C6—C7—C8—O9 8.3 (5) C35—C30—N29—Yb1 28.5 (5)
C7—C2—C3—C4 −1.5 (6) C35—C36—N40—C39 −175.0 (4)
C7—C2—N1—Yb1 −27.8 (6) C35—C36—N40—Yb1 −7.7 (6)
C7—C8—N12—C11 171.3 (4) C35—C36—O37—C38 −179.2 (4)
C7—C8—N12—Yb1 −7.9 (6) C38—C39—N40—C36 −7.3 (4)
C7—C8—O9—C10 172.1 (4) C38—C39—N40—Yb1 −175.2 (3)
C10—C11—N12—C8 17.7 (4) C39—C38—O37—C36 −6.4 (5)
C10—C11—N12—Yb1 −163.1 (3) C41—C39—N40—C36 111.1 (4)
C11—C10—O9—C8 21.3 (5) C41—C39—N40—Yb1 −56.9 (4)
C13—C11—N12—C8 −99.8 (4) C42—C39—N40—C36 −127.1 (4)
C13—C11—N12—Yb1 79.4 (4) C42—C39—N40—Yb1 64.9 (4)
C14—C11—N12—C8 135.8 (4) N1—C2—C3—C4 178.7 (4)
C14—C11—N12—Yb1 −45.0 (5) N1—C2—C7—C6 −175.5 (4)
C16—C17—C18—C19 −1.1 (6) N1—C2—C7—C8 7.8 (6)
C16—C21—C22—N26 8.4 (6) N12—C8—O9—C10 −10.8 (5)
C16—C21—C22—O23 −171.1 (3) N15—C16—C17—C18 −177.3 (4)
C17—C16—C21—C20 −2.6 (5) N15—C16—C21—C20 177.2 (4)
C17—C16—C21—C22 173.4 (3) N15—C16—C21—C22 −6.8 (6)
C17—C16—N15—Yb1 168.1 (3) N26—C22—O23—C24 −11.2 (5)
C17—C18—C19—C20 −0.4 (6) N29—C30—C31—C32 178.0 (4)
C18—C19—C20—C21 0.3 (6) N29—C30—C35—C34 −179.9 (3)
C19—C20—C21—C16 1.3 (6) N29—C30—C35—C36 0.4 (6)
C19—C20—C21—C22 −174.8 (4) N40—C36—O37—C38 1.8 (5)
C20—C21—C22—N26 −175.7 (4) O9—C8—N12—C11 −5.1 (5)
C20—C21—C22—O23 4.9 (5) O9—C8—N12—Yb1 175.7 (3)
C21—C16—C17—C18 2.6 (6) O9—C10—C11—C13 91.9 (4)
C21—C16—N15—Yb1 −11.7 (6) O9—C10—C11—C14 −143.6 (4)
C21—C22—N26—C25 179.8 (4) O9—C10—C11—N12 −23.3 (5)
C21—C22—N26—Yb1 7.3 (6) O23—C22—N26—C25 −0.8 (5)
C21—C22—O23—C24 168.3 (3) O23—C22—N26—Yb1 −173.3 (2)
C24—C25—N26—C22 11.5 (4) O23—C24—C25—C27 −135.6 (4)
C24—C25—N26—Yb1 −175.7 (3) O23—C24—C25—C28 99.4 (4)
C25—C24—O23—C22 17.6 (4) O23—C24—C25—N26 −17.3 (4)
C27—C25—N26—C22 130.5 (3) O37—C36—N40—C39 3.8 (4)
C27—C25—N26—Yb1 −56.8 (4) O37—C36—N40—Yb1 171.2 (2)
C28—C25—N26—C22 −106.7 (4) O37—C38—C39—C41 −108.3 (4)
C28—C25—N26—Yb1 66.1 (4) O37—C38—C39—C42 128.0 (4)
C30—C31—C32—C33 2.5 (6) O37—C38—C39—N40 8.2 (5)
C30—C35—C36—N40 −9.3 (6)

Funding Statement

This work was funded by Natural Sciences and Engineering Research Council of Canada grant .

References

  1. Abbina, S., Chidara, V. K., Bian, S., Ugrinov, A. & Du, G. (2016). Chem. Sel. 1, 3175–3183.
  2. Abbina, S. & Du, G. (2012). Organometallics, 31, 7394–7403.
  3. Bauer, G., Scopelliti, R. & Hu, X. (2015a). Private communications (refcodes LUNGOS and LUNHAF). CCDC, Cambridge, England.
  4. Bauer, G., Wodrich, M. D., Scopelliti, R. & Hu, X. (2015b). Organometallics, 34, 289–298.
  5. Bennett, S. D., Core, B. A., Blake, M. P., Pope, S. J. A., Mountford, P. & Ward, B. D. (2014). Dalton Trans. 43, 5871–5885. [DOI] [PubMed]
  6. Bennett, S. D., Pope, S. J. A. & Ward, B. D. (2013). Chem. Commun. 49, 6072–6074. [DOI] [PubMed]
  7. Bian, S., Abbina, S., Lu, Z., Kolodka, E. & Du, G. (2014). Organometallics, 33, 2489–2495. [DOI] [PMC free article] [PubMed]
  8. Bradley, D. C., Ghotra, J. S. & Hart, F. A. (1973). J. Chem. Soc. Dalton Trans. pp. 1021–1023.
  9. Bruker (2003). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
  10. Bruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  11. Cabaleiro, S., Pérez–Lourido, P., Castro, J., Romero, J., García–Vázquez, J. A. & Sousa, A. (2001). Transition Met. Chem. 26, 709–716.
  12. Cabeza, J. A., da Silva, I., del Río, I., Gossage, R. A., Miguel, D. & Suárez, M. (2006). Dalton Trans. pp. 2450–2455. [DOI] [PubMed]
  13. Castro, J., Cabaleiro, S., Pérez-Lourido, P., Romero, J., García-Vázquez, J. A. & Sousa, A. (2001). Polyhedron, 20, 2329–2337.
  14. Castro, J., Cabaleiro, S., Pérez-Lourido, P., Romero, J., García-Vázquez, J. A. & Sousa, A. (2002). Z. Anorg. Allg. Chem. 628, 1210–1210.
  15. Chen, C.-T., Chan, C.-Y., Huang, C.-A., Chen, M.-T. & Peng, K.-F. (2007). Dalton Trans. pp. 4073–4078. [DOI] [PubMed]
  16. Chen, C.-T., Liao, C.-H., Peng, K.-F., Chen, M.-T. & Huang, T.-L. (2014). J. Organomet. Chem. 753, 9–19.
  17. Chen, C.-T., Weng, H.-J., Chen, M.-T., Huang, C.-A. & Peng, K.-F. (2009a). Eur. J. Inorg. Chem. pp. 2129–2135.
  18. Chen, M.-T., Chang, P.-J., Huang, C.-A., Peng, K.-F. & Chen, C.-T. (2009b). Dalton Trans. pp. 9068–9074. [DOI] [PubMed]
  19. Chen, M.-T. & Chen, C.-T. (2011). Dalton Trans. 40, 12886–12894. [DOI] [PubMed]
  20. Coeffard, V., Müller-Bunz, H. & Guiry, P. J. (2009). Org. Biomol. Chem. 7, 1723–1734. [DOI] [PubMed]
  21. Decken, A., Gossage, R. A. & Yadav, P. N. (2005). Can. J. Chem. 83, 1185–1189.
  22. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  23. Gossage, R. A. (2009). Experiments in Green and Sustainable Chemistry, edited by H. W. Roesky & D. K. Kennepohl, pp. 19–24. Weinheim: Wiley-VCH.
  24. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  25. He, J., Liu, Z., Du, G., Fu, Y., Zhang, S. & Li, X. (2014). Organometallics, 33, 6103–6112.
  26. Hong, W. D., Leung, S. C., Amporndanai, K., Davies, J., Priestley, R. S., Nixon, G. L., Berry, N. G., Samar Hasnain, S., Antonyuk, S., Ward, S. A., Biagini, G. A. & O’Neill, P. M. (2018). ACS Med. Chem. Lett. 9, 1205–1210. [DOI] [PMC free article] [PubMed]
