Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Apr 9;76(Pt 5):642–645. doi: 10.1107/S2056989020004521

Crystal structure and Hirshfeld surface analysis of hexyl 1-hexyl-2-oxo-1,2-di­hydro­quinoline-4-carboxyl­ate

Younos Bouzian a,*, Sevgi Kansiz b,*, Lhassane Mahi c, Noureddine Hamou Ahabchane a, Joel T Mague d, Necmi Dege e, Khalid Karrouchi f, El Mokhtar Essassi a
PMCID: PMC7199246  PMID: 32431924

The di­hydro­quinoline unit is slightly twisted and the hexyl groups extend out on either side. In the crystal, C—H⋯O hydrogen bonds form chains of mol­ecules extending along the b-axis direction, which are paired up by slipped π-stacking inter­actions. The ends of the hexyl groups from neighbouring chains are in contact but do not inter­calate.

Keywords: crystal structure, di­hydro­quinoline, aliphatic chains, π-stacking, Hirshfeld surface analysis

Abstract

The asymmetric unit of the title compound, C22H31NO3, comprises of one mol­ecule. The mol­ecule is not planar, with the carboxyl­ate ester group inclined by 33.47 (4)° to the heterocyclic ring. Individual mol­ecules are linked by aromaticC—H⋯Ocarbon­yl hydrogen bonds into chains running parallel to [001]. Slipped π–π stacking inter­actions between quinoline moieties link these chains into layers extending parallel to (100). Hirshfeld surface analysis, two-dimensional fingerprint plots and mol­ecular electrostatic potential surfaces were used to qu­antify the inter­molecular inter­actions present in the crystal, indicating that the most important contributions for the crystal packing are from H⋯H (72%), O⋯H/H⋯O (14.5%) and C⋯H/H⋯C (5.6%) inter­actions.

Chemical context  

Quinoline derivatives represent an important class of heterocyclic compounds utilized as pharmaceuticals (Chu et al., 2019). They possess various biological properties such as anti­bacterial (Panda et al., 2015), anti­cancer (Tang et al., 2018), anti­tubercular (Xu et al., 2017), anti­viral (Sekgota et al., 2017), anti-HCV (Cannalire et al., 2016), anti­malarial (Hu et al., 2017), anti-Alzheimer’s (Bolognesi et al., 2007), anti­leishmanial (Palit et al., 2009) and anti-inflammatory (Pinz et al., 2016) activities.graphic file with name e-76-00642-scheme1.jpg

In view of the biological importance of quinoline, and in a continuation of our research work devoted to the syntheses and crystal structures of quinoline derivatives (Bouzian et al., 2019a,b ), we report herein on the mol­ecular and crystal structures of hexyl 1-hexyl-2-oxo-1,2-di­hydro­quinoline-4-carb­oxyl­ate, (I), which was prepared by reacting ethyl 6-chloro-2-oxo-1,2-di­hydro­quinoline-4-carboxyl­ate with 1-bromo­hexane in the presence of a catalytic qu­antity of tetra-n-butyl­ammonium bromide. Inter­molecular inter­actions were qu­anti­fied by Hirshfeld surface analysis.

Structural commentary  

The mol­ecule of (I) is shown in Fig. 1. It is non-planar, with the carboxyl ester group inclined by 33.47 (4)° to the heterocyclic ring (r.m.s. deviation of the ten atoms = 0.0174 Å). The hexyl chain attached to N1 is twisted out of this plane by 14.2 (2)° whereas the hexyl chain attached to O1 is twisted by 23.1 (2)° from this plane.

Figure 1.

Figure 1

The title mol­ecule with displacement ellipsoids drawn at the 50% probability level.

Supra­molecular features  

In the crystal, C4—H4⋯O1 hydrogen bonds between the phenyl ring and the carbonyl group of an adjacent mol­ecule lead to the formation of chains running parallel to [001] (Table 1, Fig. 2). These chains are connected in pairs along [010] through slipped π–π stacking inter­actions between inversion-related di­hydro­quinoline moieties [Cg1⋯Cg2i = 3.5472 (9) Å with a slippage of 0.957 Å; Cg1 and Cg2 are the centroids of the N1/C6/C1/C9/C8/C7 and C1–C6 rings; symmetry code: (i) 1 − x, −y, 1 − z] (Figs. 2, 3). This way, (100) layers with a width corresponding to the length of the a axis are formed. Unlike the packing features of similar mol­ecules, the hexyl chains are not oriented in parallel. This is possibly a consequence of the π–π stacking inter­actions, which result in a ‘crossed’ orientation of neighbouring hexyl groups (Fig. 3).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O1i 0.960 (17) 2.475 (17) 3.3670 (19) 154.7 (15)

Symmetry code: (i) Inline graphic.

Figure 2.

Figure 2

The crystal packing viewed along [010], with C—H⋯O hydrogen bonds and π–π stacking inter­actions indicated by black and orange dashed lines, respectively.

Figure 3.

Figure 3

The crystal packing viewed along [001], with π–π stacking inter­actions indicated by orange dashed lines.

Database survey  

A search of the Cambridge Structural Database (CSD, version 5.40, update of August 2019; Groom et al., 2016) using 2-oxo-1,2-di­hydro­quinoline-4-carb­oxy­lic acid as the main skeleton revealed five structures similar to the title compound. They contain the oxo­quinoline moiety with different substit­uents, viz. 2-oxo-1,2-di­hydro­quinoline-4-carb­oxy­lic acid monohydrate (EQAVAV; Filali Baba et al., 2016), ethyl 1H-3-hy­droxy-2-oxo-1,2-di­hydro­quinoline-4-carboxyl­ate (RAV­JAA01; Paterna et al., 2013), ethyl 1-methyl-2-oxo-1,2-di­hydro­quinoline-4-carboxyl­ate (SECCAH; Filali Baba et al., 2017a ), prop-2-yn-1-yl 2-oxo-1-(prop-2-yn-1-yl)-1,2-di­hydro­quinoline-4-carboxyl­ate (XILYUP; Filali Baba et al., 2017b ) and ethyl 1-benzyl-3-hy­droxy-2-oxo-1,2-di­hydro­quinoline-4-carboxyl­ate (ZINHEL; Paterna et al., 2013). The layers present in EQAVAV are linked together by pairwise N—H⋯O inter­actions. In SECCAH, weak C—H⋯O hydrogen bonds link the mol­ecules into zigzag chains along [100]. A single weak C—H⋯O inter­molecular inter­action links the mol­ecules into [001] chains in XILYUP.

Hirshfeld surface analysis  

To investigate the inter­molecular inter­actions, Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and two-dimensional fingerprint plots were generated for the mol­ecule using CrystalExplorer17.5 (Turner et al., 2017). Hirshfeld surface analysis depicts inter­molecular inter­actions by different colours, representing short or long contacts and further the relative strength of the inter­action. The generated Hirshfeld surface mapped over dnorm is shown in Fig. 4 a. A view of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential, highlighting the C—H⋯O contacts, is given in Fig. 4 b. As revealed by the two-dimensional fingerprint plots (Fig. 5), the crystal packing is dominated by H⋯H contacts, representing van der Waals inter­actions (72% contribution to the overall surface), followed by O⋯H and C⋯H inter­actions, which contribute with 14.5% and 5.6%, respectively. The contributions of the C⋯C (5.4%), C⋯O (0.8%), C⋯N (0.7%) and N⋯H (0.6%) inter­actions are less significant.

Figure 4.

Figure 4

(a) The Hirshfeld surfaces of the title compound mapped over d norm, with a fixed colour scale of −0.1822 (red) to 1.3083 (blue) a.u., and (b) the Hirshfeld surface mapped over mol­ecular electrostatic potential showing C—H⋯O hydrogen bonds, with a fixed colour scale of −0.0733 (red) to 0.0381(blue) a.u..

Figure 5.

Figure 5

Two-dimensional fingerprint plots to the Hirshfeld surface with (a) a d norm view for (I) and delineated into relative contributions for (b) H⋯H, (c) O⋯H/H⋯H and (d) C⋯H/H⋯C inter­actions.

Synthesis and crystallization  

A mixture of 2-oxo-1,2-di­hydro­quinoline-4-carb­oxy­lic acid (0.5 g, 2.6 mmol), K2CO3 (0.73 g, 5.29 mmol), 1-bromo­hexane (0.66 g, 4 mmol) and tetra-n-butyl­ammonium bromide as catalyst in DMF (25 ml) was stirred at room temperature for 48 h. The solution was filtered by suction, and the solvent was removed under reduced pressure. The residue was chromatographed on a silica-gel column using hexane and ethyl acetate (v/v, 95/5) as eluents to afford (I). Single crystals were obtained by slow evaporation of an ethano­lic solution.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were located in difference-Fourier maps and were refined freely.

Table 2. Experimental details.

Crystal data
Chemical formula C22H31NO3
M r 357.48
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 17.6928 (7), 13.2512 (5), 8.5916 (3)
β (°) 90.184 (2)
V3) 2014.30 (13)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.61
Crystal size (mm) 0.25 × 0.17 × 0.10
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.82, 0.94
No. of measured, independent and observed [I > 2σ(I)] reflections 14697, 3924, 3044
R int 0.048
(sin θ/λ)max−1) 0.618
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.046, 0.105, 1.07
No. of reflections 3924
No. of parameters 359
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.19, −0.18

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXT/5 (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ), DIAMOND (Brandenburg & Putz, 2012), SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989020004521/wm5550sup1.cif

e-76-00642-sup1.cif (455.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020004521/wm5550Isup2.hkl

e-76-00642-Isup2.hkl (312.9KB, hkl)

CCDC reference: 1994187

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C22H31NO3 F(000) = 776
Mr = 357.48 Dx = 1.179 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54178 Å
a = 17.6928 (7) Å Cell parameters from 9350 reflections
b = 13.2512 (5) Å θ = 5.0–72.3°
c = 8.5916 (3) Å µ = 0.61 mm1
β = 90.184 (2)° T = 150 K
V = 2014.30 (13) Å3 Block, colourless
Z = 4 0.25 × 0.17 × 0.10 mm

Data collection

Bruker D8 VENTURE PHOTON 100 CMOS diffractometer 3924 independent reflections
Radiation source: INCOATEC IµS micro–focus source 3044 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.048
Detector resolution: 10.4167 pixels mm-1 θmax = 72.4°, θmin = 4.2°
ω scans h = −21→21
Absorption correction: multi-scan (SADABS; Krause et al., 2015) k = −16→15
Tmin = 0.82, Tmax = 0.94 l = −9→10
14697 measured reflections

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: difference Fourier map
wR(F2) = 0.105 All H-atom parameters refined
S = 1.07 w = 1/[σ2(Fo2) + (0.028P)2 + 0.8763P] where P = (Fo2 + 2Fc2)/3
3924 reflections (Δ/σ)max < 0.001
359 parameters Δρmax = 0.19 e Å3
0 restraints Δρmin = −0.18 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.38830 (7) 0.40574 (9) 0.54321 (12) 0.0338 (3)
O2 0.68998 (7) 0.45106 (10) 0.80686 (14) 0.0384 (3)
O3 0.66596 (7) 0.37452 (8) 0.57906 (13) 0.0308 (3)
N1 0.40867 (8) 0.38809 (9) 0.80434 (14) 0.0254 (3)
C1 0.53672 (9) 0.37846 (11) 0.90859 (17) 0.0251 (3)
C2 0.58415 (10) 0.36524 (11) 1.03887 (19) 0.0281 (4)
H2 0.6393 (11) 0.3633 (14) 1.024 (2) 0.034 (5)*
C3 0.55465 (10) 0.35284 (12) 1.18543 (19) 0.0303 (4)
H3 0.5872 (10) 0.3427 (14) 1.279 (2) 0.039 (5)*
C4 0.47679 (10) 0.35250 (12) 1.20670 (18) 0.0298 (4)
H4 0.4558 (10) 0.3457 (14) 1.309 (2) 0.032 (5)*
C5 0.42866 (10) 0.36311 (12) 1.08128 (18) 0.0277 (4)
H5 0.3734 (10) 0.3620 (13) 1.098 (2) 0.031 (5)*
C6 0.45761 (9) 0.37626 (11) 0.93073 (17) 0.0246 (3)
C7 0.43350 (10) 0.39750 (11) 0.65289 (17) 0.0270 (3)
C8 0.51480 (10) 0.40045 (11) 0.63199 (18) 0.0269 (3)
H8 0.5319 (10) 0.4116 (14) 0.529 (2) 0.036 (5)*
C9 0.56382 (9) 0.39364 (11) 0.75165 (17) 0.0260 (3)
C10 0.32666 (10) 0.39452 (12) 0.83043 (19) 0.0285 (4)
H10A 0.3196 (10) 0.4370 (13) 0.927 (2) 0.029 (4)*
H10B 0.3059 (10) 0.4312 (14) 0.736 (2) 0.033 (5)*
C11 0.28830 (10) 0.29203 (12) 0.8470 (2) 0.0295 (4)
H11A 0.3155 (10) 0.2489 (14) 0.924 (2) 0.027 (4)*
H11B 0.2890 (10) 0.2551 (14) 0.742 (2) 0.035 (5)*
C12 0.20666 (10) 0.30564 (14) 0.8979 (2) 0.0351 (4)
H12A 0.2056 (11) 0.3463 (15) 1.001 (2) 0.046 (6)*
H12B 0.1785 (11) 0.3465 (16) 0.818 (2) 0.046 (6)*
C13 0.16396 (11) 0.20777 (15) 0.9228 (2) 0.0390 (4)
H13A 0.1920 (11) 0.1658 (16) 1.009 (2) 0.049 (6)*
H13B 0.1668 (11) 0.1653 (16) 0.826 (2) 0.045 (6)*
C14 0.08281 (12) 0.22432 (18) 0.9724 (3) 0.0485 (5)
H14A 0.0815 (13) 0.2635 (19) 1.075 (3) 0.070 (7)*
H14B 0.0564 (13) 0.2674 (19) 0.896 (3) 0.068 (7)*
C15 0.03901 (15) 0.1279 (2) 0.9986 (4) 0.0656 (7)
H15A 0.0625 (16) 0.085 (2) 1.085 (3) 0.086 (9)*
H15B −0.0159 (16) 0.1416 (19) 1.031 (3) 0.076 (8)*
H15C 0.0378 (15) 0.089 (2) 0.895 (3) 0.086 (9)*
C16 0.64634 (10) 0.40936 (12) 0.71935 (18) 0.0280 (4)
C17 0.74124 (10) 0.40261 (14) 0.5285 (2) 0.0329 (4)
H17A 0.7783 (11) 0.3728 (14) 0.602 (2) 0.036 (5)*
H17B 0.7456 (11) 0.4763 (17) 0.533 (2) 0.044 (6)*
C18 0.75172 (10) 0.36435 (13) 0.3648 (2) 0.0325 (4)
H18A 0.7468 (11) 0.2897 (16) 0.365 (2) 0.046 (6)*
H18B 0.7102 (11) 0.3912 (14) 0.299 (2) 0.037 (5)*
C19 0.82624 (11) 0.39951 (15) 0.2953 (2) 0.0352 (4)
H19A 0.8683 (12) 0.3685 (16) 0.350 (2) 0.050 (6)*
H19B 0.8308 (11) 0.4748 (17) 0.311 (2) 0.049 (6)*
C20 0.83340 (11) 0.37729 (15) 0.1223 (2) 0.0385 (4)
H20A 0.8297 (12) 0.3045 (18) 0.106 (2) 0.052 (6)*
H20B 0.7894 (12) 0.4082 (16) 0.068 (2) 0.047 (6)*
C21 0.90568 (12) 0.41679 (18) 0.0503 (2) 0.0440 (5)
H21A 0.9504 (13) 0.3819 (17) 0.102 (3) 0.059 (7)*
H21B 0.9100 (14) 0.490 (2) 0.075 (3) 0.069 (7)*
C22 0.90816 (15) 0.4025 (2) −0.1249 (3) 0.0579 (6)
H22A 0.9029 (15) 0.332 (2) −0.154 (3) 0.080 (9)*
H22B 0.8651 (16) 0.439 (2) −0.178 (3) 0.077 (8)*
H22C 0.9566 (14) 0.4306 (19) −0.170 (3) 0.069 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0371 (7) 0.0385 (7) 0.0258 (6) −0.0021 (5) −0.0026 (5) 0.0022 (5)
O2 0.0351 (7) 0.0463 (7) 0.0337 (6) −0.0085 (6) 0.0025 (5) −0.0066 (5)
O3 0.0322 (7) 0.0304 (6) 0.0301 (6) −0.0038 (5) 0.0069 (5) −0.0041 (5)
N1 0.0296 (8) 0.0219 (6) 0.0248 (7) −0.0008 (5) 0.0015 (5) −0.0004 (5)
C1 0.0335 (9) 0.0164 (7) 0.0253 (8) −0.0021 (6) 0.0003 (6) −0.0015 (5)
C2 0.0324 (10) 0.0213 (7) 0.0307 (8) −0.0010 (7) −0.0018 (7) −0.0003 (6)
C3 0.0402 (10) 0.0247 (8) 0.0260 (8) −0.0032 (7) −0.0036 (7) 0.0005 (6)
C4 0.0443 (11) 0.0228 (8) 0.0223 (8) −0.0037 (7) 0.0036 (7) −0.0014 (6)
C5 0.0352 (10) 0.0221 (7) 0.0259 (8) −0.0025 (7) 0.0037 (7) −0.0018 (6)
C6 0.0344 (9) 0.0166 (7) 0.0230 (7) −0.0006 (6) 0.0006 (6) −0.0009 (5)
C7 0.0363 (10) 0.0198 (7) 0.0249 (8) −0.0010 (6) 0.0004 (7) 0.0009 (6)
C8 0.0346 (9) 0.0223 (8) 0.0240 (8) −0.0023 (6) 0.0044 (7) 0.0001 (6)
C9 0.0336 (9) 0.0177 (7) 0.0267 (8) −0.0012 (6) 0.0033 (7) −0.0027 (6)
C10 0.0293 (9) 0.0266 (8) 0.0297 (8) 0.0024 (7) 0.0027 (7) 0.0014 (7)
C11 0.0302 (9) 0.0276 (8) 0.0308 (8) −0.0008 (7) 0.0016 (7) 0.0002 (7)
C12 0.0316 (10) 0.0358 (9) 0.0380 (10) 0.0001 (7) 0.0033 (8) 0.0040 (8)
C13 0.0340 (10) 0.0405 (10) 0.0426 (10) −0.0039 (8) 0.0017 (8) 0.0051 (8)
C14 0.0342 (11) 0.0584 (13) 0.0530 (13) −0.0058 (10) 0.0038 (10) 0.0092 (10)
C15 0.0428 (14) 0.0811 (18) 0.0730 (18) −0.0203 (13) 0.0015 (13) 0.0178 (15)
C16 0.0335 (9) 0.0224 (7) 0.0282 (8) −0.0006 (7) 0.0025 (7) −0.0001 (6)
C17 0.0296 (10) 0.0343 (10) 0.0347 (9) −0.0024 (7) 0.0053 (7) −0.0017 (7)
C18 0.0326 (10) 0.0319 (9) 0.0332 (9) −0.0029 (7) 0.0027 (8) −0.0019 (7)
C19 0.0304 (10) 0.0415 (10) 0.0336 (9) −0.0011 (8) 0.0037 (8) −0.0016 (7)
C20 0.0372 (11) 0.0432 (11) 0.0350 (10) −0.0033 (8) 0.0038 (8) −0.0031 (8)
C21 0.0374 (12) 0.0568 (13) 0.0379 (10) −0.0043 (10) 0.0080 (9) −0.0041 (9)
C22 0.0516 (15) 0.0812 (18) 0.0410 (12) −0.0106 (13) 0.0126 (11) −0.0032 (12)

Geometric parameters (Å, º)

O1—C7 1.2388 (19) C12—H12A 1.04 (2)
O2—C16 1.2096 (19) C12—H12B 1.01 (2)
O3—C16 1.3376 (19) C13—C14 1.515 (3)
O3—C17 1.451 (2) C13—H13A 1.05 (2)
N1—C7 1.380 (2) C13—H13B 1.00 (2)
N1—C6 1.395 (2) C14—C15 1.511 (3)
N1—C10 1.471 (2) C14—H14A 1.02 (3)
C1—C2 1.408 (2) C14—H14B 0.98 (3)
C1—C6 1.413 (2) C15—H15A 1.02 (3)
C1—C9 1.447 (2) C15—H15B 1.03 (3)
C2—C3 1.374 (2) C15—H15C 1.02 (3)
C2—H2 0.985 (19) C17—C18 1.507 (2)
C3—C4 1.390 (2) C17—H17A 0.992 (19)
C3—H3 0.998 (19) C17—H17B 0.98 (2)
C4—C5 1.378 (2) C18—C19 1.522 (2)
C4—H4 0.956 (18) C18—H18A 0.99 (2)
C5—C6 1.404 (2) C18—H18B 0.99 (2)
C5—H5 0.988 (18) C19—C20 1.521 (2)
C7—C8 1.451 (2) C19—H19A 0.97 (2)
C8—C9 1.346 (2) C19—H19B 1.01 (2)
C8—H8 0.945 (19) C20—C21 1.515 (3)
C9—C16 1.502 (2) C20—H20A 0.98 (2)
C10—C11 1.525 (2) C20—H20B 0.99 (2)
C10—H10A 1.011 (18) C21—C22 1.518 (3)
C10—H10B 1.015 (18) C21—H21A 1.02 (2)
C11—C12 1.521 (2) C21—H21B 1.00 (3)
C11—H11A 0.997 (17) C22—H22A 0.97 (3)
C11—H11B 1.022 (18) C22—H22B 1.01 (3)
C12—C13 1.516 (3) C22—H22C 1.01 (3)
C16—O3—C17 115.00 (13) C12—C13—H13B 109.7 (12)
C7—N1—C6 123.04 (14) H13A—C13—H13B 105.0 (16)
C7—N1—C10 117.09 (13) C15—C14—C13 114.0 (2)
C6—N1—C10 119.84 (13) C15—C14—H14A 106.8 (14)
C2—C1—C6 118.59 (14) C13—C14—H14A 109.8 (14)
C2—C1—C9 124.05 (15) C15—C14—H14B 110.3 (14)
C6—C1—C9 117.37 (14) C13—C14—H14B 110.2 (14)
C3—C2—C1 121.07 (16) H14A—C14—H14B 105 (2)
C3—C2—H2 119.7 (11) C14—C15—H15A 111.5 (16)
C1—C2—H2 119.3 (11) C14—C15—H15B 112.2 (15)
C2—C3—C4 120.01 (16) H15A—C15—H15B 106 (2)
C2—C3—H3 122.4 (11) C14—C15—H15C 107.7 (16)
C4—C3—H3 117.5 (11) H15A—C15—H15C 111 (2)
C5—C4—C3 120.45 (16) H15B—C15—H15C 108 (2)
C5—C4—H4 118.9 (11) O2—C16—O3 123.42 (15)
C3—C4—H4 120.6 (11) O2—C16—C9 124.59 (15)
C4—C5—C6 120.45 (16) O3—C16—C9 111.96 (13)
C4—C5—H5 119.7 (10) O3—C17—C18 108.01 (14)
C6—C5—H5 119.9 (10) O3—C17—H17A 108.2 (11)
N1—C6—C5 120.25 (15) C18—C17—H17A 112.2 (11)
N1—C6—C1 120.34 (14) O3—C17—H17B 108.5 (12)
C5—C6—C1 119.41 (14) C18—C17—H17B 111.1 (11)
O1—C7—N1 121.22 (15) H17A—C17—H17B 108.8 (16)
O1—C7—C8 122.79 (15) C17—C18—C19 111.86 (15)
N1—C7—C8 115.96 (14) C17—C18—H18A 108.8 (11)
C9—C8—C7 122.71 (15) C19—C18—H18A 112.4 (12)
C9—C8—H8 121.0 (11) C17—C18—H18B 108.6 (11)
C7—C8—H8 116.2 (11) C19—C18—H18B 107.9 (11)
C8—C9—C1 120.44 (15) H18A—C18—H18B 107.1 (15)
C8—C9—C16 118.29 (14) C20—C19—C18 113.51 (15)
C1—C9—C16 121.13 (14) C20—C19—H19A 109.0 (12)
N1—C10—C11 113.70 (13) C18—C19—H19A 110.2 (12)
N1—C10—H10A 106.4 (10) C20—C19—H19B 108.3 (11)
C11—C10—H10A 111.3 (10) C18—C19—H19B 108.6 (12)
N1—C10—H10B 105.1 (10) H19A—C19—H19B 107.0 (17)
C11—C10—H10B 110.0 (10) C21—C20—C19 113.87 (16)
H10A—C10—H10B 110.2 (14) C21—C20—H20A 109.8 (13)
C12—C11—C10 110.15 (14) C19—C20—H20A 109.0 (12)
C12—C11—H11A 109.5 (10) C21—C20—H20B 109.1 (12)
C10—C11—H11A 111.0 (10) C19—C20—H20B 108.0 (12)
C12—C11—H11B 108.9 (10) H20A—C20—H20B 106.7 (17)
C10—C11—H11B 109.7 (11) C20—C21—C22 112.87 (18)
H11A—C11—H11B 107.6 (14) C20—C21—H21A 108.7 (13)
C13—C12—C11 114.40 (15) C22—C21—H21A 110.7 (13)
C13—C12—H12A 108.3 (11) C20—C21—H21B 108.2 (14)
C11—C12—H12A 109.1 (11) C22—C21—H21B 109.4 (14)
C13—C12—H12B 108.1 (12) H21A—C21—H21B 106.7 (19)
C11—C12—H12B 109.7 (12) C21—C22—H22A 112.0 (16)
H12A—C12—H12B 107.0 (16) C21—C22—H22B 111.1 (15)
C14—C13—C12 112.89 (17) H22A—C22—H22B 106 (2)
C14—C13—H13A 109.1 (11) C21—C22—H22C 111.1 (14)
C12—C13—H13A 108.5 (11) H22A—C22—H22C 110 (2)
C14—C13—H13B 111.3 (12) H22B—C22—H22C 107 (2)
C6—C1—C2—C3 −1.6 (2) C7—C8—C9—C16 −173.12 (13)
C9—C1—C2—C3 178.89 (14) C2—C1—C9—C8 176.52 (15)
C1—C2—C3—C4 0.5 (2) C6—C1—C9—C8 −3.0 (2)
C2—C3—C4—C5 0.9 (2) C2—C1—C9—C16 −7.8 (2)
C3—C4—C5—C6 −1.2 (2) C6—C1—C9—C16 172.65 (13)
C7—N1—C6—C5 −177.49 (14) C7—N1—C10—C11 99.07 (16)
C10—N1—C6—C5 4.7 (2) C6—N1—C10—C11 −82.96 (17)
C7—N1—C6—C1 3.2 (2) N1—C10—C11—C12 171.38 (14)
C10—N1—C6—C1 −174.68 (13) C10—C11—C12—C13 −178.17 (15)
C4—C5—C6—N1 −179.30 (14) C11—C12—C13—C14 −179.66 (16)
C4—C5—C6—C1 0.1 (2) C12—C13—C14—C15 −179.8 (2)
C2—C1—C6—N1 −179.37 (13) C17—O3—C16—O2 −8.3 (2)
C9—C1—C6—N1 0.2 (2) C17—O3—C16—C9 169.68 (13)
C2—C1—C6—C5 1.3 (2) C8—C9—C16—O2 143.61 (17)
C9—C1—C6—C5 −179.14 (13) C1—C9—C16—O2 −32.2 (2)
C6—N1—C7—O1 178.45 (14) C8—C9—C16—O3 −34.38 (19)
C10—N1—C7—O1 −3.6 (2) C1—C9—C16—O3 149.83 (14)
C6—N1—C7—C8 −3.5 (2) C16—O3—C17—C18 −175.71 (14)
C10—N1—C7—C8 174.39 (13) O3—C17—C18—C19 174.17 (14)
O1—C7—C8—C9 178.56 (15) C17—C18—C19—C20 −170.54 (17)
N1—C7—C8—C9 0.6 (2) C18—C19—C20—C21 177.03 (17)
C7—C8—C9—C1 2.7 (2) C19—C20—C21—C22 −174.6 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C4—H4···O1i 0.960 (17) 2.475 (17) 3.3670 (19) 154.7 (15)

Symmetry code: (i) x, y, z+1.

Funding Statement

This work was funded by National Science Foundation grant 1228232. Tulane University grant .

References

  1. Bolognesi, M. L., Cavalli, A., Valgimigli, L., Bartolini, M., Rosini, M., Andrisano, V., Recanatini, M. & Melchiorre, C. (2007). J. Med. Chem. 50, 6446–6449. [DOI] [PubMed]
  2. Bouzian, Y., Faizi, M. S. H., Mague, J. T., Otmani, B. E., Dege, N., Karrouchi, K. & Essassi, E. M. (2019a). Acta Cryst. E75, 980–983. [DOI] [PMC free article] [PubMed]
  3. Bouzian, Y., Karrouchi, K., Anouar, E. H., Bouhfid, R., Arshad, S. & Essassi, E. M. (2019b). Acta Cryst. E75, 912–916. [DOI] [PMC free article] [PubMed]
  4. Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.
  5. Bruker (2016). APEX3 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.
  6. Cannalire, R., Barreca, M. L., Manfroni, G. & Cecchetti, V. (2016). J. Med. Chem. 59, 16–41. [DOI] [PubMed]
  7. Chu, X. M., Wang, C., Liu, W., Liang, L. L., Gong, K. K., Zhao, C. Y. & Sun, K. L. (2019). Eur. J. Med. Chem. 161, 101–117. [DOI] [PubMed]
  8. Filali Baba, Y., Kandri Rodi, Y., Hayani, S., Jasinski, J. P., Kaur, M. & Essassi, E. M. (2017a). IUCrData, 2, x170917.
  9. Filali Baba, Y., Kandri Rodi, Y., Jasinski, J. P., Kaur, M., Ouzidan, Y. & Essassi, E. M. (2017b). IUCrData, 2, x171072.
  10. Filali Baba, Y., Mague, J. T., Kandri Rodi, Y., Ouzidan, Y., Essassi, E. M. & Zouihri, H. (2016). IUCrData, 1, x160997.
  11. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  12. Hu, Y. Q., Gao, C., Zhang, S., Xu, L., Xu, Z., Feng, L. S., Wu, X. & Zhao, F. (2017). Eur. J. Med. Chem. 139, 22–47. [DOI] [PubMed]
  13. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  14. Palit, P., Paira, P., Hazra, A., Banerjee, S., Gupta, A. D., Dastidar, S. G. & Mondal, N. B. (2009). Eur. J. Med. Chem. 44, 845–853. [DOI] [PubMed]
  15. Panda, S. S., Liaqat, S., Girgis, A. S., Samir, A., Hall, C. D. & Katritzky, A. R. (2015). Bioorg. Med. Chem. Lett. 25, 3816–3821. [DOI] [PubMed]
  16. Paterna, R., André, V., Duarte, M. T., Veiros, L. F., Candeias, N. R. & Gois, P. M. P. (2013). Eur. J. Org. Chem. 2013, 6280–6290.
  17. Pinz, M., Reis, A. S., Duarte, V., da Rocha, M. J., Goldani, B. S., Alves, D., Savegnago, L., Luchese, C. & Wilhelm, E. A. (2016). Eur. J. Pharmacol. 780, 122–128. [DOI] [PubMed]
  18. Sekgota, K. C., Majumder, S., Isaacs, M., Mnkandhla, D., Hoppe, H. C., Khanye, S. D., Kriel, F. H., Coates, J. & Kaye, P. T. (2017). Bioorg. Chem. 75, 310–316. [DOI] [PubMed]
  19. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  20. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  21. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  22. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  23. Tang, Q. D., Duan, Y. L., Xiong, H. H., Chen, T., Xiao, Z., Wang, L. X., Xiao, Y. Y., Huang, S. M., Xiong, Y., Zhu, W., Gong, P. & Zheng, P. (2018). Eur. J. Med. Chem. 158, 201–213. [DOI] [PubMed]
  24. Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia. http://hirshfeldsurface.net.
  25. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  26. Xu, Z., Gao, C., Ren, Q. C., Song, X. F., Feng, L. S. & Lv, Z. S. (2017). Eur. J. Med. Chem. 139, 429–440. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989020004521/wm5550sup1.cif

e-76-00642-sup1.cif (455.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020004521/wm5550Isup2.hkl

e-76-00642-Isup2.hkl (312.9KB, hkl)

CCDC reference: 1994187

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES