The dihydrobenzothiazine ring is distinctly folded across the S⋯N axis and a puckering analysis of its conformation was performed. In the crystal, two sets of weak C—HPh⋯ODbt (Ph = phenyl and Dbt = dihydrobenzothiazine) hydrogen bonds form layers parallel to the bc plane. The layers stack along the a-axis direction with intercalation of the ester chains.
Keywords: crystal structure, hydrogen bond, dihydrobenzothiazine, antibacterial activity, Hirshfeld surface
Abstract
The title compound, C19H16ClNO3S, consists of chlorophenyl methylidene and dihydrobenzothiazine units linked to an acetate moiety, where the thiazine ring adopts a screw-boat conformation. In the crystal, two sets of weak C—HPh⋯ODbt (Ph = phenyl and Dbt = dihydrobenzothiazine) hydrogen bonds form layers of molecules parallel to the bc plane. The layers stack along the a-axis direction with intercalation of the ester chains. The crystal studied was a two component twin with a refined BASF of 0.34961 (5). The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H⋯H (37.5%), H⋯C/C⋯H (24.6%) and H⋯O/O⋯H (16.7%) interactions. Hydrogen-bonding and van der Waals interactions are the dominant interactions in the crystal packing. Computational chemistry indicates that in the crystal, C—HPh⋯ODbt hydrogen bond energies are 38.3 and 30.3 kJ mol−1. Density functional theory (DFT) optimized structures at the B3LYP/ 6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap. Moreover, the antibacterial activity of the title compound has been evaluated against gram-positive and gram-negative bacteria.
Chemical context
A number of pharmacological tests have revealed 1,4-benzothiazine derivatives to possess a wide spectrum of biological applications, indicating that the 1,4-benzothiazine moiety is a potentially useful template in medicinal chemistry research and therapeutic applications such as in vivo antiproliferative (Zięba et al., 2016 ▸), antibacterial (Sebbar et al., 2016b
▸; Ellouz et al., 2019 ▸), antimicrobial (Armenise et al., 2012 ▸; Sabatini et al., 2008 ▸; Vijay & Rahul, 2016 ▸), anti-viral (Malagu et al., 1998 ▸), anti-oxidant (Zia-ur-Rehman et al., 2009 ▸), anti-inflammatory (Trapani et al., 1985 ▸; Gowda et al., 2011 ▸), antipyretic (Warren & Knaus, 1987 ▸) and anti-cancer (Gupta & Gupta, 1991 ▸; Gupta et al., 1985 ▸) areas. They have also been reported as precursors for the syntheses of new compounds (Sebbar et al., 2015a
▸; Vidal et al., 2006 ▸) possessing anti-diabetic (Tawada et al., 1990 ▸) and anti-corrosion (Ellouz et al., 2016a
▸,b
▸) activities, and as antiproliferative (Zięba et al., 2010 ▸) or antihelmintic (Munirajasekar et al., 2011 ▸) agents. The biological activities of some 1,4-benzothiazines are similar to those of phenothiazines, featuring the same structural specificity (Hni et al., 2019a
▸,b
▸; Ellouz et al., 2017a
▸, 2018 ▸, 2019 ▸; Sebbar et al., 2019a
▸,b
▸). In a continuation of our research activities devoted to the development of N-substituted 1,4-benzothiazine derivatives and the evaluation of their potential pharmacological activities (Ellouz et al., 2017a
▸; Sebbar et al., 2017a
▸), we have synthesized a new heterocyclic system containing 1,4-benzothiazine. We report herein the synthesis and the molecular and crystal structures along with the Hirshfeld surface analysis and interaction energy calculations [using the CE–B3LYP/6–31G(d,p) energy model] and the density functional theory (DFT) computational calculations carried out at the B3LYP/6–311 G(d,p) level compared with the experimentally determined molecular structure in the solid state. Moreover, the antibacterial activity of the title compound has been evaluated against gram-positive and gram-negative bacteria (e.g. Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa).
Structural commentary
The title compound, (I), consists of chlorophenyl methylidene and dihydrobenzothiazine units linked to an acetate moiety, where the thiazine ring adopts a screw-boat conformation (Fig. 1 ▸). The dihydrobenzothiazine ring is folded across the N1⋯S1 axis by 36.70 (7)°. A puckering analysis of the thiazine, B (N1/S1/C1/C6–C8), ring conformation gave the parameters Q T = 0.5525 (16) Å, θ = 109.0 (2)° and φ = 161.0 (2)°, indicating a screw-boat conformation. The mean plane of the N1/C16/C17/O2/O3 group is inclined to the mean plane of the S1/C1–C6/N1 unit by 80.06 (7)° while the phenyl, C (C10–C15), ring makes a dihedral angle of 84.92 (6)° with the latter plane. The benzene ring A (C1–C6) is oriented at a dihedral angle of 84.46 (2)° with respect to the C ring.
Figure 1.
The asymmetric unit of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Supramolecular features
In the crystal, two sets of weak C—HPh⋯ODbt (Ph = phenyl and Dbt = dihydrobenzothiazine) hydrogen bonds (Table 1 ▸) form layers of molecules parallel to the bc plane (Fig. 2 ▸). The layers stack along the a-axis direction with intercalation of the ester chains (Fig. 2 ▸).
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C12—H12⋯O1vii | 0.95 (3) | 2.56 (3) | 3.214 (2) | 126 (2) |
| C15—H15⋯O1ii | 0.95 (2) | 2.40 (2) | 3.227 (2) | 145.8 (15) |
Symmetry codes: (ii)
; (vii)
.
Figure 2.
A partial packing diagram viewed along the b-axis direction. The weak C—HPh⋯ODbt (Ph = phenyl and Dbt = dihydrobenzothiazine) hydrogen bonds are depicted by black dashed lines.
Hirshfeld surface analysis
In order to visualize the intermolecular interactions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977 ▸; Spackman & Jayatilaka, 2009 ▸) was carried out using Crystal Explorer 17.5 (Turner et al., 2017 ▸). In the HS plotted over d norm (Fig. 3 ▸), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distant contact) than the van der Waals radii, respectively (Venkatesan et al., 2016 ▸). The bright-red spots appearing near O1 and hydrogen atom H15 indicate their roles as the respective donors and/or acceptors; they also appear as blue and red regions corresponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008 ▸; Jayatilaka et al., 2005 ▸) as shown in Fig. 4 ▸. Here the blue regions indicate positive electrostatic potential (hydrogen-bond donors), while the red regions indicate negative electrostatic potential (hydrogen-bond acceptors). The shape-index of the HS is a tool to visualize the π–π stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no π–π interactions. Fig. 5 ▸ clearly suggests that there are no π–π interactions in (I).
Figure 3.
View of the three-dimensional Hirshfeld surface of the title compound plotted over d norm in the range −0.1956 to 1.3971 a.u.
Figure 4.
View of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range −0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory. Hydrogen-bond donors and acceptors are shown as blue and red regions around the atoms corresponding to positive and negative potentials, respectively.
Figure 5.
Hirshfeld surface of the title compound plotted over shape-index.
The overall two-dimensional fingerprint plot, Fig. 6 ▸ a, and those delineated into H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, H⋯Cl/Cl⋯H, C⋯Cl/Cl⋯C, H⋯S/S⋯H, S⋯Cl/Cl⋯S and C⋯C contacts (McKinnon et al., 2007 ▸) are illustrated in Fig. 6 ▸ b–i, respectively, together with their relative contributions to the Hirshfeld surface. The most important interaction is H⋯H (Table 2 ▸) contributing 37.5% to the overall crystal packing, which is reflected in Fig. 6 ▸ b as widely scattered points of high density due to the large hydrogen-atom content of the molecule with the tip at d e = d i = 1.10 Å. The pair of characteristic wings in the fingerprint plot delineated into H⋯C/C⋯H contacts (Table 2 ▸, Fig. 6 ▸ c; 24.6% contribution to the HS), have tips at d e + d i = 2.72 Å. The H⋯O/O⋯H contacts (Table 1 ▸, Fig. 6 ▸ d) with a 16.7% contribution to the HS have a symmetric distribution of points with the tips at d e + d i = 2.27 Å. The scattered points in the wings in the fingerprint plot delineated into H⋯Cl/Cl⋯H, Fig. 6 ▸ e, contacts (7.1% contribution) have the tips at d e + d i = 3.14 Å. The C⋯Cl/Cl⋯C contacts, Fig. 6 ▸ f, with 4.2% contribution to the HS have an arrow-shaped distribution of points of split small wings with the tips at d e + d i = 3.41 Å. The pair of spikes in the fingerprint plot delineated into H⋯S/S⋯H, Fig. 6 ▸ g, contacts (4.0% contribution) have tips at d e + d i = 2.78 Å. The pair of characteristic wings in the fingerprint plot delineated into S⋯Cl/Cl⋯S contacts, Fig. 6 ▸ h, (2.1% contribution) has the tips at d e + d i = 3.70 Å. Finally, the C⋯C contacts, Fig. 6 ▸ i, (1.3% contribution) have an arrow-shaped distribution of points with the tip at d e = d i = 1.85 Å.
Figure 6.
The full two-dimensional fingerprint plots for the title compound, showing (a) all interactions, and delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯O/O⋯H, (e) H⋯Cl/Cl ⋯ H, (f) C⋯Cl/Cl⋯C, (g) H⋯S/S⋯H, (h) S ⋯ Cl/Cl⋯S and (i) C⋯C interactions. The d i and d e values are the closest internal and external distances (in Å) from given points on the Hirshfeld surface.
Table 2. Selected interatomic distances (Å).
| Cl1⋯C14i | 3.5363 (9) | O1⋯H12i | 2.560 (9) |
| Cl1⋯S1i | 3.7268 (3) | O1⋯H15ii | 2.400 (8) |
| Cl1⋯C10i | 3.5940 (7) | O2⋯H18B | 2.545 (11) |
| Cl1⋯C15i | 3.4359 (7) | O2⋯H13i | 2.606 (10) |
| Cl1⋯H9 | 2.674 (8) | O2⋯H18A | 2.74 (3) |
| S1⋯N1 | 3.0100 (6) | O3⋯H16B vi | 2.666 (8) |
| S1⋯C15 | 3.1748 (8) | C2⋯C17 | 3.2932 (10) |
| S1⋯O1ii | 3.4189 (6) | C4⋯C14iii | 3.5882 (12) |
| S1⋯H15 | 2.660 (10) | C2⋯H16B | 2.621 (8) |
| S1⋯H5iii | 2.906 (9) | C4⋯H14iii | 2.826 (10) |
| O1⋯C17 | 3.1263 (9) | C4⋯H12vii | 2.993 (10) |
| O1⋯C12i | 3.2141 (10) | C5⋯H12vii | 2.817 (10) |
| O1⋯C15ii | 3.2268 (8) | C7⋯H15 | 2.937 (9) |
| O2⋯N1 | 2.7902 (7) | C15⋯H16A ii | 2.900 (9) |
| O2⋯C8 | 3.2091 (9) | C16⋯H16B vi | 2.987 (9) |
| O2⋯C1 | 3.3715 (8) | C16⋯H2 | 2.538 (9) |
| O2⋯C3iv | 3.3498 (10) | C17⋯H2 | 2.696 (9) |
| O2⋯C2 | 3.4103 (9) | H2⋯H16B | 2.223 (12) |
| O1⋯H9 | 2.516 (9) | H5⋯H12vii | 2.444 (13) |
| O1⋯H16A | 2.376 (9) | H5⋯H15iii | 2.509 (12) |
| O1⋯H4v | 2.806 (11) | H16B⋯H16B vi | 2.381 (13) |
Symmetry codes: (i)
; (ii)
; (iii)
; (iv)
; (v)
; (vi)
; (vii)
.
The Hirshfeld surface representations with the function d norm plotted onto the surface are shown for the H⋯H, H⋯C/C⋯H, H⋯O/O⋯H and H⋯Cl/Cl⋯H interactions in Fig. 7 ▸ a-d, respectively.
Figure 7.
Hirshfeld surface representations with the function d norm plotted onto the surface for (a) H⋯H, (b) H⋯C/C⋯H, (c) H⋯O/O⋯H and (d) H⋯Cl/Cl⋯H interactions.
The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯C/C⋯H and H⋯O/O⋯H interactions suggest that van der Waals interactions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015 ▸).
Interaction energy calculations
The intermolecular interaction energies were calculated using the CE–B3LYP/6–31G(d,p) energy model available in Crystal Explorer 17.5 (Turner et al., 2017 ▸), where a cluster of molecules is generated by applying crystallographic symmetry operations with respect to a selected central molecule within a default radius of 3.8 Å (Turner et al., 2014 ▸). The total intermolecular energy (E tot) is the sum of electrostatic (E ele), polarization (E pol), dispersion (E dis) and exchange-repulsion (E rep) energies (Turner et al., 2015 ▸) with scale factors of 1.057, 0.740, 0.871 and 0.618, respectively (Mackenzie et al., 2017 ▸). Hydrogen-bonding interaction energies (in kJ mol−1) were calculated to be −20.3 (E ele), −5.9 (E pol), −48.7 (E dis), 48.5 (E rep) and −38.3 (E tot) for C15—H15⋯O1 and −15.2 (E ele), −4.1 (E pol), −42.2 (E dis), 41.3 (E rep) and −30.3 (E tot) for C12—H12⋯O1.
DFT calculations
The optimized structure of the title compound, (I), in the gas phase was generated theoretically via density functional theory (DFT) using the standard B3LYP functional and 6–311 G(d,p) basis-set calculations (Becke, 1993 ▸) as implemented in GAUSSIAN 09 (Frisch et al., 2009 ▸). The theoretical and experimental results are in good agreement (Table 3 ▸). The highest-occupied molecular orbital (HOMO), acting as an electron donor, and the lowest-unoccupied molecular orbital (LUMO), acting as an electron acceptor, are important parameters for quantum chemistry. When the energy gap is small, the molecule is highly polarizable and has high chemical reactivity. The DFT calculations provide some important information on the reactivity and site selectivity of the molecular framework. E HOMO and E LUMO clarify the inevitable charge-exchange collaboration inside the studied material, electronegativity (χ), hardness (η), potential (μ), electrophilicity (ω) and softness (σ) are recorded in Table 4 ▸. The parameters η and σ are significant for the evaluation of both the reactivity and stability. The electron transition from the HOMO to the LUMO energy level is shown in Fig. 8 ▸. The HOMO and LUMO are localized in the plane extending from the whole 2-[(2Z)-2-(2-chlorobenzylidene)-3-oxo-3,4-dihydro-2H-1,4-benzothiazin-4-yl]acetate ring. The energy band gap [ΔE = E LUMO - E HOMO] of the molecule is 4.3346 eV, and the frontier molecular orbital energies, E HOMO and E LUMO are −5.2696 and −0.9347 eV, respectively.
Table 3. Comparison of selected (X-ray and DFT) geometric data (Å, °).
| Bonds/angles | X-ray | B3LYP/6–311G(d,p) |
|---|---|---|
| Cl1—C11 | 1.741 (2) | 1.83593 |
| S1—C6 | 1.755 (2) | 1.83362 |
| S1—C7 | 1.757 (2) | 1.79349 |
| O1—C8 | 1.224 (2) | 1.26839 |
| O2—C17 | 1.200 (2) | 1.23993 |
| O3—C17 | 1.335 (2) | 1.36867 |
| O3—C18 | 1.462 (3) | 1.48321 |
| N1—C8 | 1.381 (2) | 1.40044 |
| N1—C1 | 1.417 (2) | 1.41683 |
| N1—C16 | 1.452 (2) | 1.47008 |
| C6—S1—C7 | 98.19 (9) | 99.41730 |
| C17—O3—C18 | 116.60 (16) | 116.97676 |
| C8—N1—C1 | 124.52 (15) | 125.49531 |
| C8—N1—C16 | 115.56 (16) | 115.02066 |
| C1—N1—C16 | 118.47 (16) | 118.38057 |
| C2—C1—N1 | 121.41 (17) | 121.23845 |
| C2—C1—C6 | 118.60 (18) | 117.94010 |
| C6—C1—N1 | 120.00 (17) | 120.81444 |
| O1—C8—N1 | 120.36 (17) | 120.12402 |
| O1—C8—C7 | 121.99 (17) | 120.12402 |
| N1—C8—C7 | 117.64 (16) | 117.79908 |
Table 4. Calculated energies.
| Molecular Energy (a.u.) (eV) | Compound (I) |
|---|---|
| Total Energy, TE (eV) | −50964 |
| EHOMO (eV) | −5.2696 |
| ELUMO (eV) | −0.9347 |
| Gap, ΔE (eV) | 4.3346 |
| Dipole moment, μ (Debye) | 5.6841 |
| Ionization potential, I (eV) | 5.2696 |
| Electron affinity, A | 0.9347 |
| Electronegativity, χ | 3.1019 |
| Hardness, η | 2.1673 |
| Electrophilicity index, ω | 2.2198 |
| Softness, σ | 0.4614 |
| Fraction of electron transferred, ΔN | 0.8993 |
Figure 8.

The energy band gap of the title compound, (I).
Database survey
A search of the Cambridge Structural Database (Version 5.38; Groom et al., 2016 ▸) with the fragment (II) yielded 16 hits. The largest group is that for (III) with R = Ph and R′ = A
(WUFGIP; Sebbar et al., 2015b
▸), CH2COOH (APAJUY; Sebbar et al., 2016a
▸), (CH2)17CH3 (CARCEG; Sebbar et al., 2017a
▸), n-Bu (JOGVOS; Sebbar et al., 2014a
▸), CH2C≡CH (COGRUN; Sebbar et al., 2014b
▸), R = Ph and R′ = B
(EVIYIT; (Sebbar et al., 2016b
▸), CH2COOCH3 (ICAJOL; Zerzouf et al., 2001 ▸), R = Ph and R′ = C
(JADPOW; Ellouz et al., 2015 ▸) and R = Ph and R′ = D
(OBITUR; Sebbar et al., 2016c
▸). The remainder have R = 4-ClC6H4 and R′ = bz (OMEGEU; Ellouz et al., 2016c
▸), n-Bu (PAWCIC; Ellouz et al., 2017a
▸) and R = 4-ClC6H4 and R′ = B
(YANHAZ; Ellouz et al., 2017b
▸) or R = 2-ClC6H4, and R′ = CH2C≡CH (SAVTUH; Sebbar et al., 2017b
▸) or R = 4-FC6H4 and R′ = CH2C≡CH (WOCFUS; Hni et al., 2019a
▸) or R = 2,4-Cl2C6H3 and R′ = B (DOHZUY; Hni et al., 2019b
▸, CH2CH2CN (POHPOU; Sebbar et al., 2019a
▸). In the majority of these, the thiazine ring is significantly folded about the S⋯N axis with dihedral angles between the two S/C/C/N planes ranging from ca 35° (JADPOW and WUFGIP) to ca 27° (COGRUN and WOCFUS). Two others have intermediate values of ca 15° (POHPOU) and 9° (DOHZUY), while in the last three, the thiazine ring is nearly flat with a dihedral angle of ca 4° (EVIYIT, OBITUR and OMEGEU). It is not immediately obvious what the reasons are for these nearly planar rings, but it may be in part due to packing considerations since in these last three molecules, the substituents on the thiazine rings do not hold the benzothiazine moieties as far apart as in the other cases, so that π-stacking interactions between the benzo portions can bring them close together and flatten out the rings.
Antibacterial activity
To compare and analyse the antibacterial behaviour contributed by (I), and commercial antibiotics such as Chloramphenicol (Chlor) and Ampicillin (Amp), we have tested the title compound, (I), against Staphylococcus aureus (ATCC-25923), Escherichia coli (ATTC-25922) and Pseudomonas aeruginosa (ATCC-27853) strains of bacteria using the diffusion disk method to evaluate the applicability of (I) as an antibacterial agent (Mabkhot et al., 2016 ▸; Hoffmann et al., 2017 ▸). Fig. 9 ▸ summarizes the diameter of inhibition (mm) values of (I) and commercial antibiotics chloramphenicol (Chlor) and ampicillin (Amp) against Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. The determination of the minimum inhibition concentration (MIC) values of the sample (I) against the bacteria are presented in Table 5 ▸. The results of antibacterial activity of the product tested showed the best activity with MIC value of 21 µg mL−1 and different degrees of growth inhibition against the bacteria tested. It is clear that there is a significant enhancement and a strong antibacterial activity associated with sample (I), as compared to commercial antibiotics. In addition, the maximum effect of (I) was recorded against Staphylococcus aureus (diameter of inhibition 16.4 mm). Chloramphenicol and ampicillin present a moderate antibacterial activity diameter of inhibition 22.6 mm and 11.75 mm, respectively, and no zone inhibition was observed with DMSO. On one hand, the chemical structure of (I) can explain this biologic effect. The mechanism of action of (I) is not attributable to one specific mechanism, but there are several targets in the cell: degradation of the cell wall, damage to membrane proteins, damage to cytoplasmic membrane, leakage of cell contents and coagulation of cytoplasm. On the other hand, it should be noted that the derivatives functionalized by ester groups and benzene rings have the highest antibacterial coefficient (92% of pathogenic bacteria are sensitive). This study is expected to include anti-inflammatory, antifungal, anti-parasitic and anti-cancer activities, because the literature gives a lot of interesting results on these topics. Some other types of bacteria may possibly be tested by employing the same method so as to eventually generalize the suggested investigation method (Alderman & Smith, 2001 ▸).
Figure 9.
Antibacterial activity of the title compound, (I), and the commercial antibiotics chloramphenicol (Chlor) and ampicillin (Amp) against the bacteria Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa.
Table 5. Minimal inhibitory concentration [MIC (μg mL −1)].
ATCC-25923 = Staphylococcus aureus, ATTC-25922 = Escherichia coli, ATCC-27853 = Pseudomonas aeruginosa, Chlor = chloramphenicol and Amp = ampicillin.
| Product | ATCC-25923 | ATTC-25922 | ATCC-27853 |
|---|---|---|---|
| (I) | 21 | 21 | 21 |
| Chlor | 58 | 58 | 58 |
| Amp | 12 | 12 | 12 |
| DMSO | 0 | 0 | 0 |
Synthesis and crystallization
To a solution of 2-(2-chlorobenzylidene)-3,4-dihydro-2H-1,4-benzothiazin-3-one (0.57 g, 2 mmol), potassium carbonate (4 mmol) and tetra n-butyl ammonium bromide (0.2 mmol) in DMF (14 ml) was added ethyl chloroacetate (0.49 g, 4 mmol). Stirring was continued at room temperature for 14 h. The mixture was filtered and the solvent removed. The residue was extracted with water. The organic compound was chromatographed on a column of silica gel with ethyl acetate–hexane (8:2) as eluent. Colourless crystals of the title compound, (I), were isolated when the solvent was allowed to evaporate (yield: 66%).
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 6 ▸. Hydrogen atoms were located in a difference-Fourier map and refined freely. The model was refined as a two-component twin with twin law
0 0, 0
0, 0 0
and a refined BASF parameter of 0.34961 (5).
Table 6. Experimental details.
| Crystal data | |
| Chemical formula | C19H16ClNO3S |
| M r | 373.84 |
| Crystal system, space group | Monoclinic, P21/c |
| Temperature (K) | 150 |
| a, b, c (Å) | 11.6882 (2), 9.0903 (2), 16.9533 (3) |
| β (°) | 105.105 (1) |
| V (Å3) | 1739.04 (6) |
| Z | 4 |
| Radiation type | Cu Kα |
| μ (mm−1) | 3.22 |
| Crystal size (mm) | 0.19 × 0.15 × 0.11 |
| Data collection | |
| Diffractometer | Bruker D8 VENTURE PHOTON 100 CMOS |
| Absorption correction | Multi-scan (TWINABS; Sheldrick, 2009 ▸) |
| T min, T max | 0.57, 0.72 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 25761, 25761, 21950 |
| R int | 0.032 |
| (sin θ/λ)max (Å−1) | 0.625 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.039, 0.101, 1.03 |
| No. of reflections | 25761 |
| No. of parameters | 292 |
| H-atom treatment | All H-atom parameters refined |
| Δρmax, Δρmin (e Å−3) | 0.72, −0.80 |
Supplementary Material
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989020004119/lh5950sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020004119/lh5950Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989020004119/lh5950Isup3.cdx
Supporting information file. DOI: 10.1107/S2056989020004119/lh5950Isup4.cml
CCDC reference: 1992626
Additional supporting information: crystallographic information; 3D view; checkCIF report
supplementary crystallographic information
Crystal data
| C19H16ClNO3S | F(000) = 776 |
| Mr = 373.84 | Dx = 1.428 Mg m−3 |
| Monoclinic, P21/c | Cu Kα radiation, λ = 1.54178 Å |
| a = 11.6882 (2) Å | Cell parameters from 9820 reflections |
| b = 9.0903 (2) Å | θ = 3.9–74.6° |
| c = 16.9533 (3) Å | µ = 3.22 mm−1 |
| β = 105.105 (1)° | T = 150 K |
| V = 1739.04 (6) Å3 | Block, colourless |
| Z = 4 | 0.19 × 0.15 × 0.11 mm |
Data collection
| Bruker D8 VENTURE PHOTON 100 CMOS diffractometer | 25761 independent reflections |
| Radiation source: INCOATEC IµS micro–focus source | 21950 reflections with I > 2σ(I) |
| Mirror monochromator | Rint = 0.032 |
| Detector resolution: 10.4167 pixels mm-1 | θmax = 74.6°, θmin = 3.9° |
| ω scans | h = −14→13 |
| Absorption correction: multi-scan (TWINABS; Sheldrick, 2009) | k = −11→10 |
| Tmin = 0.57, Tmax = 0.72 | l = −21→21 |
| 25761 measured reflections |
Refinement
| Refinement on F2 | Secondary atom site location: difference Fourier map |
| Least-squares matrix: full | Hydrogen site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.039 | All H-atom parameters refined |
| wR(F2) = 0.101 | w = 1/[σ2(Fo2) + (0.0405P)2 + 0.4043P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.02 | (Δ/σ)max < 0.001 |
| 25761 reflections | Δρmax = 0.72 e Å−3 |
| 292 parameters | Δρmin = −0.80 e Å−3 |
| 0 restraints | Extinction correction: SHELXL2018/1 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
| Primary atom site location: dual space | Extinction coefficient: 0.0032 (6) |
Special details
| Experimental. Analysis of 529 reflections having I/σ(I) > 12 and chosen from the full data set with CELL_NOW (Sheldrick, 2008a) showed the crystal to belong to the monoclinic system and to be twinned by a 180° rotation about the b axis. The raw data were processed using the multi- component version of SAINT under control of the two-component orientation file generated by CELL_NOW. |
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Refined as a 2-component twin. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Cl1 | 0.50488 (5) | 0.51497 (7) | 0.19568 (3) | 0.03952 (18) | |
| S1 | 0.44083 (4) | 0.78070 (6) | 0.47131 (3) | 0.02735 (16) | |
| O1 | 0.31103 (13) | 0.39288 (15) | 0.41536 (8) | 0.0264 (3) | |
| O2 | 0.05392 (14) | 0.49512 (17) | 0.29883 (9) | 0.0341 (4) | |
| O3 | −0.04896 (13) | 0.37965 (16) | 0.37586 (9) | 0.0306 (3) | |
| N1 | 0.21745 (14) | 0.60019 (17) | 0.43805 (10) | 0.0223 (3) | |
| C1 | 0.19875 (18) | 0.7541 (2) | 0.42964 (11) | 0.0216 (4) | |
| C2 | 0.08488 (19) | 0.8137 (2) | 0.40863 (13) | 0.0272 (4) | |
| H2 | 0.019 (2) | 0.750 (3) | 0.3964 (15) | 0.032 (6)* | |
| C3 | 0.0683 (2) | 0.9646 (2) | 0.40245 (13) | 0.0299 (5) | |
| H3 | −0.010 (3) | 1.002 (3) | 0.3866 (16) | 0.038 (7)* | |
| C4 | 0.1643 (2) | 1.0587 (2) | 0.41608 (13) | 0.0294 (5) | |
| H4 | 0.152 (3) | 1.159 (3) | 0.4110 (17) | 0.045 (7)* | |
| C5 | 0.2778 (2) | 1.0009 (2) | 0.43568 (13) | 0.0274 (4) | |
| H5 | 0.345 (2) | 1.066 (3) | 0.4429 (15) | 0.033 (6)* | |
| C6 | 0.29556 (17) | 0.8496 (2) | 0.44327 (11) | 0.0228 (4) | |
| C7 | 0.41573 (18) | 0.6168 (2) | 0.41447 (11) | 0.0224 (4) | |
| C8 | 0.31254 (18) | 0.5270 (2) | 0.42214 (11) | 0.0214 (4) | |
| C9 | 0.48358 (18) | 0.5650 (2) | 0.36782 (12) | 0.0239 (4) | |
| H9 | 0.461 (2) | 0.474 (3) | 0.3411 (15) | 0.030 (6)* | |
| C10 | 0.58341 (18) | 0.6384 (2) | 0.34694 (12) | 0.0230 (4) | |
| C11 | 0.59934 (19) | 0.6260 (2) | 0.26787 (12) | 0.0266 (4) | |
| C12 | 0.6869 (2) | 0.7022 (2) | 0.24392 (13) | 0.0308 (5) | |
| H12 | 0.693 (2) | 0.689 (3) | 0.1896 (16) | 0.039 (7)* | |
| C13 | 0.7644 (2) | 0.7914 (2) | 0.29922 (13) | 0.0316 (5) | |
| H13 | 0.826 (3) | 0.842 (3) | 0.2818 (17) | 0.042 (7)* | |
| C14 | 0.75389 (19) | 0.8019 (2) | 0.37885 (13) | 0.0281 (4) | |
| H14 | 0.808 (2) | 0.863 (3) | 0.4187 (16) | 0.037 (7)* | |
| C15 | 0.66479 (18) | 0.7271 (2) | 0.40190 (12) | 0.0255 (4) | |
| H15 | 0.659 (2) | 0.733 (2) | 0.4564 (15) | 0.027 (6)* | |
| C16 | 0.11979 (18) | 0.5077 (2) | 0.44607 (12) | 0.0235 (4) | |
| H16A | 0.151 (2) | 0.421 (3) | 0.4763 (15) | 0.029 (6)* | |
| H16B | 0.077 (2) | 0.556 (3) | 0.4769 (14) | 0.026 (6)* | |
| C17 | 0.03970 (18) | 0.4622 (2) | 0.36420 (12) | 0.0244 (4) | |
| C18 | −0.1348 (2) | 0.3263 (3) | 0.30254 (15) | 0.0386 (5) | |
| H18A | −0.092 (3) | 0.255 (3) | 0.2763 (18) | 0.048 (8)* | |
| H18B | −0.161 (3) | 0.410 (3) | 0.2641 (19) | 0.049 (8)* | |
| C19 | −0.2350 (3) | 0.2585 (4) | 0.3297 (2) | 0.0509 (7) | |
| H19A | −0.205 (3) | 0.173 (3) | 0.370 (2) | 0.054 (8)* | |
| H19B | −0.289 (3) | 0.220 (4) | 0.283 (2) | 0.069 (10)* | |
| H19C | −0.274 (3) | 0.331 (4) | 0.359 (2) | 0.061 (9)* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Cl1 | 0.0417 (4) | 0.0478 (3) | 0.0343 (3) | −0.0153 (2) | 0.0194 (2) | −0.0140 (2) |
| S1 | 0.0165 (3) | 0.0318 (3) | 0.0341 (3) | −0.00303 (19) | 0.0072 (2) | −0.0083 (2) |
| O1 | 0.0279 (8) | 0.0251 (7) | 0.0300 (7) | −0.0012 (6) | 0.0143 (6) | 0.0008 (5) |
| O2 | 0.0335 (9) | 0.0442 (9) | 0.0270 (7) | −0.0083 (7) | 0.0122 (7) | 0.0003 (6) |
| O3 | 0.0253 (8) | 0.0361 (8) | 0.0318 (7) | −0.0111 (6) | 0.0100 (6) | −0.0034 (6) |
| N1 | 0.0180 (8) | 0.0251 (8) | 0.0265 (8) | −0.0032 (6) | 0.0104 (7) | 0.0002 (6) |
| C1 | 0.0196 (10) | 0.0247 (9) | 0.0226 (8) | −0.0025 (8) | 0.0093 (8) | −0.0020 (7) |
| C2 | 0.0178 (10) | 0.0308 (10) | 0.0340 (10) | −0.0033 (8) | 0.0086 (8) | −0.0031 (8) |
| C3 | 0.0215 (11) | 0.0327 (11) | 0.0357 (11) | 0.0027 (9) | 0.0080 (9) | −0.0027 (9) |
| C4 | 0.0296 (12) | 0.0246 (10) | 0.0357 (11) | 0.0008 (9) | 0.0117 (9) | −0.0024 (8) |
| C5 | 0.0238 (11) | 0.0282 (10) | 0.0323 (10) | −0.0061 (8) | 0.0108 (9) | −0.0064 (8) |
| C6 | 0.0170 (10) | 0.0287 (10) | 0.0241 (9) | −0.0019 (8) | 0.0083 (8) | −0.0036 (7) |
| C7 | 0.0190 (10) | 0.0253 (9) | 0.0236 (9) | −0.0012 (7) | 0.0072 (8) | 0.0016 (7) |
| C8 | 0.0200 (10) | 0.0274 (10) | 0.0184 (8) | −0.0010 (8) | 0.0076 (7) | 0.0006 (7) |
| C9 | 0.0217 (10) | 0.0254 (10) | 0.0262 (9) | −0.0004 (8) | 0.0094 (8) | 0.0020 (8) |
| C10 | 0.0191 (10) | 0.0252 (9) | 0.0275 (9) | 0.0040 (7) | 0.0111 (8) | 0.0039 (7) |
| C11 | 0.0243 (11) | 0.0282 (10) | 0.0300 (10) | 0.0001 (8) | 0.0121 (9) | −0.0012 (8) |
| C12 | 0.0313 (12) | 0.0368 (12) | 0.0298 (10) | −0.0013 (9) | 0.0177 (9) | 0.0006 (9) |
| C13 | 0.0249 (11) | 0.0386 (12) | 0.0359 (11) | −0.0044 (9) | 0.0164 (9) | 0.0038 (9) |
| C14 | 0.0181 (10) | 0.0374 (11) | 0.0296 (10) | −0.0027 (9) | 0.0072 (8) | 0.0006 (9) |
| C15 | 0.0196 (10) | 0.0333 (10) | 0.0248 (9) | 0.0022 (8) | 0.0083 (8) | 0.0038 (8) |
| C16 | 0.0208 (10) | 0.0267 (10) | 0.0268 (9) | −0.0039 (8) | 0.0129 (8) | 0.0003 (8) |
| C17 | 0.0212 (10) | 0.0239 (9) | 0.0307 (10) | −0.0017 (8) | 0.0114 (8) | −0.0017 (8) |
| C18 | 0.0306 (13) | 0.0435 (13) | 0.0387 (12) | −0.0113 (11) | 0.0033 (10) | −0.0085 (11) |
| C19 | 0.0319 (15) | 0.0561 (17) | 0.0614 (17) | −0.0187 (13) | 0.0065 (14) | −0.0055 (15) |
Geometric parameters (Å, º)
| Cl1—C11 | 1.741 (2) | C9—C10 | 1.465 (3) |
| S1—C6 | 1.755 (2) | C9—H9 | 0.95 (2) |
| S1—C7 | 1.757 (2) | C10—C15 | 1.401 (3) |
| O1—C8 | 1.224 (2) | C10—C11 | 1.405 (3) |
| O2—C17 | 1.200 (2) | C11—C12 | 1.382 (3) |
| O3—C17 | 1.335 (2) | C12—C13 | 1.383 (3) |
| O3—C18 | 1.462 (3) | C12—H12 | 0.95 (3) |
| N1—C8 | 1.381 (2) | C13—C14 | 1.390 (3) |
| N1—C1 | 1.417 (2) | C13—H13 | 0.96 (3) |
| N1—C16 | 1.452 (2) | C14—C15 | 1.382 (3) |
| C1—C2 | 1.395 (3) | C14—H14 | 0.97 (3) |
| C1—C6 | 1.397 (3) | C15—H15 | 0.95 (2) |
| C2—C3 | 1.386 (3) | C16—C17 | 1.515 (3) |
| C2—H2 | 0.95 (3) | C16—H16A | 0.96 (3) |
| C3—C4 | 1.382 (3) | C16—H16B | 0.92 (3) |
| C3—H3 | 0.94 (3) | C18—C19 | 1.498 (4) |
| C4—C5 | 1.384 (3) | C18—H18A | 0.99 (3) |
| C4—H4 | 0.93 (3) | C18—H18B | 1.00 (3) |
| C5—C6 | 1.392 (3) | C19—H19A | 1.03 (3) |
| C5—H5 | 0.96 (3) | C19—H19B | 0.94 (4) |
| C7—C9 | 1.343 (3) | C19—H19C | 1.00 (4) |
| C7—C8 | 1.490 (3) | ||
| Cl1···C14i | 3.5363 (9) | O1···H12i | 2.560 (9) |
| Cl1···S1i | 3.7268 (3) | O1···H15ii | 2.400 (8) |
| Cl1···C10i | 3.5940 (7) | O2···H18B | 2.545 (11) |
| Cl1···C15i | 3.4359 (7) | O2···H13i | 2.606 (10) |
| Cl1···H9 | 2.674 (8) | O2···H18A | 2.74 (3) |
| S1···N1 | 3.0100 (6) | O3···H16Bvi | 2.666 (8) |
| S1···C15 | 3.1748 (8) | C2···C17 | 3.2932 (10) |
| S1···O1ii | 3.4189 (6) | C4···C14iii | 3.5882 (12) |
| S1···H15 | 2.660 (10) | C2···H16B | 2.621 (8) |
| S1···H5iii | 2.906 (9) | C4···H14iii | 2.826 (10) |
| O1···C17 | 3.1263 (9) | C4···H12vii | 2.993 (10) |
| O1···C12i | 3.2141 (10) | C5···H12vii | 2.817 (10) |
| O1···C15ii | 3.2268 (8) | C7···H15 | 2.937 (9) |
| O2···N1 | 2.7902 (7) | C15···H16Aii | 2.900 (9) |
| O2···C8 | 3.2091 (9) | C16···H16Bvi | 2.987 (9) |
| O2···C1 | 3.3715 (8) | C16···H2 | 2.538 (9) |
| O2···C3iv | 3.3498 (10) | C17···H2 | 2.696 (9) |
| O2···C2 | 3.4103 (9) | H2···H16B | 2.223 (12) |
| O1···H9 | 2.516 (9) | H5···H12vii | 2.444 (13) |
| O1···H16A | 2.376 (9) | H5···H15iii | 2.509 (12) |
| O1···H4v | 2.806 (11) | H16B···H16Bvi | 2.381 (13) |
| C6—S1—C7 | 98.19 (9) | C12—C11—Cl1 | 117.82 (16) |
| C17—O3—C18 | 116.60 (16) | C10—C11—Cl1 | 119.98 (16) |
| C8—N1—C1 | 124.52 (15) | C11—C12—C13 | 119.92 (19) |
| C8—N1—C16 | 115.56 (16) | C11—C12—H12 | 118.0 (16) |
| C1—N1—C16 | 118.47 (16) | C13—C12—H12 | 122.0 (16) |
| C2—C1—C6 | 118.60 (18) | C12—C13—C14 | 119.4 (2) |
| C2—C1—N1 | 121.41 (17) | C12—C13—H13 | 118.8 (16) |
| C6—C1—N1 | 120.00 (17) | C14—C13—H13 | 121.8 (16) |
| C3—C2—C1 | 120.63 (19) | C15—C14—C13 | 120.3 (2) |
| C3—C2—H2 | 120.0 (15) | C15—C14—H14 | 119.2 (16) |
| C1—C2—H2 | 119.4 (15) | C13—C14—H14 | 120.5 (16) |
| C4—C3—C2 | 120.6 (2) | C14—C15—C10 | 121.74 (18) |
| C4—C3—H3 | 120.2 (16) | C14—C15—H15 | 120.3 (15) |
| C2—C3—H3 | 119.2 (16) | C10—C15—H15 | 118.0 (15) |
| C3—C4—C5 | 119.4 (2) | N1—C16—C17 | 112.65 (16) |
| C3—C4—H4 | 120.0 (18) | N1—C16—H16A | 109.1 (15) |
| C5—C4—H4 | 120.6 (18) | C17—C16—H16A | 109.0 (14) |
| C4—C5—C6 | 120.5 (2) | N1—C16—H16B | 109.1 (15) |
| C4—C5—H5 | 119.4 (15) | C17—C16—H16B | 110.8 (15) |
| C6—C5—H5 | 120.1 (15) | H16A—C16—H16B | 106 (2) |
| C5—C6—C1 | 120.27 (18) | O2—C17—O3 | 125.18 (19) |
| C5—C6—S1 | 119.21 (15) | O2—C17—C16 | 125.21 (18) |
| C1—C6—S1 | 120.51 (15) | O3—C17—C16 | 109.61 (16) |
| C9—C7—C8 | 118.34 (17) | O3—C18—C19 | 107.0 (2) |
| C9—C7—S1 | 125.50 (16) | O3—C18—H18A | 106.6 (17) |
| C8—C7—S1 | 116.11 (14) | C19—C18—H18A | 113.0 (17) |
| O1—C8—N1 | 120.36 (17) | O3—C18—H18B | 109.1 (17) |
| O1—C8—C7 | 121.99 (17) | C19—C18—H18B | 112.6 (18) |
| N1—C8—C7 | 117.64 (16) | H18A—C18—H18B | 108 (2) |
| C7—C9—C10 | 127.75 (19) | C18—C19—H19A | 111.0 (18) |
| C7—C9—H9 | 116.7 (15) | C18—C19—H19B | 108 (2) |
| C10—C9—H9 | 115.3 (15) | H19A—C19—H19B | 109 (3) |
| C15—C10—C11 | 116.42 (18) | C18—C19—H19C | 112.1 (19) |
| C15—C10—C9 | 123.16 (17) | H19A—C19—H19C | 107 (2) |
| C11—C10—C9 | 120.39 (18) | H19B—C19—H19C | 111 (3) |
| C12—C11—C10 | 122.19 (19) | ||
| C8—N1—C1—C2 | 149.38 (19) | C9—C7—C8—N1 | −152.68 (18) |
| C16—N1—C1—C2 | −16.2 (3) | S1—C7—C8—N1 | 29.5 (2) |
| C8—N1—C1—C6 | −31.3 (3) | C8—C7—C9—C10 | 175.30 (18) |
| C16—N1—C1—C6 | 163.13 (17) | S1—C7—C9—C10 | −7.1 (3) |
| C6—C1—C2—C3 | −0.8 (3) | C7—C9—C10—C15 | 37.4 (3) |
| N1—C1—C2—C3 | 178.55 (18) | C7—C9—C10—C11 | −140.4 (2) |
| C1—C2—C3—C4 | 0.8 (3) | C15—C10—C11—C12 | −2.9 (3) |
| C2—C3—C4—C5 | 0.3 (3) | C9—C10—C11—C12 | 175.1 (2) |
| C3—C4—C5—C6 | −1.3 (3) | C15—C10—C11—Cl1 | 178.57 (15) |
| C4—C5—C6—C1 | 1.2 (3) | C9—C10—C11—Cl1 | −3.5 (3) |
| C4—C5—C6—S1 | −178.03 (16) | C10—C11—C12—C13 | 1.7 (3) |
| C2—C1—C6—C5 | −0.2 (3) | Cl1—C11—C12—C13 | −179.76 (18) |
| N1—C1—C6—C5 | −179.53 (17) | C11—C12—C13—C14 | 0.7 (3) |
| C2—C1—C6—S1 | 179.07 (15) | C12—C13—C14—C15 | −1.8 (3) |
| N1—C1—C6—S1 | −0.3 (2) | C13—C14—C15—C10 | 0.5 (3) |
| C7—S1—C6—C5 | −146.23 (16) | C11—C10—C15—C14 | 1.8 (3) |
| C7—S1—C6—C1 | 34.53 (17) | C9—C10—C15—C14 | −176.10 (19) |
| C6—S1—C7—C9 | 134.12 (18) | C8—N1—C16—C17 | −80.3 (2) |
| C6—S1—C7—C8 | −48.28 (16) | C1—N1—C16—C17 | 86.5 (2) |
| C1—N1—C8—O1 | −165.71 (18) | C18—O3—C17—O2 | −0.1 (3) |
| C16—N1—C8—O1 | 0.3 (3) | C18—O3—C17—C16 | −179.95 (18) |
| C1—N1—C8—C7 | 14.8 (3) | N1—C16—C17—O2 | 1.2 (3) |
| C16—N1—C8—C7 | −179.20 (16) | N1—C16—C17—O3 | −179.02 (16) |
| C9—C7—C8—O1 | 27.9 (3) | C17—O3—C18—C19 | −171.0 (2) |
| S1—C7—C8—O1 | −149.91 (15) |
Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y+2, −z+1; (iv) −x, y−1/2, −z+1/2; (v) x, y−1, z; (vi) −x, −y+1, −z+1; (vii) −x+1, y+1/2, −z+1/2.
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| C12—H12···O1vii | 0.95 (3) | 2.56 (3) | 3.214 (2) | 126 (2) |
| C15—H15···O1ii | 0.95 (2) | 2.40 (2) | 3.227 (2) | 145.8 (15) |
Symmetry codes: (ii) −x+1, −y+1, −z+1; (vii) −x+1, y+1/2, −z+1/2.
Funding Statement
This work was funded by National Science Foundation of Sri Lanka grant 1228232. Tulane University grant . Hacettepe University Scientific Research Project Unit grant 013 D04 602 004 to T. Hökelek.
References
- Alderman, D. & Smith, P. (2001). Aquaculture, 196, 211–243.
- Armenise, D., Muraglia, M., Florio, M. A., Laurentis, N. D., Rosato, A., Carrieri, A., Corbo, F. & Franchini, C. (2012). Mol. Pharmacol. Mol. Pharmacol. 50, 1178–1188.
- Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.
- Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.
- Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Ellouz, M., Elmsellem, H., Sebbar, N. K., Steli, H., Al Mamari, K., Nadeem, A., Ouzidan, Y., Essassi, E. M., Abdel-Rahaman, I. & Hristov, P. (2016b). J. Mater. Environ. Sci. 7, 2482–2497.
- Ellouz, M., Sebbar, N. K., Boulhaoua, M., Essassi, E. M. & Mague, J. T. (2017a). IUCr Data 2, x170646.
- Ellouz, M., Sebbar, N. K., Elmsellem, H., Lakhrissi, B., Mennane, Z., Charof, R., Urrutigoity, M. & Essassi, E. M. (2019). Sci. Study Res. 20, 563–574.
- Ellouz, M., Sebbar, N. K., Elmsellem, H., Steli, H., Fichtali, I., Mohamed, A. M. M., Mamari, K. A., Essassi, E. M. & Abdel-Rahaman, I. (2016a). J. Mater. Environ. Sci. 7, 2806–2819.
- Ellouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y. & Mague, J. T. (2015). Acta Cryst. E71, o1022–o1023. [DOI] [PMC free article] [PubMed]
- Ellouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y., Mague, J. T. & Zouihri, H. (2016c). IUCrData, 1, x160764.
- Ellouz, M., Sebbar, N. K., Fichtali, I., Ouzidan, Y., Mennane, Z., Charof, R., Mague, J. T., Urrutigoïty, M. & Essassi, E. M. (2018). Chem. Cent. J. 12, 123. [DOI] [PMC free article] [PubMed]
- Ellouz, M., Sebbar, N. K., Ouzidan, Y., Kaur, M., Essassi, E. M. & Jasinski, J. P. (2017b). IUCrData, 2, x170870.
- Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2009). GAUSSIAN 09. Gaussian Inc., Wallingford, CT, USA.
- Gowda, J., Khader, A. M. A., Kalluraya, B., Shree, P. & Shabaraya, A. R. (2011). Eur. J. Med. Chem. 46, 4100–4106. [DOI] [PubMed]
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Gupta, R. R., Kumar, R. & Gautam, R. K. (1985). J. Fluor. Chem. 28, 381–385.
- Gupta, V. & Gupta, R. R. (1991). J. Prakt. Chem. 333, 153–156.
- Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. [DOI] [PMC free article] [PubMed]
- Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.
- Hni, B., Sebbar, N. K., Hökelek, T., El Ghayati, L., Bouzian, Y., Mague, J. T. & Essassi, E. M. (2019b). Acta Cryst. E75, 593–599. [DOI] [PMC free article] [PubMed]
- Hni, B., Sebbar, N. K., Hökelek, T., Ouzidan, Y., Moussaif, A., Mague, J. T. & Essassi, E. M. (2019a). Acta Cryst. E75, 372–377. [DOI] [PMC free article] [PubMed]
- Hoffmann, K., Wiśniewska, J., Wojtczak, A., Sitkowski, J., Denslow, A., Wietrzyk, J., Jakubowski, M. & Łakomska, I. (2017). J. Inorg. Biochem. 172, 34–45. [DOI] [PubMed]
- Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: http://hirshfeldsurface.net/
- Mabkhot, Y. N., Alatibi, F., El-Sayed, N. N. E., Kheder, N. A. & Al-Showiman, S. S. (2016). Molecules, 21, 1036. [DOI] [PMC free article] [PubMed]
- Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587. [DOI] [PMC free article] [PubMed]
- Malagu, K., Boustie, J., David, M., Sauleau, J., Amoros, M., Girre, R. L. & Sauleau, A. (1998). Pharm. Pharmacol. Commun. 4, 57–60.
- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
- Munirajasekar, D., Himaja, M. & Sunil, M. (2011). Int. Res. J. Pharm. 2, 114–117.
- Sabatini, S., Kaatz, G. W., Rossolini, G. M., Brandini, D. & Fravolini, A. (2008). J. Med. Chem. 51, 4321–4330. [DOI] [PubMed]
- Sebbar, N. K., El Fal, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2014a). Acta Cryst. E70, o686. [DOI] [PMC free article] [PubMed]
- Sebbar, N. K., Ellouz, M., Boulhaoua, M., Ouzidan, Y., Essassi, M. & Mague, J. T. (2016c). IUCrData, 1, x161823.
- Sebbar, N. K., Ellouz, M., Essassi, E. M., Ouzidan, Y. & Mague, J. T. (2015a). Acta Cryst. E71, o999. [DOI] [PMC free article] [PubMed]
- Sebbar, N. K., Ellouz, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2015b). Acta Cryst. E71, o423–o424. [DOI] [PMC free article] [PubMed]
- Sebbar, N. K., Ellouz, M., Lahmidi, S., Hlimi, F., Essassi, E. M. & Mague, J. T. (2017a). IUCrData, 2, x170695.
- Sebbar, N. K., Ellouz, M., Mague, J. T., Ouzidan, Y., Essassi, E. M. & Zouihri, H. (2016a). IUCrData, 1, x160863.
- Sebbar, N. K., Ellouz, M., Ouzidan, Y., Kaur, M., Essassi, E. M. & Jasinski, J. P. (2017b). IUCrData, 2, x170889.
- Sebbar, N. K., Hni, B., Hökelek, T., Jaouhar, A., Labd Taha, M., Mague, J. T. & Essassi, E. M. (2019a). Acta Cryst. E75, 721–727. [DOI] [PMC free article] [PubMed]
- Sebbar, N. K., Hni, B., Hökelek, T., Labd Taha, M., Mague, J. T., El Ghayati, L. & Essassi, E. M. (2019b). Acta Cryst. E75, 1650–1656. [DOI] [PMC free article] [PubMed]
- Sebbar, N. K., Mekhzoum, M., Essassi, E. M., Zerzouf, A., Talbaoui, A., Bakri, Y., Saadi, M. & Ammari, L. E. (2016b). Res. Chem. Intermed. 42, 6845–6862.
- Sebbar, N. K., Zerzouf, A., Essassi, E. M., Saadi, M. & El Ammari, L. (2014b). Acta Cryst. E70, o614. [DOI] [PMC free article] [PubMed]
- Sheldrick, G. M. (2008a). CELL_NOW, University of Göttingen, Göttingen, Germany.
- Sheldrick, G. M. (2008b). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Sheldrick, G. M. (2009). TWINABS, University of Göttingen, Göttingen, Germany.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
- Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.
- Tawada, H., Sugiyama, Y., Ikeda, H., Yamamoto, Y. & Meguro, K. (1990). Chem. Pharm. Bull. 38, 1238–1245. [DOI] [PubMed]
- Trapani, G., Reho, A., Morlacchi, F., Latrofa, A., Marchini, P., Venturi, F. & Cantalamessa, F. (1985). Farmaco Ed. Sci. 40, 369–376. [PubMed]
- Turner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249–4255. [DOI] [PubMed]
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.
- Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738. [DOI] [PubMed]
- Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636. [DOI] [PubMed]
- Vidal, A., Madelmont, J. C. & Mounetou, E. A. (2006). Synthesis, pp. 591–593.
- Vijay, V. D. & Rahul, P. G. (2016). Arabian J. Chem. 9, S225–S229.
- Warren, B. K. & Knaus, E. E. (1987). Eur. J. Med. Chem. 22, 411–415.
- Zerzouf, A., Salem, M., Essassi, E. M. & Pierrot, M. (2001). Acta Cryst. E57, o498–o499.
- Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311–1316. [DOI] [PubMed]
- Zięba, A., Latocha, M., Sochanik, A., Nycz, A. & Kuśmierz, D. (2016). Molecules, 21, 1455. [DOI] [PMC free article] [PubMed]
- Zięba, A., Sochanik, A., Szurko, A., Rams, M., Mrozek, A. & Cmoch, P. (2010). Eur. J. Med. Chem. 45, 4733–4739. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989020004119/lh5950sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020004119/lh5950Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989020004119/lh5950Isup3.cdx
Supporting information file. DOI: 10.1107/S2056989020004119/lh5950Isup4.cml
CCDC reference: 1992626
Additional supporting information: crystallographic information; 3D view; checkCIF report