  27. Huang, Y., He, J., Liu, Z., Cai, G., Zhang, S. & Li, X. (2017). Polym. Chem. 8, 1217–1222.
  28. Inagaki, T., Phong, le T., Furuta, A., Ito, J. & Nishiyama, H. (2010). Chem. Eur. J. 16, 3090–3096. [DOI] [PubMed]
  29. Kanbur, U., Ellern, A. & Sadow, A. D. (2018). Organometallics, 37, 4409–4414.
  30. Kieltsch, I., Dubinina, G. G., Hamacher, C., Kaiser, A., Torres-Nieto, J., Hutchison, J. M., Klein, A., Budnikova, Y. & Vicic, D. A. (2010). Organometallics, 29, 1451–1456.
  31. Liu, H., He, J., Liu, Z., Lin, Z., Du, G., Zhang, S. & Li, X. (2013). Macromolecules, 46, 3257–3265.
  32. Lu, Z., Abbina, S., Sabin, J. R., Nemykin, V. N. & Du, G. (2013). Inorg. Chem. 52, 1454–1465. [DOI] [PubMed]
  33. McKeon, S. C., Muller-Bunz, H. & Guiry, P. J. (2011). Eur. J. Org. Chem. pp. 7107–7115.
  34. Mikami, K., Hatano, H. & Terada, M. (1999). Chem. Lett. 28, 55–56.
  35. Mukherjee, D., Ellern, A. & Sadow, A. D. (2010). J. Am. Chem. Soc. 132, 7582–7583. [DOI] [PubMed]
  36. Nakada, M. & Inoue, M. (2007). Heterocycles, 72, 133–138.
  37. Niwa, T. & Nakada, M. (2012). J. Am. Chem. Soc. 134, 13538–13541. [DOI] [PubMed]
  38. Nixon, T. D. & Ward, B. D. (2012). Chem. Commun. 48, 11790–11792. [DOI] [PubMed]
  39. O’Reilly, S., Aylward, M., Keogh-Hansen, C., Fitzpatrick, B., McManus, H. A., Müller-Bunz, H. & Guiry, P. J. (2015). J. Org. Chem. 80, 10177–10186. [DOI] [PubMed]
  40. Pawlikowski, A. V., Gray, T. S., Schoendorff, G., Baird, B., Ellern, A., Windus, T. & Sadow, A. D. (2009). Inorg. Chim. Acta, 362, 4517–4525.
  41. Peng, K.-F. & Chen, C.-T. (2011). Eur. J. Inorg. Chem. pp. 5182–5195.
  42. Resanović, S., Wylie, R. S., Quail, J. W., Foucher, D. A. & Gossage, R. A. (2011). Inorg. Chem. 50, 9930–9932. [DOI] [PubMed]
  43. Saiyed, A. S., Joshi, R. S. & Bedekar, A. V. (2011). J. Chem. Res. (S), 35, 408–411.
  44. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  45. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  46. Wan, Z.-K., Choi, H.-W., Kang, F.-A., Nakajima, K., Demeke, D. & Kishi, Y. (2002). Org. Lett. 4, 4431–4434. [DOI] [PubMed]
  47. Wu, X., Yang, Z., Yan, X., Zhang, P., Wang, L., Guo, G., Dong, Y. & Li, X. (2018). Polym. Chem. 9, 4856–4865.
  48. Zou, J., Berg, D. J., Oliver, A. & Twamley, B. (2013). Organometallics, 32, 6532–6540.
  49. Zou, J., Berg, D. J., Stuart, D., McDonald, R. & Twamley, B. (2011). Organometallics, 30, 4958–4967.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) Na4H-L142, YbH-L133, global. DOI: 10.1107/S2056989020005034/zl2777sup1.cif

e-76-00703-sup1.cif (2.1MB, cif)

Structure factors: contains datablock(s) Na4H-L142. DOI: 10.1107/S2056989020005034/zl2777Na4H-L142sup2.hkl

Supporting information file. DOI: 10.1107/S2056989020005034/zl2777Na4H-L142sup5.mol

Structure factors: contains datablock(s) YbH-L133. DOI: 10.1107/S2056989020005034/zl2777YbH-L133sup3.hkl

Supporting information file. DOI: 10.1107/S2056989020005034/zl2777YbH-L133sup6.mol

CCDC references: 1996037, 1996036

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES