Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Apr 21;76(Pt 5):683–691. doi: 10.1107/S2056989020005113

Functionalized 3-(5-ar­yloxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)-1-(4-substituted-phen­yl)prop-2-en-1-ones: synthetic pathway, and the structures of six examples

Haruvegowda Kiran Kumar a, Hemmige S Yathirajan a,*, Asma b, Nagaraja Manju b, Balakrishna Kalluraya b, Ravindranath S Rathore c, Christopher Glidewell d
PMCID: PMC7199250  PMID: 32431933

Two series of functionalized chalcones have been synthesized from a common family of precursors, and the structures of three examples from each series have been determined. The supra­molecular assembly, based upon C—H⋯O and C—H⋯π(arene) hydrogen bonds, is different in all of the examples examined.

Keywords: synthesis, substituted pyrazoles, chalcones, crystal structures, disorder, mol­ecular conformation, hydrogen boding, supra­molecular assembly

Abstract

Five examples each of 3-(5-ar­yloxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)-1-[4-(prop-2-yn-1-yl­oxy)phen­yl]prop-2-en-1-ones and the corresponding 1-(4-azido­phen­yl)-3-(5-ar­yloxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)prop-2-en-1-ones have been synthesized in a highly efficient manner, starting from a common source precursor, and structures have been determined for three examples of each type. In each of 3-[5-(2-chloro­phen­oxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl]-1-[4-(prop-2-yn-1-yl­oxy)phen­yl]prop-2-en-1-one, C28H21ClN2O3, (Ib), the isomeric 3-[5-(2-chloro­phen­oxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl]-1-[4-(prop-2-yn-1-yl­oxy)phen­yl]prop-2-en-1-one, (Ic), and 3-[3-methyl-5-(naphthalen-2-yl­oxy)-1-phenyl-1H-pyrazol-4-yl]-1-[4-(prop-2-yn­yloxy)phen­yl]prop-2-en-1-one, C32H24N2O3, (Ie), the mol­ecules are linked into chains of rings, formed by two independent C—H⋯O hydrogen bonds in (Ib) and by a combination of C—H⋯O and C—H⋯π(arene) hydrogen bonds in each of (Ic) and (Ie). There are no direction-specific inter­molecular inter­actions in the structure of 1-(4-azido­phen­yl)-3-[3-methyl-5-(2-methyl­phen­oxy)-1-phenyl-1H-pyrazol-4-yl]prop-2-en-1-one, C26H21N5O2, (IIa). In 1-(4-azido­phen­yl)-3-[5-(2,4-di­chloro­phen­oxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl]prop-2-en-1-one, C25H17Cl2N5O2, (IId), the di­chloro­phenyl group is disordered over two sets of atomic sites having occupancies 0.55 (4) and 0.45 (4), and the mol­ecules are linked by a single C—H⋯O hydrogen bond to form cyclic, centrosymmetric R 2 2(20) dimers. Similar dimers are formed in 1-(4-azido­phen­yl)-3-[3-methyl-5-(naphthalen-2-yl­oxy)-1-phenyl-1H-pyrazol-4-yl]prop-2-en-1-one, C29H21N5O2, (IIe), but here the dimers are linked into a chain of rings by two independent C—H..π(arene) hydrogen bonds. Comparisons are made between the mol­ecular conformations within both series of compounds.

Chemical context  

Chalcones, 1.3-disubstituted-prop-2-en-1-ones of type R 1COCH=CHR 2, exhibit a wide range of biological activities, particularly when they incorporate functionalized substituents; these include anti­cancer (Murthy et al., 2013), anti­malarial (Mishra et al., 2008; Yadav et al., 2012), anti­tripanosomal (Carvalho et al., 2012) and anti­viral (Sharma et al., 2011) activities. With these properties in mind, we have developed a versatile and efficient route to functionalized chalcones, which are themselves the basis for further elaboration to provide a wide range of multiply substituted chalcones. Here we report the synthesis and characterization of five 3-(5-ar­yloxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)-1-(4-(prop-2-yn-1- yloxy)phen­yl)prop-2-en-1-ones (I) and a corresponding series of five 1-(4-azido­phen­yl)-3-(3-methyl-1-phenyl-5-(ar­yloxy)-1H-pyrazol-4-yl)-prop-2-en-1-ones (II), together with the structures of a representative selection of three examples of each type, namely (Ib), (Ic) and (Ie) and (IIa), (IId) and (IIe) (Figs. 1–6 ). The compounds of types (I) and (II) were prepared using a common synthetic scheme starting from the commercially available 3-methyl-1-phenyl-1H-pyrazole, which was readily converted, under Vilsmaeier–Haack conditions, to the key precursor 5-chloro-3-methyl-1-phenyl-1H-pyrazole-4-carbaldehyde (A) (Fig. 7), which was then converted to a series of 5-ar­yloxy derivatives (B), by reaction with substituted phenols under basic conditions as previously described (Kiran Kumar et al., 2019). The 5-ar­yloxy compounds (B) were then condensed with 1-[4-(prop-2-yn-1-yl­oxy)phen­yl]ethan-1-one to give the products (Ia)–(Ie) (Fig. 7) or with 1-(4-azido­phen­yl)ethan-1-one to give the corresponding series of products (IIa)–(IIe). Thus the synthesis of these two matched series of products (I) and (II) from common precursors, is highly efficient. The presence of the alkyne unit in the type (I) products and of the azido unit in the type (II) products means that a small library is now available for use in Huisgen-type cyclo­addition reactions to form bis­(chalcone)-substituted 1,2,3-triazoles. Such highly functionalized triazoles are an attractive synthetic target as 1,2,3-triazoles, which exhibit a very wide range of biological activity of potential medicinal values (Kharb et al., 2011; Dheer et al., 2017).graphic file with name e-76-00683-scheme1.jpg

Figure 1.

Figure 1

The mol­ecular structure of compound (Ib) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2.

Figure 2

The mol­ecular structure of compound (Ic) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 3.

Figure 3

The mol­ecular structure of compound (Ie) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 4.

Figure 4

The mol­ecular structure of compound (IIa) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 5.

Figure 5

The mol­ecular structure of compound (IId) showing the atom-labelling scheme, and the disorder in the 2,4-di­chloro­phenyl group. The major disorder component is drawn using full lines and the minor disorder component is drawn using broken lines. Displacement ellipsoids are drawn at the 30% probability level.

Figure 6.

Figure 6

The mol­ecular structure of compound (IIe) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 7.

Figure 7

Part of the crystal structure of compound (Ib) showing the formation of a chain of centrosymmetric rings parallel to [010]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms not involved in the motifs shown have been omitted.

Structural commentary  

Compounds (Ib) and (Ic) are geometrical isomers (Figs. 1 and 2), although they are not isomorphous (Table 3). Although the constitutions of compounds (Ie) and (IIe) differ only in the identity of the small substituent at atom C14 (Figs. 3 and 6), these compounds crystallize in different space groups (Table 3).

Table 3. Experimental details.

  (Ib) (Ic) (Ie)
Crystal data
Chemical formula C28H21ClN2O3 C28H21ClN2O3 C32H24N2O3
M r 468.92 468.92 484.53
Crystal system, space group Triclinic, P Inline graphic Triclinic, P Inline graphic Triclinic, P Inline graphic
Temperature (K) 297 297 297
a, b, c (Å) 9.909 (7), 10.193 (6), 12.024 (8) 8.9959 (14), 9.7380 (15), 13.637 (2) 8.8615 (6), 10.4973 (7), 13.6588 (10)
α, β, γ (°) 90.94 (2), 106.27 (2), 92.75 (2) 95.901 (4), 94.122 (4), 95.959 (4) 79.006 (3), 89.412 (3), 80.971 (3)
V3) 1163.9 (13) 1177.8 (3) 1231.54 (15)
Z 2 2 2
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.20 0.20 0.08
Crystal size (mm) 0.18 × 0.15 × 0.10 0.20 × 0.15 × 0.15 0.20 × 0.16 × 0.16
 
Data collection
Diffractometer Bruker APEXII Bruker APEXII Bruker APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2016) Multi-scan (SADABS; Bruker, 2016) Multi-scan (SADABS; Bruker, 2016)
T min, T max 0.833, 0.980 0.901, 0.971 0.898, 0.987
No. of measured, independent and observed [I > 2σ(I)] reflections 43789, 5884, 4402 49011, 4837, 3930 30613, 4373, 3474
R int 0.061 0.061 0.055
(sin θ/λ)max−1) 0.672 0.629 0.598
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.058, 0.155, 1.10 0.048, 0.125, 1.15 0.070, 0.187, 1.07
No. of reflections 5884 4837 4373
No. of parameters 309 309 336
No. of restraints 0 0 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.43, −0.41 0.35, −0.45 0.85, −0.29
  (IIa) (IId) (IIe)
Crystal data
Chemical formula C26H21N5O2 C25H17Cl2N5O2 C29H21N5O2
M r 435.48 490.33 471.51
Crystal system, space group Triclinic, P Inline graphic Monoclinic, C2/c Monoclinic, P21/n
Temperature (K) 297 297 297
a, b, c (Å) 9.8432 (6), 11.7441 (7), 12.3005 (7) 28.1916 (17), 8.0537 (5), 22.0446 (12) 9.8460 (8), 22.4303 (18), 11.0490 (9)
α, β, γ (°) 114.120 (2), 111.139 (2), 96.537 (2) 90, 109.070 (1), 90 90, 104.157 (2), 90
V3) 1152.06 (12) 4730.5 (5) 2366.0 (3)
Z 2 8 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.08 0.31 0.09
Crystal size (mm) 0.20 × 0.20 × 0.18 0.18 × 0.15 × 0.15 0.22 × 0.21 × 0.16
 
Data collection
Diffractometer Bruker APEXII Bruker APEXII Bruker APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2016) Multi-scan (SADABS; Bruker, 2016) Multi-scan (SADABS; Bruker, 2016)
T min, T max 0.868, 0.985 0.881, 0.955 0.930, 0.986
No. of measured, independent and observed [I > 2σ(I)] reflections 17379, 4050, 2957 31508, 4174, 3181 43217, 4196, 2463
R int 0.048 0.049 0.092
(sin θ/λ)max−1) 0.596 0.595 0.597
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.050, 0.148, 1.10 0.086, 0.155, 1.36 0.063, 0.154, 1.06
No. of reflections 4050 4174 4196
No. of parameters 301 382 327
No. of restraints 0 291 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.19, −0.22 0.21, −0.23 0.23, −0.27

Computer programs: APEX3, SAINT and XPREP (Bruker, 2016), SHELXT2014/5 (Sheldrick, 2015a ), SHELXL2014 (Sheldrick, 2015b ) and PLATON (Spek, 2020).

In each of the compounds reported here, the central core of the mol­ecules, comprising the pyrazole ring and the adjacent prop-2-en-1-one unit is very nearly planar. However, the three substituents at atoms C1, N31 and C35 (Figs. 1–6 ) are all twisted out of the plane of the mol­ecular core, as indicated by the relevant torsional angles (Table 1). None of the mol­ecules, therefore, exhibits any inter­nal symmetry, so that all are conformationally chiral: however, the space groups confirm that they have all crystallized as conformational racemates. In each case, the reference mol­ecule was selected to be one having a positive sign for the torsional angle N32—N31—C311—C312 (Table 1).

Table 1. Selected torsional angles (°) for compounds (Ib), (Ic), (Ie), (IIa), (IId) and (IIe).

Parameter (Ib) (Ic) (Ie) (IIa) (IId) (IIe)
N32—N31—C311—C312 151.1 (3) 137.0 (2) 139.9 (3) 135.1 (2) 149.6 (4) 140.9 (3)
C2—C1—C11—C12 168.8 (2) −163.4 (2) −162.8 (3) 166.8 (2) −172.7 (4) −171.4 (3)
C13—C14—O14—C17 169.8 (2) 3.5 (3) −0.4 (4)      
C14—O14—C17—C18 −68.7 (3) −177.1 (2) −174.7 (3)      
C13—C14—N14—N15       −2.7 (3) −172.6 (5) −5.0 (6)
C34—C35—O351—C351 −76.7 (3) −69.3 (3)   70.1 (3) 78.3 (16)  
C34—C35—O451—C451         65.0 (12)  
C35—O351—C351—C352 157.6 (2) 169.5 (2)   −159.6 (2) −164 (2)  
C35—O451—C451—C45         −163.6 (18)  
C34—C35—O351—C352     −70.6 (4)     −71.1 (5)
C35—O351—C352—C351     161.8 (2)     150.9 (3)

In compound (IId), the 2,4-di­chloro­phen­oxy substituent was found to be disordered over two sets of atomic sites, having occupancies 0.55 (4) and 0.45 (4) (Fig. 5). The disorder involves slight differences in the torsional angles around the bond C35-O351 (Fig. 5), thus C34—C35—O351—Cx51 = 78.3 (16)° when x = 3, and 65.0 (12)° when x = 4: on the other hand, the torsional angles around the bonds O351—Cx51 (x = 3 or 4) are the same within experimental uncertainty, thus C35—O351—Cx51—Cx52 = −164 (2)° for x = 3 and −163.6 (18)° when x = 4.

The orientation of the OCH2CCH substituent relative to the adjacent aryl ring is different in compound (Ib), as compared with (Ic) and (Ie) (Table 1, Figs. 1–3 ) and similarly the orientation of the azido substituent is different in (IId), as compared with (IIa) and (IIe). In the case of the type (I) compounds, it is tempting to associate the observed differences with the different patterns of hydrogen bonding (Table 2, and Section 3, below), where atom O14 acts as an acceptor only in (Ib) while atom C19 acts as a donor in (Ic) and (Ie) but not in (Ib). However, in none of the type (II) compounds do any of the N atoms of the azido unit act as a hydrogen-bond acceptor. Hence, in these compounds, at least, the role of this substituent may be mainly that of a space filler, with the conformation adopted being that which most effectively fills any available space between the mol­ecules.

Table 2. Hydrogen bonds and short intra- and inter-mol­ecular contacts (Å, °) for compounds (Ib), (Ic), (Ie), (IIa), (IId) and (IIe).

Cg1, Cg2, Cg3 and Cg4 represent the centroids of the rings C311–C316), (C351–C356), (C351–C354/C359/C360) and (C355–C360), respectively

Compound D—H⋯A DA H⋯A DA D—H⋯A
(Ib) C355—H355⋯O14i 0.93 2.59 3.468 (4) 158
  C356—H356⋯O1ii 0.93 2.51 3.360 (4) 152
(Ic) C19—H19⋯O1iii 0.93 2.25 3.161 (3) 165
  C16—H16⋯Cg2 0.93 2.98 3.882 (2) 165
  C356—H356⋯Cg1iv 0.93 2.88 3.685 (2) 146
(Ie) C19—H19⋯O1v 0.93 2.32 3.233 (5) 165
  C353—H353⋯Cg1vi 0.93 2.86 3.708 (3) 152
(IIa) C357—H35B⋯O1vii 0.96 2.51 3.396 (4) 154
(IId) C356—H356⋯O1viii 0.93 2.32 3.115 (18) 143
  C456—H456⋯O1viii 0.93 2.47 3.21 (2) 137
(IIe) C353—H353⋯O1ix 0.93 2.47 3.288 (4) 147
  C12—H12⋯Cg3x 0.93 2.93 3.761 (4) 150
  C13—H13⋯Cg4x 0.93 2.73 3.547 (4) 148

Symmmetry codes: (i) 2 − x, −y, 1 − z; (ii) 2 − x, 1 − y, 1 − z; (iii) 1 + x, 1 + y, z; (iv) 1 − x, −y, 2 − z; (v) −1 + x, 1 + y, z; (vi) 1 − x, −y, 1 − z; (vii) 1 − x, 1 − y, 2 − z; (viii) 1 − x, 2 − y, 1 − z; (ix) 1 − x, 1 − y, −z; (x) −1 + x, y, z.

Supra­molecular features  

The supra­molecular assembly in the structures reported here is dominated by C—H⋯O hydrogen bonds (Table 2), along with C—H⋯π(arene) hydrogen bonds in compounds (Ic), (Ie) and (IIe). However, in none of the compounds containing chloro­phen­oxy substituents, [(Ib), (Ic) and (IId)] are there any short C—Cl⋯π(arene) contacts (cf. Imai et al., 2008).

There are two C—H⋯O hydrogen bonds in the structure of compound (Ib) (Table 2), and together these link the mol­ecules into a chain of centrosymmetric rings running parallel to the [010] direction, with rings of Inline graphic(20) type (Etter, 1990; Etter et al., 1990; Bernstein et al., 1995) centred at (1, n + 0.5, 0.5) alternating with rings of Inline graphic(30) type centred at (1, n, 0.5), where n represents an integer in each case (Fig. 7). In addition to an intra­molecular C—H⋯π(arene) hydrogen bond (Table 2), the structure of compound (Ic), isomeric with (Ib), contains two hydrogen bonds, one each of C—H⋯O and C—H⋯π(arene) types. The C—H⋯O hydrogen bond links mol­ecules related by translation into a C(11) running parallel to the [110] direction, and inversion-related pairs of such chains are linked by the C—H⋯π(arene) hydrogen bond to form a chain of rings running parallel to [110] (Fig. 8). Although there are no intra­molecular hydrogen bonds in the structure of compound (Ie), the inter­molecular hydrogen bonds (Table 2) are similar to those in compound (Ic), although the C—H⋯π(arene) inter­action involves a different donor atom; again a chain of rings is formed, but this time it runs parallel to the [1Inline graphic0] direction (Fig. 9).

Figure 8.

Figure 8

Part of the crystal structure of compound (Ic) showing the formation of a chain of rings parallel to [110]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms not involved in the motifs shown have been omitted.

Figure 9.

Figure 9

Part of the crystal structure of compound (Ie) showing the formation of a chain of rings parallel to [1Inline graphic0]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms not involved in the motifs shown have been omitted.

The only direction-specific inter­molecular contact in compound (IIa) involves a methyl group. Because such groups CH3E generally undergo rapid rotation about the C—E bonds, even in the solid state (Riddell & Rogerson, 1996, 1997), particularly when, as here, the methyl group is bonded to a unit having local C 2v (mm2) symmetry, when the rotational barrier is particularly low (Tannenbaum et al., 1956; Naylor & Wilson, 1957). Accordingly, such a contact is not regarded as structurally significant. There is a single C—H⋯O hydrogen bond in the structure of compound (IId), with fairly similar dimensions for each of the two disorder components. Hence it is necessary to consider only the major disorder component, where the inversion-related pairs of mol­ecules are linked into cyclic, centrosymmetric Inline graphic(20) dimers (Fig. 10). In the structure of compound (IIe), inversion-related pairs of mol­ecules are linked by paired C—H⋯O hydrogen bonds to form cyclic, centrosymmetric Inline graphic(20) dimers, which in turn are linked into a chain of rings running parallel to the [100] direction (Fig. 11) by the combined action of two C—H⋯π(arene) hydrogen bonds, which utilize both rings of the 2-naphthyl substituent as the acceptors.

Figure 10.

Figure 10

Part of the crystal structure of compound (IId) showing the formation of a centrosymmetric dimer. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the unit-cell outline, the minor disorder component and the H atoms not involved in the motifs shown have been omitted. The atoms marked with an asterisk (*) are at the symmetry position (1 − x, 2 − y, 1 − z).

Figure 11.

Figure 11

Part of the crystal structure of compound (IIe) showing the formation of a chain of rings parallel to [100]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms not involved in the motifs shown have been omitted.

Thus, the supra­molecular assembly in the isomeric pair of compounds (Ib) and (Ic) is different in terms of the hydrogen bonds involved (Table 2), although chains of rings, different in each case, are found in all three of the type (I) compounds. Amongst the type (II) compounds, (IIa) and (IId) exhibit either no direction-specific inter­molecular inter­actions, as in (IIa), or finite, zero-dimensional aggregation, as in (IId). In (IIe), a chain of rings is again found, but different from those in any of the type (I) series, although the Inline graphic(20) motif can be identified in each of (Ib), (IId) and (IIe).

Database survey  

The structures have recently been reported (Vinutha et al., 2014; Glidewell et al., 2019; Kiran Kumar et al., 2019) of a number of carbaldehyde precursors of type (B) (Fig. 12), including examples in which R = 2-chloro­phenyl, 4-chloro­phenyl and 2-naphthyl, i.e. the direct precursors for compounds (Ib), (Ic), (Ie), (IIb), (IIc) and (IIe). Structures have also been reported (Cuartas et al., 2017) for both an amino analogue of (B), namely 5-[benz­yl(meth­yl)amino]-3-methyl-1-phenyl-1H-pyrazole-4-carbaldehyde and of the chalcone derived from this by condensation with 4-bromo­benzaldehyde; for the 5-(N-methyl­piperazino) analogue (Sunitha et al., 2016) and for the 5-piperidino analogue (Kiran Kumar, 2019). Finally, we note the structures of two isostructural 3-(5-ar­yloxy-3-methyl-1-phenyl-1H-pyrazole-1-yl)-1-thio­phen-2-yl)prop-2-en-1-ones, both of which exhibit disorder in the orientation of the thio­phene unit (Shaibah et al., 2020).

Figure 12.

Figure 12

The synthetic pathway used for the preparation of compounds (Ia)–(Ie) and (IIa)–(IIe).

Synthesis and crystallization  

For the preparation of the prop-2-yn-1-yl compounds (I), a solution of potassium hydroxide (0.31g, 5.7 mmol) in ethanol (30 ml) was added to a mixture of the appropriate inter­mediate of type (B, Fig.7), 5.7 mmol) and 4-(prop-2-yn-1-yl­oxy)aceto­phenone (1.0 g, 5.7 mmol) in ethanol (30 ml). The mixtures were then stirred at ambient temperature for 4 h, after which time, TLC indicated that the reactions were complete. The solid products were then collected by filtration, washed with water, dried in air and recrystallized from an ethanol–di­methyl­formamide (initial composition 3:1, v/v). Compound (Ia). Yield 82%, m.p. 551 K. IR (cm−1) 3228 (alkyne C-H), 2312 (alkyne C-C), 1672 (C=O), 1578 (C=N). MS (m/z) 449 (M+1)+. Compound (Ib). Yield 67%, m.p. 438 K. IR (cm−1) 3230 (alkyne C—H), 2352 (alkyne C—C), 1661 (C=O), 1581 (C=N). MS (m/z) 469 (M+1)+. Compound (Ic). Yield 77%, m.p. 406–407 K. IR (cm−1) 3234 (alkyne C-H), 2356 (alkyne C—C), 1668 (C=O), 1576 (C=N). MS (m/z) 469 (M+1)+. Compound (Id). Yield 65%, m.p. 485–486 K. IR (cm−1) 3237 (alkyne C—H), 2342 (alkyne C—C), 1676 (C=O), 1559 (C=N). MS (m/z) 469 (M+1)+. Compound (Ie). Yield 69%, m.p. 447–449 K. IR (cm−1) 3227 (alkyne C—H), 2360 (alkyne C—C), 1654 (C=O), 1588 (C=N). MS (m/z) 485 (M+1)+. For the preparation of the azido compounds (II), a solution of potassium hydroxide (0.34g, 6.2 mmol) in ethanol (30 ml) was added to a solution of 4-azido­aceto­phenone (1.0 g, 6.2 mmol) in ethanol (30 ml). The appropriate inter­mediate (B) (6.2 mmol) was then added and the mixtures were then stirred for 30 min, after which time TLC indicated that the reactions were complete. The solid products were then collected by filtration, washed with water, dried in air and recrystallized from an ethanol–di­methyl­formamide (initial composition 3:1, v/v). Compound (IIa). Yield 96%, m.p. 385–387 K. IR (cm−1) 2359 (azide), 1650 (C=O), 1592 (C=N). MS (m/z) 436 (M+1)+. Compound (IIb). Yield 74%, m.p. 394–396 K. IR (cm−1) 2355 (azide), 1674 (C=O), 1561 (C=N). MS (m/z) 456 (M+1)+. Compound (IIc). Yield 79%, m.p. 425–427 K. IR (cm−1) 2351 (azide), 1671 (C=O), 15612 (C=N). MS (m/z) 456 (M+1)+. Compound (IId). Yield 70%, m.p. 505 K. IR (cm−1) 2349 (azide), 1656 (C=O), 1592 (C=N). MS (m/z) 490 (M+1)+. Compound (IIe). Yield 74%, m.p. 489–490 K. IR (cm−1) 2354 (azide), 1676 (C=O), 1565 (C=N). MS (m/z) 472 (M+1)+. Crystals of compounds (Ib), (Ic), (Ie), (IIa), (IId) and (IIe) which were suitable for single-crystal X-ray diffraction were selected directly from the prepared samples: despite repeated efforts, no crystal suitable for single-crystal X-ray diffraction have yet been obtained for compounds (Ia), (Id), (IIb) or (IIc).

Refinement  

Crystal data, data collection and refinement details are summarized in Table 3. For a number of the structures, [(Ie), (IIa), (IId) and (IIe)], the diffraction data at values of θ > 25° were uniformly of very indifferent quality, particular in terms of the symmetry-equivalent reflections. This is probably a consequence of the indifferent crystal quality, exemplifying the general difficulty within the series (I) and (II) of growing crystals suitable for single-crystal X-ray diffraction (cf. Section 5, above). These higher-angle reflections were therefore rejected during the data-reduction process: we note also that the intensity statistics indicated that very few of these reflections were likely to be labelled as observed for compounds (Ie), (IIa), (IId) and (IIe). A number of low-angle reflections for (Ib) and (Ie) were also discarded at this stage because of attenuation by the beam stop. Some further low-angle reflections that had been attenuated by the beam stop were omitted from the data sets before the final refinements, thus: for (Ib) (101), (110), (002), (202) and (Inline graphic02); for (Ic) (Inline graphic10) and (002); for (Ie) (002), (111) and (012); for (IIa) (Inline graphic11); and for (IId) (Inline graphic12). In addition, the bad outlier reflections (Inline graphic04) for (Id) and (130) for (IIe) were also omitted. All H atoms were located in difference maps and then treated as riding atoms in geometrically idealized positions with C—H distances 0.93 Å (aromatic), 0.96 Å (CH3) or 0.97 Å (CH2), and with U iso(H) = kU eq(C), where k = 1.5 for the methyl groups which were permitted to rotate but not to tilt, and 1.2 for all other H atoms. The final difference map for compound (Ie) contained two significant peaks, 0.85 e Å−3 at (0.227, 0.557, 0.598), and 0.81 e Å−3 at (0.380, 0.488, 0.596), respectively 1.27 and 1.14 Å from atom C351: however, attempts to develop a plausible disorder model based upon these two peaks were not fruitful. For the minor disorder compound in compound (IId), the bonded distances and the [1,3] non-bonded distances were restrained to be the same as the corresponding distances in the major disorder component, subject to s.u. values of 0.01 and 0.02 Å, respectively. In addition, similarity restraints were applied to the anisotropic displacement parameters of the partial-occupancy atoms in the disorder components. Subject to these conditions, the occupancies for the two disorder components refined to values of 0.55 (4) and 0.45 (4). Examination of the final refined structures using PLATON (Spek, 2020) showed that the structure of compound (IIa) contained a void space, of volume 64 Å3, centred at (0.5, 0, 0), but further examination of this structure using the SQUEEZE procedure (Spek, 2015) showed that the void contained negligible electron density, consistent with the final difference map.

Supplementary Material

Crystal structure: contains datablock(s) global, Ib, Ic, Ie, IIa, IId, IIe. DOI: 10.1107/S2056989020005113/mw2158sup1.cif

e-76-00683-sup1.cif (6.3MB, cif)

Structure factors: contains datablock(s) Ib. DOI: 10.1107/S2056989020005113/mw2158Ibsup2.hkl

e-76-00683-Ibsup2.hkl (467.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020005113/mw2158Ibsup8.cml

Structure factors: contains datablock(s) Ic. DOI: 10.1107/S2056989020005113/mw2158Icsup3.hkl

e-76-00683-Icsup3.hkl (385KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020005113/mw2158Icsup9.cml

Structure factors: contains datablock(s) Ie. DOI: 10.1107/S2056989020005113/mw2158Iesup4.hkl

e-76-00683-Iesup4.hkl (348.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020005113/mw2158IIasup10.cml

Structure factors: contains datablock(s) IIa. DOI: 10.1107/S2056989020005113/mw2158IIasup5.hkl

e-76-00683-IIasup5.hkl (322.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020005113/mw2158IIdsup11.cml

Structure factors: contains datablock(s) IId. DOI: 10.1107/S2056989020005113/mw2158IIdsup6.hkl

e-76-00683-IIdsup6.hkl (333KB, hkl)

Structure factors: contains datablock(s) IIe. DOI: 10.1107/S2056989020005113/mw2158IIesup7.hkl

e-76-00683-IIesup7.hkl (334.4KB, hkl)

CCDC references: 1996407, 1996406, 1996405, 1996404, 1996403, 1996402

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKK thanks the UGC-BSR for a stipend and the University of Mysore for research facilities.

supplementary crystallographic information

3-[5-(2-Chlorophenoxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl]-1-[4-(prop-2-yn-1-yloxy)phenyl]prop-2-en-1-one (Ib) . Crystal data

C28H21ClN2O3 Z = 2
Mr = 468.92 F(000) = 488
Triclinic, P1 Dx = 1.338 Mg m3
a = 9.909 (7) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.193 (6) Å Cell parameters from 7088 reflections
c = 12.024 (8) Å θ = 3.0–31.0°
α = 90.94 (2)° µ = 0.20 mm1
β = 106.27 (2)° T = 297 K
γ = 92.75 (2)° Block, colourless
V = 1163.9 (13) Å3 0.18 × 0.15 × 0.10 mm

3-[5-(2-Chlorophenoxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl]-1-[4-(prop-2-yn-1-yloxy)phenyl]prop-2-en-1-one (Ib) . Data collection

Bruker APEXII diffractometer 5884 independent reflections
Radiation source: fine focussealed tube 4402 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.061
φ and ω scans θmax = 28.6°, θmin = 3.6°
Absorption correction: multi-scan (SADABS; Bruker, 2016) h = −13→13
Tmin = 0.833, Tmax = 0.980 k = −13→13
43789 measured reflections l = −16→16

3-[5-(2-Chlorophenoxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl]-1-[4-(prop-2-yn-1-yloxy)phenyl]prop-2-en-1-one (Ib) . Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.058 w = 1/[σ2(Fo2) + (0.0448P)2 + 0.9732P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.155 (Δ/σ)max < 0.001
S = 1.10 Δρmax = 0.43 e Å3
5884 reflections Δρmin = −0.41 e Å3
309 parameters Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.154 (8)
Primary atom site location: dual

3-[5-(2-Chlorophenoxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl]-1-[4-(prop-2-yn-1-yloxy)phenyl]prop-2-en-1-one (Ib) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

3-[5-(2-Chlorophenoxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl]-1-[4-(prop-2-yn-1-yloxy)phenyl]prop-2-en-1-one (Ib) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.9482 (2) 0.3833 (2) 0.72250 (19) 0.0464 (5)
O1 1.0416 (2) 0.45886 (19) 0.78220 (17) 0.0709 (6)
C2 0.8469 (2) 0.4294 (2) 0.6173 (2) 0.0478 (5)
H2 0.7655 0.3779 0.5825 0.057*
C3 0.8698 (2) 0.5434 (2) 0.57132 (18) 0.0405 (4)
H3 0.9508 0.5925 0.6116 0.049*
C11 0.9385 (2) 0.2433 (2) 0.75289 (18) 0.0417 (5)
C12 1.0483 (2) 0.1947 (2) 0.8398 (2) 0.0486 (5)
H12 1.1247 0.2507 0.8778 0.058*
C13 1.0451 (2) 0.0655 (2) 0.8700 (2) 0.0488 (5)
H13 1.1197 0.0347 0.9274 0.059*
C14 0.9314 (2) −0.0192 (2) 0.8155 (2) 0.0446 (5)
C15 0.8204 (3) 0.0268 (2) 0.7302 (2) 0.0511 (6)
H15 0.7431 −0.0292 0.6939 0.061*
C16 0.8253 (2) 0.1567 (2) 0.6991 (2) 0.0496 (5)
H16 0.7511 0.1868 0.6410 0.060*
O14 0.94132 (19) −0.14583 (16) 0.85166 (17) 0.0576 (5)
C17 0.8187 (3) −0.2343 (3) 0.8139 (3) 0.0654 (7)
H17A 0.8452 −0.3230 0.8345 0.078*
H17B 0.7829 −0.2328 0.7301 0.078*
C18 0.7077 (3) −0.2002 (3) 0.8653 (3) 0.0608 (7)
C19 0.6186 (4) −0.1767 (4) 0.9061 (3) 0.0824 (10)
H19 0.5469 −0.1578 0.9390 0.099*
N31 0.62180 (18) 0.64397 (15) 0.30547 (16) 0.0394 (4)
N32 0.71026 (19) 0.75523 (16) 0.33267 (16) 0.0425 (4)
C33 0.8087 (2) 0.72855 (19) 0.42829 (19) 0.0394 (4)
C34 0.7862 (2) 0.60108 (18) 0.46748 (18) 0.0373 (4)
C35 0.6653 (2) 0.55241 (18) 0.38607 (18) 0.0368 (4)
C311 0.4990 (2) 0.6447 (2) 0.20822 (19) 0.0424 (5)
C312 0.4418 (4) 0.5309 (3) 0.1454 (3) 0.0775 (10)
H312 0.4841 0.4517 0.1647 0.093*
C313 0.3214 (4) 0.5351 (3) 0.0534 (3) 0.0871 (11)
H313 0.2826 0.4581 0.0117 0.104*
C314 0.2589 (3) 0.6505 (3) 0.0231 (2) 0.0684 (8)
H314 0.1766 0.6523 −0.0375 0.082*
C315 0.3188 (4) 0.7634 (3) 0.0829 (3) 0.0777 (9)
H315 0.2781 0.8428 0.0615 0.093*
C316 0.4393 (3) 0.7612 (3) 0.1752 (2) 0.0639 (7)
H316 0.4797 0.8390 0.2146 0.077*
C331 0.9235 (3) 0.8287 (2) 0.4843 (2) 0.0514 (6)
H33A 0.9224 0.9001 0.4330 0.077*
H33B 1.0128 0.7893 0.5005 0.077*
H33C 0.9093 0.8613 0.5553 0.077*
O351 0.58686 (15) 0.43808 (13) 0.38387 (13) 0.0395 (3)
C351 0.6396 (2) 0.32381 (17) 0.35285 (17) 0.0335 (4)
C352 0.5909 (2) 0.20629 (18) 0.38930 (17) 0.0358 (4)
Cl52 0.47497 (6) 0.21019 (6) 0.47407 (5) 0.05086 (19)
C353 0.6332 (2) 0.08826 (19) 0.35823 (19) 0.0431 (5)
H353 0.6008 0.0102 0.3832 0.052*
C354 0.7248 (3) 0.0858 (2) 0.2892 (2) 0.0478 (5)
H354 0.7528 0.0060 0.2671 0.057*
C355 0.7740 (2) 0.2023 (2) 0.2537 (2) 0.0455 (5)
H355 0.8358 0.2006 0.2081 0.055*
C356 0.7321 (2) 0.32177 (19) 0.28541 (18) 0.0396 (4)
H356 0.7659 0.3999 0.2616 0.048*

3-[5-(2-Chlorophenoxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl]-1-[4-(prop-2-yn-1-yloxy)phenyl]prop-2-en-1-one (Ib) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0496 (12) 0.0438 (12) 0.0403 (11) −0.0114 (9) 0.0060 (9) 0.0047 (9)
O1 0.0757 (13) 0.0561 (11) 0.0594 (11) −0.0278 (9) −0.0116 (9) 0.0101 (9)
C2 0.0484 (12) 0.0413 (11) 0.0463 (12) −0.0082 (9) 0.0027 (10) 0.0037 (9)
C3 0.0404 (10) 0.0360 (10) 0.0430 (11) −0.0028 (8) 0.0092 (8) −0.0004 (8)
C11 0.0438 (11) 0.0435 (11) 0.0346 (10) −0.0065 (9) 0.0072 (8) 0.0038 (8)
C12 0.0434 (11) 0.0512 (13) 0.0443 (11) −0.0071 (9) 0.0027 (9) 0.0045 (10)
C13 0.0434 (12) 0.0514 (13) 0.0478 (12) 0.0026 (10) 0.0060 (9) 0.0089 (10)
C14 0.0501 (12) 0.0399 (11) 0.0460 (11) 0.0008 (9) 0.0174 (10) 0.0028 (9)
C15 0.0495 (13) 0.0445 (12) 0.0525 (13) −0.0089 (10) 0.0050 (10) 0.0025 (10)
C16 0.0462 (12) 0.0477 (12) 0.0466 (12) −0.0074 (10) 0.0005 (10) 0.0091 (10)
O14 0.0601 (10) 0.0410 (9) 0.0728 (12) 0.0041 (7) 0.0196 (9) 0.0106 (8)
C17 0.0797 (19) 0.0404 (13) 0.0728 (18) −0.0059 (12) 0.0178 (15) 0.0014 (12)
C18 0.0536 (15) 0.0500 (14) 0.0678 (17) −0.0125 (11) 0.0010 (13) 0.0083 (12)
C19 0.0546 (17) 0.088 (2) 0.096 (2) −0.0109 (16) 0.0100 (17) 0.0045 (19)
N31 0.0418 (9) 0.0256 (8) 0.0468 (9) −0.0026 (6) 0.0067 (7) 0.0027 (7)
N32 0.0465 (10) 0.0249 (8) 0.0515 (10) −0.0059 (7) 0.0079 (8) 0.0017 (7)
C33 0.0426 (11) 0.0283 (9) 0.0468 (11) −0.0032 (8) 0.0127 (9) −0.0023 (8)
C34 0.0393 (10) 0.0273 (9) 0.0443 (11) −0.0002 (7) 0.0104 (8) 0.0000 (8)
C35 0.0401 (10) 0.0243 (8) 0.0460 (11) −0.0019 (7) 0.0127 (8) 0.0007 (7)
C311 0.0429 (11) 0.0378 (10) 0.0443 (11) −0.0002 (8) 0.0085 (9) 0.0063 (8)
C312 0.086 (2) 0.0420 (14) 0.0768 (19) −0.0110 (13) −0.0211 (16) 0.0075 (13)
C313 0.094 (2) 0.0627 (18) 0.074 (2) −0.0247 (16) −0.0216 (18) 0.0134 (15)
C314 0.0563 (15) 0.089 (2) 0.0507 (14) −0.0010 (14) 0.0002 (12) 0.0174 (14)
C315 0.087 (2) 0.076 (2) 0.0599 (17) 0.0339 (17) −0.0013 (15) 0.0082 (15)
C316 0.0765 (18) 0.0487 (14) 0.0565 (15) 0.0156 (13) 0.0005 (13) −0.0013 (11)
C331 0.0540 (13) 0.0357 (11) 0.0585 (14) −0.0118 (9) 0.0084 (11) −0.0002 (10)
O351 0.0391 (7) 0.0245 (6) 0.0563 (9) −0.0031 (5) 0.0164 (6) 0.0009 (6)
C351 0.0338 (9) 0.0260 (8) 0.0374 (9) −0.0023 (7) 0.0055 (7) 0.0005 (7)
C352 0.0353 (9) 0.0307 (9) 0.0382 (10) −0.0063 (7) 0.0063 (8) 0.0020 (7)
Cl52 0.0522 (3) 0.0465 (3) 0.0582 (4) −0.0102 (2) 0.0248 (3) 0.0016 (2)
C353 0.0521 (12) 0.0265 (9) 0.0479 (11) −0.0043 (8) 0.0106 (9) 0.0040 (8)
C354 0.0604 (14) 0.0322 (10) 0.0508 (12) 0.0068 (9) 0.0149 (11) 0.0003 (9)
C355 0.0481 (12) 0.0432 (11) 0.0486 (12) 0.0061 (9) 0.0187 (10) 0.0035 (9)
C356 0.0409 (10) 0.0322 (10) 0.0460 (11) −0.0023 (8) 0.0129 (9) 0.0062 (8)

3-[5-(2-Chlorophenoxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl]-1-[4-(prop-2-yn-1-yloxy)phenyl]prop-2-en-1-one (Ib) . Geometric parameters (Å, º)

C1—O1 1.228 (3) C33—C331 1.492 (3)
C1—C2 1.477 (3) C34—C35 1.382 (3)
C1—C11 1.484 (3) C35—O351 1.365 (2)
C2—C3 1.331 (3) C311—C316 1.367 (3)
C2—H2 0.9300 C311—C312 1.380 (3)
C3—C34 1.443 (3) C312—C313 1.384 (4)
C3—H3 0.9300 C312—H312 0.9300
C11—C16 1.391 (3) C313—C314 1.363 (5)
C11—C12 1.398 (3) C313—H313 0.9300
C12—C13 1.373 (3) C314—C315 1.364 (5)
C12—H12 0.9300 C314—H314 0.9300
C13—C14 1.385 (3) C315—C316 1.385 (4)
C13—H13 0.9300 C315—H315 0.9300
C14—O14 1.368 (3) C316—H316 0.9300
C14—C15 1.384 (3) C331—H33A 0.9600
C15—C16 1.384 (3) C331—H33B 0.9600
C15—H15 0.9300 C331—H33C 0.9600
C16—H16 0.9300 O351—C351 1.387 (2)
O14—C17 1.438 (3) C351—C356 1.384 (3)
C17—C18 1.458 (4) C351—C352 1.393 (3)
C17—H17A 0.9700 C352—C353 1.373 (3)
C17—H17B 0.9700 C352—Cl52 1.737 (2)
C18—C19 1.157 (5) C353—C354 1.391 (3)
C19—H19 0.9300 C353—H353 0.9300
N31—C35 1.353 (3) C354—C355 1.382 (3)
N31—N32 1.376 (2) C354—H354 0.9300
N31—C311 1.433 (3) C355—C356 1.386 (3)
N32—C33 1.325 (3) C355—H355 0.9300
C33—C34 1.418 (3) C356—H356 0.9300
O1—C1—C2 120.4 (2) N31—C35—O351 120.93 (18)
O1—C1—C11 120.4 (2) N31—C35—C34 109.00 (17)
C2—C1—C11 119.14 (19) O351—C35—C34 129.85 (19)
C3—C2—C1 121.3 (2) C316—C311—C312 119.3 (2)
C3—C2—H2 119.3 C316—C311—N31 119.2 (2)
C1—C2—H2 119.3 C312—C311—N31 121.5 (2)
C2—C3—C34 128.8 (2) C311—C312—C313 119.8 (3)
C2—C3—H3 115.6 C311—C312—H312 120.1
C34—C3—H3 115.6 C313—C312—H312 120.1
C16—C11—C12 117.7 (2) C314—C313—C312 120.9 (3)
C16—C11—C1 123.4 (2) C314—C313—H313 119.6
C12—C11—C1 118.86 (19) C312—C313—H313 119.6
C13—C12—C11 121.1 (2) C313—C314—C315 119.1 (3)
C13—C12—H12 119.5 C313—C314—H314 120.5
C11—C12—H12 119.5 C315—C314—H314 120.5
C12—C13—C14 120.4 (2) C314—C315—C316 120.9 (3)
C12—C13—H13 119.8 C314—C315—H315 119.6
C14—C13—H13 119.8 C316—C315—H315 119.6
O14—C14—C15 125.2 (2) C311—C316—C315 120.0 (3)
O14—C14—C13 115.0 (2) C311—C316—H316 120.0
C15—C14—C13 119.8 (2) C315—C316—H316 120.0
C16—C15—C14 119.5 (2) C33—C331—H33A 109.5
C16—C15—H15 120.2 C33—C331—H33B 109.5
C14—C15—H15 120.2 H33A—C331—H33B 109.5
C15—C16—C11 121.6 (2) C33—C331—H33C 109.5
C15—C16—H16 119.2 H33A—C331—H33C 109.5
C11—C16—H16 119.2 H33B—C331—H33C 109.5
C14—O14—C17 118.3 (2) C35—O351—C351 117.09 (16)
O14—C17—C18 112.3 (2) C356—C351—O351 123.40 (17)
O14—C17—H17A 109.1 C356—C351—C352 119.82 (18)
C18—C17—H17A 109.1 O351—C351—C352 116.73 (18)
O14—C17—H17B 109.1 C353—C352—C351 120.49 (19)
C18—C17—H17B 109.1 C353—C352—Cl52 120.13 (15)
H17A—C17—H17B 107.9 C351—C352—Cl52 119.38 (16)
C19—C18—C17 178.1 (3) C352—C353—C354 119.80 (19)
C18—C19—H19 180.0 C352—C353—H353 120.1
C35—N31—N32 110.06 (17) C354—C353—H353 120.1
C35—N31—C311 130.75 (17) C355—C354—C353 119.8 (2)
N32—N31—C311 118.98 (16) C355—C354—H354 120.1
C33—N32—N31 105.58 (16) C353—C354—H354 120.1
N32—C33—C34 112.02 (18) C354—C355—C356 120.6 (2)
N32—C33—C331 120.60 (19) C354—C355—H355 119.7
C34—C33—C331 127.3 (2) C356—C355—H355 119.7
C35—C34—C33 103.31 (18) C351—C356—C355 119.51 (18)
C35—C34—C3 130.32 (19) C351—C356—H356 120.2
C33—C34—C3 126.33 (19) C355—C356—H356 120.2
O1—C1—C2—C3 13.8 (4) C311—N31—C35—C34 −175.8 (2)
C11—C1—C2—C3 −164.2 (2) C33—C34—C35—N31 0.5 (2)
C1—C2—C3—C34 177.4 (2) C3—C34—C35—N31 178.0 (2)
O1—C1—C11—C16 171.0 (2) C33—C34—C35—O351 −174.0 (2)
C2—C1—C11—C16 −11.1 (4) C3—C34—C35—O351 3.5 (4)
O1—C1—C11—C12 −9.2 (4) C35—N31—C311—C316 147.1 (3)
C2—C1—C11—C12 168.8 (2) N32—N31—C311—C316 −27.1 (3)
C16—C11—C12—C13 0.7 (4) C35—N31—C311—C312 −34.7 (4)
C1—C11—C12—C13 −179.2 (2) N32—N31—C311—C312 151.1 (3)
C11—C12—C13—C14 −0.8 (4) C316—C311—C312—C313 −3.1 (5)
C12—C13—C14—O14 179.0 (2) N31—C311—C312—C313 178.7 (3)
C12—C13—C14—C15 −0.1 (4) C311—C312—C313—C314 0.7 (6)
O14—C14—C15—C16 −178.1 (2) C312—C313—C314—C315 1.7 (6)
C13—C14—C15—C16 0.9 (4) C313—C314—C315—C316 −1.6 (5)
C14—C15—C16—C11 −1.0 (4) C312—C311—C316—C315 3.1 (5)
C12—C11—C16—C15 0.1 (4) N31—C311—C316—C315 −178.6 (3)
C1—C11—C16—C15 −180.0 (2) C314—C315—C316—C311 −0.8 (5)
C15—C14—O14—C17 −11.2 (4) N31—C35—O351—C351 109.4 (2)
C13—C14—O14—C17 169.8 (2) C34—C35—O351—C351 −76.7 (3)
C14—O14—C17—C18 −68.7 (3) C35—O351—C351—C356 −24.8 (3)
C35—N31—N32—C33 1.5 (2) C35—O351—C351—C352 157.64 (18)
C311—N31—N32—C33 176.81 (18) C356—C351—C352—C353 −0.4 (3)
N31—N32—C33—C34 −1.2 (2) O351—C351—C352—C353 177.27 (18)
N31—N32—C33—C331 −179.43 (19) C356—C351—C352—Cl52 179.92 (15)
N32—C33—C34—C35 0.5 (2) O351—C351—C352—Cl52 −2.4 (2)
C331—C33—C34—C35 178.5 (2) C351—C352—C353—C354 −0.4 (3)
N32—C33—C34—C3 −177.2 (2) Cl52—C352—C353—C354 179.26 (17)
C331—C33—C34—C3 0.9 (4) C352—C353—C354—C355 0.9 (3)
C2—C3—C34—C35 −3.3 (4) C353—C354—C355—C356 −0.5 (4)
C2—C3—C34—C33 173.7 (2) O351—C351—C356—C355 −176.76 (19)
N32—N31—C35—O351 173.80 (17) C352—C351—C356—C355 0.8 (3)
C311—N31—C35—O351 −0.8 (3) C354—C355—C356—C351 −0.3 (3)
N32—N31—C35—C34 −1.3 (2)

3-[5-(2-Chlorophenoxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl]-1-[4-(prop-2-yn-1-yloxy)phenyl]prop-2-en-1-one (Ib) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C355—H355···O14i 0.93 2.59 3.468 (4) 158
C356—H356···O1ii 0.93 2.51 3.360 (4) 152

Symmetry codes: (i) −x+2, −y, −z+1; (ii) −x+2, −y+1, −z+1.

3-[5-(4-Chlorophenoxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl]-1-[4-(prop-2-yn-1-yloxy)phenyl]prop-2-en-1-one (Ic) . Crystal data

C28H21ClN2O3 Z = 2
Mr = 468.92 F(000) = 488
Triclinic, P1 Dx = 1.322 Mg m3
a = 8.9959 (14) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.7380 (15) Å Cell parameters from 4839 reflections
c = 13.637 (2) Å θ = 2.9–26.5°
α = 95.901 (4)° µ = 0.20 mm1
β = 94.122 (4)° T = 297 K
γ = 95.959 (4)° Block, brown
V = 1177.8 (3) Å3 0.20 × 0.15 × 0.15 mm

3-[5-(4-Chlorophenoxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl]-1-[4-(prop-2-yn-1-yloxy)phenyl]prop-2-en-1-one (Ic) . Data collection

Bruker APEXII diffractometer 4837 independent reflections
Radiation source: fine focussealed tube 3930 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.061
φ and ω scans θmax = 26.5°, θmin = 3.3°
Absorption correction: multi-scan (SADABS; Bruker, 2016) h = −11→11
Tmin = 0.901, Tmax = 0.971 k = −12→12
49011 measured reflections l = −17→17

3-[5-(4-Chlorophenoxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl]-1-[4-(prop-2-yn-1-yloxy)phenyl]prop-2-en-1-one (Ic) . Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.048 w = 1/[σ2(Fo2) + (0.0384P)2 + 0.6832P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.125 (Δ/σ)max = 0.001
S = 1.15 Δρmax = 0.35 e Å3
4837 reflections Δρmin = −0.45 e Å3
309 parameters Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.092 (6)
Primary atom site location: dual

3-[5-(4-Chlorophenoxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl]-1-[4-(prop-2-yn-1-yloxy)phenyl]prop-2-en-1-one (Ic) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

3-[5-(4-Chlorophenoxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl]-1-[4-(prop-2-yn-1-yloxy)phenyl]prop-2-en-1-one (Ic) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.5453 (2) 0.2711 (2) 0.53901 (14) 0.0354 (4)
O1 0.49212 (18) 0.19336 (17) 0.46533 (11) 0.0535 (4)
C2 0.5001 (2) 0.2494 (2) 0.63858 (14) 0.0375 (4)
H2 0.5266 0.3202 0.6899 0.045*
C3 0.4233 (2) 0.1329 (2) 0.65779 (14) 0.0360 (4)
H3 0.3999 0.0635 0.6051 0.043*
C11 0.65551 (19) 0.39198 (18) 0.52879 (13) 0.0321 (4)
C12 0.6706 (2) 0.4355 (2) 0.43611 (13) 0.0366 (4)
H12 0.6103 0.3890 0.3821 0.044*
C13 0.7725 (2) 0.54596 (19) 0.42185 (14) 0.0373 (4)
H13 0.7803 0.5739 0.3591 0.045*
C14 0.8635 (2) 0.61513 (19) 0.50232 (14) 0.0351 (4)
C15 0.8509 (2) 0.5724 (2) 0.59521 (14) 0.0430 (5)
H15 0.9124 0.6180 0.6490 0.052*
C16 0.7477 (2) 0.4627 (2) 0.60857 (14) 0.0408 (5)
H16 0.7394 0.4355 0.6715 0.049*
O14 0.96866 (16) 0.72487 (15) 0.49739 (10) 0.0466 (4)
C17 0.9800 (2) 0.7763 (2) 0.40407 (16) 0.0456 (5)
H17A 0.8869 0.8110 0.3832 0.055*
H17B 0.9987 0.7023 0.3548 0.055*
C18 1.1030 (2) 0.8878 (2) 0.41364 (16) 0.0445 (5)
C19 1.2031 (3) 0.9760 (2) 0.41795 (18) 0.0541 (6)
H19 1.2825 1.0460 0.4214 0.065*
N31 0.32759 (17) 0.10603 (16) 0.91019 (11) 0.0359 (4)
N32 0.23589 (18) −0.00607 (17) 0.86251 (12) 0.0387 (4)
C33 0.2648 (2) −0.00897 (19) 0.76832 (14) 0.0350 (4)
C34 0.37180 (19) 0.10233 (19) 0.75252 (13) 0.0324 (4)
C35 0.4074 (2) 0.17216 (19) 0.84574 (13) 0.0333 (4)
C311 0.3251 (2) 0.14030 (19) 1.01431 (14) 0.0376 (4)
C312 0.4578 (3) 0.1772 (2) 1.07284 (16) 0.0498 (5)
H312 0.5492 0.1809 1.0449 0.060*
C313 0.4527 (3) 0.2086 (3) 1.17386 (18) 0.0639 (7)
H313 0.5415 0.2351 1.2136 0.077*
C314 0.3191 (4) 0.2013 (3) 1.21603 (18) 0.0660 (7)
H314 0.3172 0.2223 1.2840 0.079*
C315 0.1875 (3) 0.1625 (3) 1.15721 (19) 0.0633 (7)
H315 0.0966 0.1564 1.1858 0.076*
C316 0.1892 (3) 0.1326 (2) 1.05553 (16) 0.0478 (5)
H316 0.1001 0.1077 1.0158 0.057*
C331 0.1866 (3) −0.1197 (2) 0.69277 (16) 0.0485 (5)
H33A 0.1505 −0.1984 0.7248 0.073*
H33B 0.2555 −0.1473 0.6458 0.073*
H33C 0.1037 −0.0845 0.6591 0.073*
O351 0.48920 (15) 0.29585 (13) 0.87828 (10) 0.0397 (3)
C351 0.6443 (2) 0.31066 (19) 0.87288 (13) 0.0335 (4)
C352 0.7128 (2) 0.4453 (2) 0.89176 (16) 0.0431 (5)
H352 0.6565 0.5182 0.9075 0.052*
C353 0.8669 (2) 0.4705 (2) 0.88698 (16) 0.0460 (5)
H353 0.9148 0.5607 0.8994 0.055*
C354 0.9481 (2) 0.3613 (2) 0.86373 (14) 0.0415 (5)
Cl54 1.14061 (6) 0.39375 (8) 0.85575 (5) 0.0630 (2)
C355 0.8803 (2) 0.2275 (2) 0.84574 (16) 0.0458 (5)
H355 0.9369 0.1547 0.8305 0.055*
C356 0.7260 (2) 0.2015 (2) 0.85043 (16) 0.0422 (5)
H356 0.6785 0.1112 0.8385 0.051*

3-[5-(4-Chlorophenoxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl]-1-[4-(prop-2-yn-1-yloxy)phenyl]prop-2-en-1-one (Ic) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0323 (9) 0.0385 (10) 0.0340 (9) −0.0033 (7) 0.0052 (7) 0.0035 (8)
O1 0.0583 (9) 0.0560 (9) 0.0383 (8) −0.0266 (7) 0.0049 (7) 0.0008 (7)
C2 0.0375 (10) 0.0407 (10) 0.0334 (9) −0.0029 (8) 0.0059 (7) 0.0046 (8)
C3 0.0340 (9) 0.0396 (10) 0.0338 (9) −0.0022 (8) 0.0067 (7) 0.0042 (8)
C11 0.0306 (9) 0.0326 (9) 0.0323 (9) −0.0010 (7) 0.0053 (7) 0.0020 (7)
C12 0.0371 (10) 0.0393 (10) 0.0307 (9) −0.0050 (8) 0.0015 (7) 0.0014 (7)
C13 0.0399 (10) 0.0376 (10) 0.0339 (9) −0.0031 (8) 0.0041 (8) 0.0074 (8)
C14 0.0329 (9) 0.0306 (9) 0.0401 (10) −0.0043 (7) 0.0071 (7) 0.0002 (7)
C15 0.0430 (11) 0.0469 (11) 0.0332 (10) −0.0121 (9) 0.0010 (8) −0.0040 (8)
C16 0.0433 (11) 0.0464 (11) 0.0300 (9) −0.0092 (9) 0.0050 (8) 0.0045 (8)
O14 0.0492 (8) 0.0414 (8) 0.0439 (8) −0.0179 (6) 0.0045 (6) 0.0028 (6)
C17 0.0423 (11) 0.0432 (11) 0.0492 (12) −0.0097 (9) 0.0002 (9) 0.0125 (9)
C18 0.0425 (11) 0.0422 (11) 0.0486 (12) −0.0027 (9) 0.0061 (9) 0.0095 (9)
C19 0.0508 (13) 0.0523 (13) 0.0564 (13) −0.0144 (10) 0.0057 (10) 0.0119 (10)
N31 0.0378 (8) 0.0370 (8) 0.0320 (8) −0.0017 (7) 0.0059 (6) 0.0035 (6)
N32 0.0384 (8) 0.0393 (9) 0.0370 (8) −0.0047 (7) 0.0066 (7) 0.0040 (7)
C33 0.0336 (9) 0.0352 (9) 0.0357 (9) −0.0014 (7) 0.0045 (7) 0.0059 (7)
C34 0.0305 (8) 0.0340 (9) 0.0330 (9) 0.0010 (7) 0.0051 (7) 0.0062 (7)
C35 0.0306 (9) 0.0330 (9) 0.0359 (9) 0.0003 (7) 0.0046 (7) 0.0033 (7)
C311 0.0488 (11) 0.0342 (9) 0.0317 (9) 0.0091 (8) 0.0076 (8) 0.0055 (7)
C312 0.0551 (13) 0.0560 (13) 0.0395 (11) 0.0168 (10) 0.0017 (9) 0.0015 (9)
C313 0.0885 (19) 0.0621 (15) 0.0411 (12) 0.0254 (14) −0.0089 (12) −0.0017 (11)
C314 0.111 (2) 0.0559 (15) 0.0355 (12) 0.0270 (15) 0.0143 (14) 0.0046 (10)
C315 0.0897 (19) 0.0548 (14) 0.0540 (14) 0.0181 (13) 0.0390 (14) 0.0136 (11)
C316 0.0553 (13) 0.0459 (12) 0.0455 (12) 0.0062 (10) 0.0177 (10) 0.0104 (9)
C331 0.0481 (12) 0.0482 (12) 0.0439 (11) −0.0120 (9) 0.0045 (9) −0.0027 (9)
O351 0.0352 (7) 0.0334 (7) 0.0484 (8) −0.0014 (5) 0.0065 (6) −0.0024 (6)
C351 0.0350 (9) 0.0334 (9) 0.0314 (9) 0.0010 (7) 0.0026 (7) 0.0027 (7)
C352 0.0432 (11) 0.0320 (10) 0.0518 (12) 0.0024 (8) 0.0019 (9) −0.0028 (8)
C353 0.0460 (11) 0.0387 (11) 0.0490 (12) −0.0073 (9) −0.0020 (9) 0.0009 (9)
C354 0.0363 (10) 0.0530 (12) 0.0333 (10) 0.0000 (9) 0.0001 (8) 0.0024 (8)
Cl54 0.0371 (3) 0.0877 (5) 0.0605 (4) −0.0021 (3) 0.0037 (2) 0.0001 (3)
C355 0.0422 (11) 0.0451 (11) 0.0500 (12) 0.0100 (9) 0.0022 (9) 0.0000 (9)
C356 0.0428 (11) 0.0324 (10) 0.0494 (11) 0.0010 (8) 0.0022 (9) 0.0002 (8)

3-[5-(4-Chlorophenoxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl]-1-[4-(prop-2-yn-1-yloxy)phenyl]prop-2-en-1-one (Ic) . Geometric parameters (Å, º)

C1—O1 1.229 (2) C33—C331 1.493 (3)
C1—C2 1.474 (3) C34—C35 1.378 (3)
C1—C11 1.483 (2) C35—O351 1.360 (2)
C2—C3 1.327 (3) C311—C316 1.380 (3)
C2—H2 0.9300 C311—C312 1.380 (3)
C3—C34 1.452 (2) C312—C313 1.385 (3)
C3—H3 0.9300 C312—H312 0.9300
C11—C12 1.385 (3) C313—C314 1.367 (4)
C11—C16 1.394 (3) C313—H313 0.9300
C12—C13 1.378 (3) C314—C315 1.377 (4)
C12—H12 0.9300 C314—H314 0.9300
C13—C14 1.390 (3) C315—C316 1.389 (3)
C13—H13 0.9300 C315—H315 0.9300
C14—O14 1.362 (2) C316—H316 0.9300
C14—C15 1.382 (3) C331—H33A 0.9600
C15—C16 1.376 (3) C331—H33B 0.9600
C15—H15 0.9300 C331—H33C 0.9600
C16—H16 0.9300 O351—C351 1.396 (2)
O14—C17 1.421 (2) C351—C356 1.375 (3)
C17—C18 1.456 (3) C351—C352 1.380 (3)
C17—H17A 0.9700 C352—C353 1.391 (3)
C17—H17B 0.9700 C352—H352 0.9300
C18—C19 1.172 (3) C353—C354 1.374 (3)
C19—H19 0.9300 C353—H353 0.9300
N31—C35 1.347 (2) C354—C355 1.370 (3)
N31—N32 1.373 (2) C354—Cl54 1.741 (2)
N31—C311 1.427 (2) C355—C356 1.393 (3)
N32—C33 1.327 (2) C355—H355 0.9300
C33—C34 1.418 (2) C356—H356 0.9300
O1—C1—C2 121.66 (17) N31—C35—O351 118.65 (16)
O1—C1—C11 120.01 (16) N31—C35—C34 108.52 (15)
C2—C1—C11 118.32 (16) O351—C35—C34 132.30 (16)
C3—C2—C1 122.56 (18) C316—C311—C312 120.78 (19)
C3—C2—H2 118.7 C316—C311—N31 119.17 (19)
C1—C2—H2 118.7 C312—C311—N31 120.03 (18)
C2—C3—C34 126.73 (18) C311—C312—C313 119.0 (2)
C2—C3—H3 116.6 C311—C312—H312 120.5
C34—C3—H3 116.6 C313—C312—H312 120.5
C12—C11—C16 118.11 (16) C314—C313—C312 121.0 (3)
C12—C11—C1 119.13 (16) C314—C313—H313 119.5
C16—C11—C1 122.75 (16) C312—C313—H313 119.5
C13—C12—C11 121.74 (17) C313—C314—C315 119.5 (2)
C13—C12—H12 119.1 C313—C314—H314 120.2
C11—C12—H12 119.1 C315—C314—H314 120.2
C12—C13—C14 119.29 (17) C314—C315—C316 120.6 (2)
C12—C13—H13 120.4 C314—C315—H315 119.7
C14—C13—H13 120.4 C316—C315—H315 119.7
O14—C14—C15 115.58 (16) C311—C316—C315 119.0 (2)
O14—C14—C13 124.66 (17) C311—C316—H316 120.5
C15—C14—C13 119.77 (16) C315—C316—H316 120.5
C16—C15—C14 120.34 (17) C33—C331—H33A 109.5
C16—C15—H15 119.8 C33—C331—H33B 109.5
C14—C15—H15 119.8 H33A—C331—H33B 109.5
C15—C16—C11 120.75 (17) C33—C331—H33C 109.5
C15—C16—H16 119.6 H33A—C331—H33C 109.5
C11—C16—H16 119.6 H33B—C331—H33C 109.5
C14—O14—C17 117.27 (15) C35—O351—C351 119.84 (14)
O14—C17—C18 108.51 (17) C356—C351—C352 121.22 (18)
O14—C17—H17A 110.0 C356—C351—O351 123.80 (16)
C18—C17—H17A 110.0 C352—C351—O351 114.98 (16)
O14—C17—H17B 110.0 C351—C352—C353 119.14 (19)
C18—C17—H17B 110.0 C351—C352—H352 120.4
H17A—C17—H17B 108.4 C353—C352—H352 120.4
C19—C18—C17 177.6 (2) C354—C353—C352 119.52 (19)
C18—C19—H19 180.0 C354—C353—H353 120.2
C35—N31—N32 110.96 (15) C352—C353—H353 120.2
C35—N31—C311 129.06 (16) C355—C354—C353 121.34 (19)
N32—N31—C311 119.96 (15) C355—C354—Cl54 119.29 (17)
C33—N32—N31 104.91 (14) C353—C354—Cl54 119.37 (16)
N32—C33—C34 112.02 (16) C354—C355—C356 119.44 (19)
N32—C33—C331 120.58 (17) C354—C355—H355 120.3
C34—C33—C331 127.39 (17) C356—C355—H355 120.3
C35—C34—C33 103.56 (15) C351—C356—C355 119.34 (18)
C35—C34—C3 130.35 (17) C351—C356—H356 120.3
C33—C34—C3 126.06 (17) C355—C356—H356 120.3
O1—C1—C2—C3 13.1 (3) N32—N31—C35—C34 −1.2 (2)
C11—C1—C2—C3 −168.12 (19) C311—N31—C35—C34 −179.14 (18)
C1—C2—C3—C34 −179.02 (18) C33—C34—C35—N31 0.2 (2)
O1—C1—C11—C12 15.4 (3) C3—C34—C35—N31 178.15 (19)
C2—C1—C11—C12 −163.41 (18) C33—C34—C35—O351 −171.11 (19)
O1—C1—C11—C16 −163.3 (2) C3—C34—C35—O351 6.8 (3)
C2—C1—C11—C16 17.9 (3) C35—N31—C311—C316 136.4 (2)
C16—C11—C12—C13 −0.4 (3) N32—N31—C311—C316 −41.4 (3)
C1—C11—C12—C13 −179.10 (18) C35—N31—C311—C312 −45.3 (3)
C11—C12—C13—C14 0.4 (3) N32—N31—C311—C312 137.0 (2)
C12—C13—C14—O14 179.64 (18) C316—C311—C312—C313 −1.0 (3)
C12—C13—C14—C15 0.1 (3) N31—C311—C312—C313 −179.3 (2)
O14—C14—C15—C16 179.76 (19) C311—C312—C313—C314 1.1 (4)
C13—C14—C15—C16 −0.6 (3) C312—C313—C314—C315 −0.2 (4)
C14—C15—C16—C11 0.7 (3) C313—C314—C315—C316 −0.8 (4)
C12—C11—C16—C15 −0.2 (3) C312—C311—C316—C315 0.0 (3)
C1—C11—C16—C15 178.48 (19) N31—C311—C316—C315 178.35 (19)
C15—C14—O14—C17 −176.97 (19) C314—C315—C316—C311 0.9 (3)
C13—C14—O14—C17 3.5 (3) N31—C35—O351—C351 120.05 (18)
C14—O14—C17—C18 −177.14 (18) C34—C35—O351—C351 −69.3 (3)
C35—N31—N32—C33 1.7 (2) C35—O351—C351—C356 −10.4 (3)
C311—N31—N32—C33 179.86 (16) C35—O351—C351—C352 169.43 (17)
N31—N32—C33—C34 −1.6 (2) C356—C351—C352—C353 0.6 (3)
N31—N32—C33—C331 179.10 (18) O351—C351—C352—C353 −179.26 (18)
N32—C33—C34—C35 0.9 (2) C351—C352—C353—C354 −0.1 (3)
C331—C33—C34—C35 −179.9 (2) C352—C353—C354—C355 −0.4 (3)
N32—C33—C34—C3 −177.16 (18) C352—C353—C354—Cl54 178.92 (16)
C331—C33—C34—C3 2.1 (3) C353—C354—C355—C356 0.4 (3)
C2—C3—C34—C35 −11.4 (3) Cl54—C354—C355—C356 −178.93 (16)
C2—C3—C34—C33 166.1 (2) C352—C351—C356—C355 −0.6 (3)
N32—N31—C35—O351 171.48 (15) O351—C351—C356—C355 179.23 (18)
C311—N31—C35—O351 −6.4 (3) C354—C355—C356—C351 0.1 (3)

3-[5-(4-Chlorophenoxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl]-1-[4-(prop-2-yn-1-yloxy)phenyl]prop-2-en-1-one (Ic) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C19—H19···O1i 0.93 2.25 3.161 (3) 165
C16—H16···Cg2 0.93 2.98 3.882 (2) 165
C356—H356···Cg1ii 0.93 2.88 3.685 (2) 146

Symmetry codes: (i) x+1, y+1, z; (ii) −x+1, −y, −z+2.

3-[3-Methyl-5-(naphthalen-2-yloxy)-1-phenyl-1H-pyrazol-4-yl]-1-[4-(prop-2-ynyloxy)phenyl]prop-2-en-1-one (Ie) . Crystal data

C32H24N2O3 Z = 2
Mr = 484.53 F(000) = 508
Triclinic, P1 Dx = 1.307 Mg m3
a = 8.8615 (6) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.4973 (7) Å Cell parameters from 4376 reflections
c = 13.6588 (10) Å θ = 3.0–25.2°
α = 79.006 (3)° µ = 0.08 mm1
β = 89.412 (3)° T = 297 K
γ = 80.971 (3)° Block, brown
V = 1231.54 (15) Å3 0.20 × 0.16 × 0.16 mm

3-[3-Methyl-5-(naphthalen-2-yloxy)-1-phenyl-1H-pyrazol-4-yl]-1-[4-(prop-2-ynyloxy)phenyl]prop-2-en-1-one (Ie) . Data collection

Bruker APEXII diffractometer 4373 independent reflections
Radiation source: fine focussealed tube 3474 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.055
φ and ω scans θmax = 25.2°, θmin = 3.4°
Absorption correction: multi-scan (SADABS; Bruker, 2016) h = −10→10
Tmin = 0.898, Tmax = 0.987 k = −12→12
30613 measured reflections l = −16→16

3-[3-Methyl-5-(naphthalen-2-yloxy)-1-phenyl-1H-pyrazol-4-yl]-1-[4-(prop-2-ynyloxy)phenyl]prop-2-en-1-one (Ie) . Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.070 w = 1/[σ2(Fo2) + (0.0694P)2 + 1.3194P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.187 (Δ/σ)max < 0.001
S = 1.07 Δρmax = 0.85 e Å3
4373 reflections Δρmin = −0.29 e Å3
336 parameters Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.114 (12)
Primary atom site location: dual

3-[3-Methyl-5-(naphthalen-2-yloxy)-1-phenyl-1H-pyrazol-4-yl]-1-[4-(prop-2-ynyloxy)phenyl]prop-2-en-1-one (Ie) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

3-[3-Methyl-5-(naphthalen-2-yloxy)-1-phenyl-1H-pyrazol-4-yl]-1-[4-(prop-2-ynyloxy)phenyl]prop-2-en-1-one (Ie) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.4597 (3) 0.2692 (3) 0.9522 (2) 0.0466 (6)
O1 0.5161 (3) 0.1921 (2) 1.02722 (15) 0.0682 (7)
C2 0.5008 (3) 0.2472 (3) 0.8514 (2) 0.0479 (7)
H2 0.4710 0.3145 0.7970 0.057*
C3 0.5789 (3) 0.1344 (3) 0.8354 (2) 0.0456 (6)
H3 0.6058 0.0694 0.8916 0.055*
C11 0.3503 (3) 0.3873 (3) 0.96264 (18) 0.0421 (6)
C12 0.3407 (3) 0.4290 (3) 1.0532 (2) 0.0491 (7)
H12 0.4032 0.3815 1.1063 0.059*
C13 0.2408 (3) 0.5392 (3) 1.0669 (2) 0.0501 (7)
H13 0.2376 0.5664 1.1279 0.060*
C14 0.1454 (3) 0.6086 (3) 0.9883 (2) 0.0463 (6)
C15 0.1510 (3) 0.5671 (3) 0.8978 (2) 0.0539 (7)
H15 0.0854 0.6126 0.8457 0.065*
C16 0.2528 (3) 0.4595 (3) 0.8848 (2) 0.0516 (7)
H16 0.2572 0.4340 0.8232 0.062*
O14 0.0419 (2) 0.7179 (2) 0.99303 (15) 0.0600 (6)
C17 0.0309 (4) 0.7627 (3) 1.0852 (2) 0.0584 (8)
H17A 0.1258 0.7910 1.0999 0.070*
H17B 0.0129 0.6918 1.1387 0.070*
C18 −0.0948 (4) 0.8721 (3) 1.0781 (2) 0.0584 (8)
C19 −0.1963 (4) 0.9573 (4) 1.0761 (3) 0.0695 (9)
H19 −0.2776 1.0256 1.0745 0.083*
N31 0.6678 (2) 0.0973 (2) 0.58075 (16) 0.0441 (5)
N32 0.7581 (3) −0.0141 (2) 0.63236 (16) 0.0481 (6)
C33 0.7313 (3) −0.0118 (3) 0.72742 (19) 0.0439 (6)
C34 0.6271 (3) 0.1007 (3) 0.74080 (19) 0.0415 (6)
C35 0.5907 (3) 0.1663 (2) 0.64457 (19) 0.0423 (6)
C311 0.6675 (3) 0.1256 (3) 0.47431 (19) 0.0435 (6)
C312 0.5324 (3) 0.1747 (3) 0.4211 (2) 0.0591 (8)
H312 0.4408 0.1889 0.4542 0.071*
C313 0.5349 (4) 0.2025 (4) 0.3179 (2) 0.0681 (9)
H313 0.4444 0.2372 0.2819 0.082*
C314 0.6679 (4) 0.1798 (3) 0.2679 (2) 0.0631 (9)
H314 0.6683 0.1990 0.1986 0.076*
C315 0.8004 (4) 0.1285 (3) 0.3216 (2) 0.0640 (9)
H315 0.8910 0.1114 0.2881 0.077*
C316 0.8019 (3) 0.1014 (3) 0.4253 (2) 0.0535 (7)
H316 0.8927 0.0674 0.4610 0.064*
C331 0.8082 (4) −0.1185 (3) 0.8078 (2) 0.0595 (8)
H33A 0.8606 −0.1889 0.7786 0.089*
H33B 0.7331 −0.1508 0.8529 0.089*
H33C 0.8805 −0.0843 0.8435 0.089*
O351 0.5097 (2) 0.28760 (18) 0.60811 (15) 0.0528 (5)
C351 0.2781 (4) 0.4338 (3) 0.6115 (2) 0.0550 (7)
H351 0.3356 0.5017 0.5971 0.066*
C352 0.3475 (3) 0.3071 (3) 0.62206 (19) 0.0507 (7)
C353 0.2669 (4) 0.2018 (3) 0.6420 (2) 0.0595 (8)
H353 0.3175 0.1160 0.6483 0.071*
C354 0.1103 (4) 0.2270 (3) 0.6523 (3) 0.0669 (9)
H354 0.0553 0.1573 0.6654 0.080*
C355 −0.1287 (4) 0.3815 (4) 0.6550 (3) 0.0695 (10)
H355 −0.1864 0.3137 0.6686 0.083*
C356 −0.1961 (4) 0.5079 (4) 0.6457 (3) 0.0737 (10)
H356 −0.3013 0.5257 0.6533 0.088*
C357 −0.1145 (5) 0.6132 (4) 0.6250 (3) 0.0791 (11)
H357 −0.1648 0.6991 0.6188 0.095*
C358 0.0361 (4) 0.5891 (4) 0.6142 (3) 0.0722 (10)
H358 0.0898 0.6596 0.6005 0.087*
C359 0.0346 (4) 0.3537 (3) 0.6434 (2) 0.0589 (8)
C360 0.1159 (3) 0.4629 (3) 0.62260 (19) 0.0447 (6)

3-[3-Methyl-5-(naphthalen-2-yloxy)-1-phenyl-1H-pyrazol-4-yl]-1-[4-(prop-2-ynyloxy)phenyl]prop-2-en-1-one (Ie) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0466 (15) 0.0465 (15) 0.0434 (15) 0.0048 (12) −0.0025 (12) −0.0100 (12)
O1 0.0799 (15) 0.0664 (14) 0.0440 (12) 0.0306 (12) −0.0081 (10) −0.0086 (10)
C2 0.0506 (16) 0.0482 (15) 0.0404 (14) 0.0053 (12) −0.0009 (12) −0.0081 (12)
C3 0.0443 (14) 0.0458 (15) 0.0430 (14) 0.0025 (12) −0.0013 (11) −0.0073 (11)
C11 0.0435 (14) 0.0418 (14) 0.0369 (13) 0.0038 (11) −0.0001 (11) −0.0057 (11)
C12 0.0500 (16) 0.0516 (16) 0.0394 (14) 0.0096 (13) −0.0072 (12) −0.0066 (12)
C13 0.0572 (17) 0.0491 (16) 0.0403 (14) 0.0077 (13) −0.0031 (12) −0.0125 (12)
C14 0.0474 (15) 0.0408 (14) 0.0455 (15) 0.0065 (11) 0.0018 (12) −0.0064 (11)
C15 0.0555 (17) 0.0577 (17) 0.0395 (15) 0.0138 (14) −0.0085 (12) −0.0047 (12)
C16 0.0578 (17) 0.0541 (17) 0.0371 (14) 0.0104 (13) −0.0051 (12) −0.0098 (12)
O14 0.0669 (13) 0.0537 (12) 0.0499 (12) 0.0219 (10) −0.0050 (10) −0.0115 (9)
C17 0.0588 (18) 0.0567 (18) 0.0560 (18) 0.0116 (14) −0.0046 (14) −0.0186 (14)
C18 0.0595 (18) 0.0551 (18) 0.0574 (18) 0.0067 (15) 0.0010 (14) −0.0154 (14)
C19 0.069 (2) 0.069 (2) 0.065 (2) 0.0181 (18) 0.0005 (16) −0.0209 (17)
N31 0.0445 (12) 0.0460 (12) 0.0375 (12) 0.0039 (10) −0.0017 (9) −0.0063 (9)
N32 0.0472 (13) 0.0491 (13) 0.0411 (12) 0.0104 (10) −0.0011 (10) −0.0058 (10)
C33 0.0415 (14) 0.0466 (15) 0.0399 (14) 0.0034 (11) −0.0016 (11) −0.0070 (11)
C34 0.0405 (13) 0.0416 (14) 0.0402 (14) 0.0016 (11) −0.0006 (11) −0.0093 (11)
C35 0.0400 (13) 0.0393 (13) 0.0442 (14) 0.0031 (11) −0.0019 (11) −0.0073 (11)
C311 0.0474 (15) 0.0425 (14) 0.0391 (14) −0.0045 (11) −0.0006 (11) −0.0063 (11)
C312 0.0474 (16) 0.080 (2) 0.0448 (16) −0.0008 (15) −0.0030 (13) −0.0073 (15)
C313 0.068 (2) 0.082 (2) 0.0475 (18) −0.0024 (18) −0.0128 (15) −0.0033 (16)
C314 0.088 (2) 0.0583 (19) 0.0422 (16) −0.0131 (17) 0.0016 (16) −0.0058 (14)
C315 0.071 (2) 0.064 (2) 0.0561 (19) −0.0086 (16) 0.0194 (16) −0.0115 (15)
C316 0.0483 (16) 0.0547 (17) 0.0538 (17) 0.0009 (13) 0.0028 (13) −0.0084 (13)
C331 0.0629 (19) 0.0568 (18) 0.0476 (16) 0.0169 (15) 0.0012 (14) −0.0034 (13)
O351 0.0560 (12) 0.0400 (10) 0.0550 (12) 0.0056 (9) −0.0027 (9) −0.0010 (8)
C351 0.0598 (18) 0.0475 (16) 0.0546 (17) 0.0006 (13) −0.0104 (14) −0.0086 (13)
C352 0.0560 (17) 0.0508 (16) 0.0369 (14) 0.0199 (13) −0.0108 (12) −0.0100 (12)
C353 0.0554 (18) 0.0525 (17) 0.067 (2) −0.0013 (14) −0.0014 (15) −0.0078 (14)
C354 0.064 (2) 0.0564 (19) 0.078 (2) −0.0105 (16) −0.0048 (17) −0.0048 (16)
C355 0.0440 (17) 0.097 (3) 0.064 (2) −0.0023 (17) −0.0037 (14) −0.0123 (18)
C356 0.0541 (19) 0.099 (3) 0.061 (2) 0.009 (2) −0.0034 (16) −0.0163 (19)
C357 0.077 (3) 0.087 (3) 0.065 (2) 0.025 (2) −0.0158 (18) −0.0249 (19)
C358 0.084 (3) 0.062 (2) 0.065 (2) 0.0198 (18) −0.0179 (18) −0.0212 (16)
C359 0.0627 (19) 0.067 (2) 0.0421 (16) 0.0060 (15) −0.0094 (13) −0.0100 (14)
C360 0.0479 (15) 0.0489 (15) 0.0351 (13) 0.0018 (12) −0.0072 (11) −0.0094 (11)

3-[3-Methyl-5-(naphthalen-2-yloxy)-1-phenyl-1H-pyrazol-4-yl]-1-[4-(prop-2-ynyloxy)phenyl]prop-2-en-1-one (Ie) . Geometric parameters (Å, º)

C1—O1 1.233 (3) C311—C312 1.382 (4)
C1—C2 1.472 (4) C312—C313 1.384 (4)
C1—C11 1.478 (4) C312—H312 0.9300
C2—C3 1.330 (4) C313—C314 1.367 (5)
C2—H2 0.9300 C313—H313 0.9300
C3—C34 1.446 (4) C314—C315 1.369 (5)
C3—H3 0.9300 C314—H314 0.9300
C11—C12 1.385 (4) C315—C316 1.390 (4)
C11—C16 1.399 (4) C315—H315 0.9300
C12—C13 1.384 (4) C316—H316 0.9300
C12—H12 0.9300 C331—H33A 0.9600
C13—C14 1.387 (4) C331—H33B 0.9600
C13—H13 0.9300 C331—H33C 0.9600
C14—O14 1.363 (3) O351—C352 1.435 (3)
C14—C15 1.384 (4) C351—C352 1.356 (4)
C15—C16 1.370 (4) C351—C360 1.434 (4)
C15—H15 0.9300 C351—H351 0.9300
C16—H16 0.9300 C352—C353 1.391 (4)
O14—C17 1.423 (3) C353—C354 1.382 (5)
C17—C18 1.459 (4) C353—H353 0.9300
C17—H17A 0.9700 C354—C359 1.376 (5)
C17—H17B 0.9700 C354—H354 0.9300
C18—C19 1.161 (4) C355—C356 1.350 (5)
C19—H19 0.9300 C355—C359 1.444 (4)
N31—C35 1.351 (3) C355—H355 0.9300
N31—N32 1.382 (3) C356—C357 1.397 (6)
N31—C311 1.427 (3) C356—H356 0.9300
N32—C33 1.322 (3) C357—C358 1.331 (5)
C33—C34 1.420 (4) C357—H357 0.9300
C33—C331 1.494 (4) C358—C360 1.385 (4)
C34—C35 1.378 (4) C358—H358 0.9300
C35—O351 1.365 (3) C359—C360 1.430 (4)
C311—C316 1.372 (4)
O1—C1—C2 121.3 (2) C311—C312—C313 119.2 (3)
O1—C1—C11 120.0 (2) C311—C312—H312 120.4
C2—C1—C11 118.8 (2) C313—C312—H312 120.4
C3—C2—C1 122.2 (3) C314—C313—C312 121.2 (3)
C3—C2—H2 118.9 C314—C313—H313 119.4
C1—C2—H2 118.9 C312—C313—H313 119.4
C2—C3—C34 127.7 (3) C313—C314—C315 119.0 (3)
C2—C3—H3 116.2 C313—C314—H314 120.5
C34—C3—H3 116.2 C315—C314—H314 120.5
C12—C11—C16 117.6 (2) C314—C315—C316 121.2 (3)
C12—C11—C1 119.5 (2) C314—C315—H315 119.4
C16—C11—C1 122.8 (2) C316—C315—H315 119.4
C13—C12—C11 121.9 (2) C311—C316—C315 119.1 (3)
C13—C12—H12 119.0 C311—C316—H316 120.4
C11—C12—H12 119.0 C315—C316—H316 120.4
C12—C13—C14 119.1 (3) C33—C331—H33A 109.5
C12—C13—H13 120.5 C33—C331—H33B 109.5
C14—C13—H13 120.5 H33A—C331—H33B 109.5
O14—C14—C15 115.7 (2) C33—C331—H33C 109.5
O14—C14—C13 124.4 (2) H33A—C331—H33C 109.5
C15—C14—C13 119.9 (2) H33B—C331—H33C 109.5
C16—C15—C14 120.2 (2) C35—O351—C352 118.0 (2)
C16—C15—H15 119.9 C352—C351—C360 119.9 (3)
C14—C15—H15 119.9 C352—C351—H351 120.0
C15—C16—C11 121.2 (3) C360—C351—H351 120.0
C15—C16—H16 119.4 C351—C352—C353 122.5 (3)
C11—C16—H16 119.4 C351—C352—O351 116.0 (3)
C14—O14—C17 117.5 (2) C353—C352—O351 121.5 (2)
O14—C17—C18 109.2 (2) C354—C353—C352 118.9 (3)
O14—C17—H17A 109.8 C354—C353—H353 120.6
C18—C17—H17A 109.8 C352—C353—H353 120.6
O14—C17—H17B 109.8 C359—C354—C353 121.0 (3)
C18—C17—H17B 109.8 C359—C354—H354 119.5
H17A—C17—H17B 108.3 C353—C354—H354 119.5
C19—C18—C17 177.5 (4) C356—C355—C359 118.8 (4)
C18—C19—H19 180.0 C356—C355—H355 120.6
C35—N31—N32 110.6 (2) C359—C355—H355 120.6
C35—N31—C311 129.4 (2) C355—C356—C357 122.7 (3)
N32—N31—C311 119.9 (2) C355—C356—H356 118.6
C33—N32—N31 104.8 (2) C357—C356—H356 118.6
N32—C33—C34 112.5 (2) C358—C357—C356 119.3 (4)
N32—C33—C331 120.9 (2) C358—C357—H357 120.4
C34—C33—C331 126.6 (2) C356—C357—H357 120.4
C35—C34—C33 103.3 (2) C357—C358—C360 122.4 (4)
C35—C34—C3 130.6 (2) C357—C358—H358 118.8
C33—C34—C3 126.0 (2) C360—C358—H358 118.8
N31—C35—O351 119.2 (2) C354—C359—C360 120.8 (3)
N31—C35—C34 108.7 (2) C354—C359—C355 121.6 (3)
O351—C35—C34 131.6 (2) C360—C359—C355 117.6 (3)
C316—C311—C312 120.3 (3) C358—C360—C359 119.3 (3)
C316—C311—N31 119.5 (2) C358—C360—C351 123.7 (3)
C312—C311—N31 120.2 (2) C359—C360—C351 117.0 (3)
O1—C1—C2—C3 11.5 (5) C3—C34—C35—O351 6.6 (5)
C11—C1—C2—C3 −169.4 (3) C35—N31—C311—C316 140.2 (3)
C1—C2—C3—C34 −179.5 (3) N32—N31—C311—C316 −39.0 (4)
O1—C1—C11—C12 16.3 (4) C35—N31—C311—C312 −40.9 (4)
C2—C1—C11—C12 −162.8 (3) N32—N31—C311—C312 139.9 (3)
O1—C1—C11—C16 −162.8 (3) C316—C311—C312—C313 −1.7 (5)
C2—C1—C11—C16 18.0 (4) N31—C311—C312—C313 179.4 (3)
C16—C11—C12—C13 −1.1 (4) C311—C312—C313—C314 1.3 (5)
C1—C11—C12—C13 179.7 (3) C312—C313—C314—C315 0.1 (5)
C11—C12—C13—C14 1.3 (5) C313—C314—C315—C316 −1.1 (5)
C12—C13—C14—O14 179.6 (3) C312—C311—C316—C315 0.7 (4)
C12—C13—C14—C15 0.1 (5) N31—C311—C316—C315 179.6 (3)
O14—C14—C15—C16 179.0 (3) C314—C315—C316—C311 0.7 (5)
C13—C14—C15—C16 −1.5 (5) N31—C35—O351—C352 118.5 (3)
C14—C15—C16—C11 1.6 (5) C34—C35—O351—C352 −70.6 (4)
C12—C11—C16—C15 −0.3 (5) C360—C351—C352—C353 1.1 (4)
C1—C11—C16—C15 178.8 (3) C360—C351—C352—O351 179.0 (2)
C15—C14—O14—C17 179.1 (3) C35—O351—C352—C351 161.8 (2)
C13—C14—O14—C17 −0.4 (4) C35—O351—C352—C353 −20.2 (4)
C14—O14—C17—C18 −174.7 (3) C351—C352—C353—C354 −0.5 (5)
C35—N31—N32—C33 1.2 (3) O351—C352—C353—C354 −178.4 (3)
C311—N31—N32—C33 −179.5 (2) C352—C353—C354—C359 −0.2 (5)
N31—N32—C33—C34 −1.3 (3) C359—C355—C356—C357 0.2 (5)
N31—N32—C33—C331 179.5 (3) C355—C356—C357—C358 −0.2 (6)
N32—C33—C34—C35 0.8 (3) C356—C357—C358—C360 0.1 (5)
C331—C33—C34—C35 −180.0 (3) C353—C354—C359—C360 0.5 (5)
N32—C33—C34—C3 −177.6 (3) C353—C354—C359—C355 −179.4 (3)
C331—C33—C34—C3 1.6 (5) C356—C355—C359—C354 179.8 (3)
C2—C3—C34—C35 −9.1 (5) C356—C355—C359—C360 0.0 (5)
C2—C3—C34—C33 168.9 (3) C357—C358—C360—C359 0.1 (5)
N32—N31—C35—O351 172.1 (2) C357—C358—C360—C351 −179.9 (3)
C311—N31—C35—O351 −7.1 (4) C354—C359—C360—C358 −180.0 (3)
N32—N31—C35—C34 −0.7 (3) C355—C359—C360—C358 −0.2 (4)
C311—N31—C35—C34 −180.0 (3) C354—C359—C360—C351 0.0 (4)
C33—C34—C35—N31 −0.1 (3) C355—C359—C360—C351 179.9 (3)
C3—C34—C35—N31 178.3 (3) C352—C351—C360—C358 179.2 (3)
C33—C34—C35—O351 −171.7 (3) C352—C351—C360—C359 −0.8 (4)

3-[3-Methyl-5-(naphthalen-2-yloxy)-1-phenyl-1H-pyrazol-4-yl]-1-[4-(prop-2-ynyloxy)phenyl]prop-2-en-1-one (Ie) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C19—H19···O1i 0.93 2.32 3.233 (5) 165
C353—H353···Cg1ii 0.93 2.86 3.708 (3) 152

Symmetry codes: (i) x−1, y+1, z; (ii) −x+1, −y, −z+1.

1-(4-Azidophenyl)-3-[3-methyl-5-(2-methylphenoxy)-1-phenyl-1H-pyrazol-4-yl]prop-2-en-1-one (IIa) . Crystal data

C26H21N5O2 Z = 2
Mr = 435.48 F(000) = 456
Triclinic, P1 Dx = 1.255 Mg m3
a = 9.8432 (6) Å Mo Kα radiation, λ = 0.71073 Å
b = 11.7441 (7) Å Cell parameters from 4051 reflections
c = 12.3005 (7) Å θ = 3.2–25.1°
α = 114.120 (2)° µ = 0.08 mm1
β = 111.139 (2)° T = 297 K
γ = 96.537 (2)° Block, brown
V = 1152.06 (12) Å3 0.20 × 0.20 × 0.18 mm

1-(4-Azidophenyl)-3-[3-methyl-5-(2-methylphenoxy)-1-phenyl-1H-pyrazol-4-yl]prop-2-en-1-one (IIa) . Data collection

Bruker APEXII diffractometer 4050 independent reflections
Radiation source: fine focussealed tube 2957 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.048
φ and ω scans θmax = 25.1°, θmin = 3.5°
Absorption correction: multi-scan (SADABS; Bruker, 2016) h = −11→11
Tmin = 0.868, Tmax = 0.985 k = −13→13
17379 measured reflections l = −14→14

1-(4-Azidophenyl)-3-[3-methyl-5-(2-methylphenoxy)-1-phenyl-1H-pyrazol-4-yl]prop-2-en-1-one (IIa) . Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.050 w = 1/[σ2(Fo2) + (0.0547P)2 + 0.4937P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.148 (Δ/σ)max < 0.001
S = 1.10 Δρmax = 0.19 e Å3
4050 reflections Δρmin = −0.21 e Å3
301 parameters Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.179 (14)
Primary atom site location: dual

1-(4-Azidophenyl)-3-[3-methyl-5-(2-methylphenoxy)-1-phenyl-1H-pyrazol-4-yl]prop-2-en-1-one (IIa) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

1-(4-Azidophenyl)-3-[3-methyl-5-(2-methylphenoxy)-1-phenyl-1H-pyrazol-4-yl]prop-2-en-1-one (IIa) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.6025 (2) 0.4013 (2) 0.8884 (2) 0.0473 (5)
O1 0.66955 (18) 0.33036 (17) 0.9214 (2) 0.0733 (5)
C2 0.4353 (2) 0.3679 (2) 0.8333 (2) 0.0465 (5)
H2 0.3862 0.4229 0.8090 0.056*
C3 0.3533 (2) 0.2591 (2) 0.8180 (2) 0.0459 (5)
H3 0.4098 0.2111 0.8489 0.055*
C11 0.6922 (2) 0.52181 (19) 0.90264 (19) 0.0415 (5)
C12 0.8501 (2) 0.5646 (2) 0.9800 (2) 0.0462 (5)
H12 0.8940 0.5193 1.0229 0.055*
C13 0.9434 (2) 0.6725 (2) 0.9947 (2) 0.0471 (5)
H13 1.0487 0.6991 1.0463 0.057*
C14 0.8781 (2) 0.7402 (2) 0.9317 (2) 0.0480 (5)
C15 0.7212 (2) 0.7008 (2) 0.8556 (2) 0.0557 (6)
H15 0.6776 0.7473 0.8142 0.067*
C16 0.6292 (2) 0.5923 (2) 0.8413 (2) 0.0519 (5)
H16 0.5239 0.5662 0.7900 0.062*
N14 0.9637 (2) 0.85203 (19) 0.9401 (2) 0.0656 (6)
N15 1.1040 (3) 0.8907 (2) 1.0131 (2) 0.0693 (6)
N16 1.2312 (3) 0.9373 (3) 1.0751 (3) 0.1029 (10)
N31 −0.06215 (19) 0.16164 (16) 0.66089 (17) 0.0471 (4)
N32 −0.0398 (2) 0.05926 (17) 0.68563 (18) 0.0511 (5)
C33 0.1109 (2) 0.0864 (2) 0.7460 (2) 0.0469 (5)
C34 0.1897 (2) 0.20522 (19) 0.7604 (2) 0.0433 (5)
C35 0.0727 (2) 0.24912 (19) 0.7052 (2) 0.0442 (5)
C311 −0.2141 (2) 0.1559 (2) 0.5825 (2) 0.0471 (5)
C312 −0.2664 (3) 0.2627 (2) 0.6210 (3) 0.0611 (6)
H312 −0.2034 0.3406 0.6988 0.073*
C313 −0.4142 (3) 0.2524 (3) 0.5418 (3) 0.0711 (7)
H313 −0.4506 0.3239 0.5667 0.085*
C314 −0.5075 (3) 0.1371 (3) 0.4269 (3) 0.0735 (7)
H314 −0.6063 0.1312 0.3741 0.088*
C315 −0.4550 (3) 0.0308 (3) 0.3900 (3) 0.0719 (7)
H315 −0.5184 −0.0472 0.3124 0.086*
C316 −0.3082 (3) 0.0397 (2) 0.4679 (2) 0.0578 (6)
H316 −0.2728 −0.0324 0.4433 0.069*
C331 0.1796 (3) −0.0017 (2) 0.7929 (3) 0.0645 (6)
H33A 0.1019 −0.0622 0.7896 0.097*
H33B 0.2587 0.0498 0.8829 0.097*
H33C 0.2225 −0.0495 0.7365 0.097*
O351 0.07382 (17) 0.36198 (13) 0.69897 (15) 0.0522 (4)
C351 0.1292 (2) 0.38472 (19) 0.6168 (2) 0.0434 (5)
C352 0.1738 (2) 0.5152 (2) 0.6479 (2) 0.0522 (5)
C353 0.2282 (3) 0.5403 (3) 0.5678 (3) 0.0690 (7)
H353 0.2599 0.6264 0.5855 0.083*
C354 0.2367 (3) 0.4418 (3) 0.4633 (3) 0.0780 (8)
H354 0.2741 0.4618 0.4116 0.094*
C355 0.1900 (3) 0.3135 (3) 0.4344 (3) 0.0699 (7)
H355 0.1952 0.2469 0.3630 0.084*
C356 0.1353 (3) 0.2839 (2) 0.5119 (2) 0.0547 (6)
H356 0.1032 0.1976 0.4934 0.066*
C357 0.1657 (4) 0.6222 (2) 0.7625 (3) 0.0777 (8)
H35A 0.1876 0.7031 0.7608 0.116*
H35B 0.2393 0.6314 0.8446 0.116*
H35C 0.0649 0.6010 0.7559 0.116*

1-(4-Azidophenyl)-3-[3-methyl-5-(2-methylphenoxy)-1-phenyl-1H-pyrazol-4-yl]prop-2-en-1-one (IIa) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0414 (11) 0.0494 (12) 0.0507 (12) 0.0123 (9) 0.0182 (9) 0.0266 (10)
O1 0.0471 (9) 0.0702 (11) 0.1105 (14) 0.0170 (8) 0.0231 (9) 0.0615 (11)
C2 0.0378 (11) 0.0456 (11) 0.0520 (12) 0.0110 (9) 0.0178 (9) 0.0227 (9)
C3 0.0441 (11) 0.0436 (11) 0.0474 (11) 0.0122 (9) 0.0214 (9) 0.0194 (9)
C11 0.0362 (10) 0.0439 (11) 0.0414 (10) 0.0110 (8) 0.0166 (8) 0.0192 (9)
C12 0.0382 (11) 0.0490 (12) 0.0531 (12) 0.0147 (9) 0.0193 (9) 0.0270 (10)
C13 0.0364 (10) 0.0470 (11) 0.0531 (12) 0.0111 (9) 0.0171 (9) 0.0231 (10)
C14 0.0467 (12) 0.0430 (11) 0.0500 (12) 0.0074 (9) 0.0213 (9) 0.0207 (9)
C15 0.0478 (12) 0.0569 (13) 0.0614 (13) 0.0119 (10) 0.0157 (10) 0.0366 (11)
C16 0.0375 (11) 0.0573 (13) 0.0544 (12) 0.0091 (9) 0.0127 (9) 0.0298 (11)
N14 0.0517 (12) 0.0558 (12) 0.0775 (14) 0.0002 (9) 0.0136 (10) 0.0397 (11)
N15 0.0585 (14) 0.0588 (13) 0.0799 (14) 0.0032 (10) 0.0187 (12) 0.0388 (11)
N16 0.0565 (15) 0.0956 (19) 0.130 (2) −0.0054 (13) 0.0099 (15) 0.0668 (18)
N31 0.0417 (9) 0.0424 (9) 0.0551 (10) 0.0076 (7) 0.0203 (8) 0.0245 (8)
N32 0.0485 (11) 0.0443 (10) 0.0612 (11) 0.0080 (8) 0.0232 (9) 0.0291 (9)
C33 0.0492 (12) 0.0416 (11) 0.0514 (12) 0.0091 (9) 0.0252 (10) 0.0228 (9)
C34 0.0422 (11) 0.0403 (10) 0.0463 (11) 0.0090 (8) 0.0219 (9) 0.0191 (9)
C35 0.0463 (11) 0.0375 (10) 0.0512 (11) 0.0100 (9) 0.0256 (9) 0.0212 (9)
C311 0.0418 (11) 0.0519 (12) 0.0499 (11) 0.0116 (9) 0.0236 (9) 0.0246 (10)
C312 0.0542 (14) 0.0539 (14) 0.0674 (15) 0.0149 (11) 0.0269 (12) 0.0235 (12)
C313 0.0613 (16) 0.0702 (17) 0.0894 (19) 0.0309 (13) 0.0369 (15) 0.0399 (15)
C314 0.0505 (14) 0.090 (2) 0.0758 (17) 0.0230 (14) 0.0233 (13) 0.0408 (16)
C315 0.0518 (14) 0.0762 (18) 0.0609 (15) 0.0108 (13) 0.0165 (12) 0.0197 (13)
C316 0.0495 (13) 0.0558 (13) 0.0584 (13) 0.0142 (10) 0.0248 (11) 0.0193 (11)
C331 0.0663 (15) 0.0588 (14) 0.0765 (16) 0.0175 (12) 0.0304 (13) 0.0418 (13)
O351 0.0583 (9) 0.0427 (8) 0.0694 (10) 0.0185 (7) 0.0374 (8) 0.0310 (7)
C351 0.0370 (10) 0.0452 (11) 0.0485 (11) 0.0107 (8) 0.0155 (9) 0.0269 (9)
C352 0.0491 (12) 0.0476 (12) 0.0575 (13) 0.0125 (10) 0.0163 (10) 0.0307 (10)
C353 0.0742 (17) 0.0632 (16) 0.0749 (17) 0.0127 (13) 0.0264 (14) 0.0464 (14)
C354 0.089 (2) 0.091 (2) 0.0798 (18) 0.0248 (16) 0.0440 (16) 0.0589 (17)
C355 0.0818 (18) 0.0828 (18) 0.0608 (15) 0.0339 (15) 0.0380 (14) 0.0411 (14)
C356 0.0580 (13) 0.0497 (12) 0.0547 (13) 0.0166 (10) 0.0219 (11) 0.0267 (11)
C357 0.104 (2) 0.0467 (14) 0.0809 (18) 0.0248 (14) 0.0384 (16) 0.0318 (13)

1-(4-Azidophenyl)-3-[3-methyl-5-(2-methylphenoxy)-1-phenyl-1H-pyrazol-4-yl]prop-2-en-1-one (IIa) . Geometric parameters (Å, º)

C1—O1 1.226 (3) C311—C316 1.380 (3)
C1—C2 1.468 (3) C312—C313 1.386 (3)
C1—C11 1.488 (3) C312—H312 0.9300
C2—C3 1.334 (3) C313—C314 1.375 (4)
C2—H2 0.9300 C313—H313 0.9300
C3—C34 1.440 (3) C314—C315 1.373 (4)
C3—H3 0.9300 C314—H314 0.9300
C11—C16 1.389 (3) C315—C316 1.379 (3)
C11—C12 1.392 (3) C315—H315 0.9300
C12—C13 1.382 (3) C316—H316 0.9300
C12—H12 0.9300 C331—H33A 0.9600
C13—C14 1.380 (3) C331—H33B 0.9600
C13—H13 0.9300 C331—H33C 0.9600
C14—C15 1.384 (3) O351—C351 1.405 (2)
C14—N14 1.422 (3) C351—C356 1.377 (3)
C15—C16 1.383 (3) C351—C352 1.391 (3)
C15—H15 0.9300 C352—C353 1.389 (3)
C16—H16 0.9300 C352—C357 1.493 (3)
N14—N15 1.245 (3) C353—C354 1.372 (4)
N15—N16 1.124 (3) C353—H353 0.9300
N31—C35 1.351 (3) C354—C355 1.377 (4)
N31—N32 1.378 (2) C354—H354 0.9300
N31—C311 1.433 (3) C355—C356 1.385 (3)
N32—C33 1.326 (3) C355—H355 0.9300
C33—C34 1.426 (3) C356—H356 0.9300
C33—C331 1.493 (3) C357—H35A 0.9600
C34—C35 1.382 (3) C357—H35B 0.9600
C35—O351 1.358 (2) C357—H35C 0.9600
C311—C312 1.379 (3)
O1—C1—C2 120.91 (19) C311—C312—H312 120.5
O1—C1—C11 119.34 (19) C313—C312—H312 120.5
C2—C1—C11 119.74 (18) C314—C313—C312 120.5 (2)
C3—C2—C1 120.4 (2) C314—C313—H313 119.8
C3—C2—H2 119.8 C312—C313—H313 119.8
C1—C2—H2 119.8 C315—C314—C313 120.1 (2)
C2—C3—C34 129.2 (2) C315—C314—H314 119.9
C2—C3—H3 115.4 C313—C314—H314 119.9
C34—C3—H3 115.4 C314—C315—C316 120.0 (2)
C16—C11—C12 118.03 (19) C314—C315—H315 120.0
C16—C11—C1 124.29 (18) C316—C315—H315 120.0
C12—C11—C1 117.66 (18) C315—C316—C311 119.9 (2)
C13—C12—C11 121.75 (19) C315—C316—H316 120.1
C13—C12—H12 119.1 C311—C316—H316 120.1
C11—C12—H12 119.1 C33—C331—H33A 109.5
C14—C13—C12 119.10 (19) C33—C331—H33B 109.5
C14—C13—H13 120.5 H33A—C331—H33B 109.5
C12—C13—H13 120.5 C33—C331—H33C 109.5
C13—C14—C15 120.35 (19) H33A—C331—H33C 109.5
C13—C14—N14 123.5 (2) H33B—C331—H33C 109.5
C15—C14—N14 116.1 (2) C35—O351—C351 119.16 (15)
C16—C15—C14 120.0 (2) C356—C351—C352 123.0 (2)
C16—C15—H15 120.0 C356—C351—O351 121.83 (18)
C14—C15—H15 120.0 C352—C351—O351 115.11 (18)
C15—C16—C11 120.80 (19) C353—C352—C351 116.3 (2)
C15—C16—H16 119.6 C353—C352—C357 122.0 (2)
C11—C16—H16 119.6 C351—C352—C357 121.7 (2)
N15—N14—C14 116.1 (2) C354—C353—C352 121.9 (2)
N16—N15—N14 171.8 (3) C354—C353—H353 119.1
C35—N31—N32 111.11 (17) C352—C353—H353 119.1
C35—N31—C311 129.06 (18) C353—C354—C355 120.3 (2)
N32—N31—C311 119.38 (16) C353—C354—H354 119.8
C33—N32—N31 104.82 (16) C355—C354—H354 119.8
N32—C33—C34 112.21 (18) C354—C355—C356 119.8 (3)
N32—C33—C331 120.41 (18) C354—C355—H355 120.1
C34—C33—C331 127.4 (2) C356—C355—H355 120.1
C35—C34—C33 103.40 (17) C351—C356—C355 118.7 (2)
C35—C34—C3 131.01 (19) C351—C356—H356 120.7
C33—C34—C3 125.58 (19) C355—C356—H356 120.7
N31—C35—O351 119.52 (18) C352—C357—H35A 109.5
N31—C35—C34 108.45 (18) C352—C357—H35B 109.5
O351—C35—C34 131.82 (18) H35A—C357—H35B 109.5
C312—C311—C316 120.5 (2) C352—C357—H35C 109.5
C312—C311—N31 121.14 (19) H35A—C357—H35C 109.5
C316—C311—N31 118.35 (19) H35B—C357—H35C 109.5
C311—C312—C313 119.0 (2)
O1—C1—C2—C3 −0.1 (3) C311—N31—C35—C34 −171.57 (19)
C11—C1—C2—C3 178.86 (19) C33—C34—C35—N31 −0.9 (2)
C1—C2—C3—C34 −176.53 (19) C3—C34—C35—N31 178.1 (2)
O1—C1—C11—C16 164.2 (2) C33—C34—C35—O351 173.7 (2)
C2—C1—C11—C16 −14.8 (3) C3—C34—C35—O351 −7.3 (4)
O1—C1—C11—C12 −14.2 (3) C35—N31—C311—C312 −53.4 (3)
C2—C1—C11—C12 166.82 (18) N32—N31—C311—C312 135.1 (2)
C16—C11—C12—C13 −1.0 (3) C35—N31—C311—C316 127.5 (2)
C1—C11—C12—C13 177.49 (19) N32—N31—C311—C316 −44.0 (3)
C11—C12—C13—C14 0.4 (3) C316—C311—C312—C313 −0.9 (4)
C12—C13—C14—C15 0.4 (3) N31—C311—C312—C313 −180.0 (2)
C12—C13—C14—N14 −179.8 (2) C311—C312—C313—C314 0.2 (4)
C13—C14—C15—C16 −0.7 (3) C312—C313—C314—C315 0.4 (4)
N14—C14—C15—C16 179.5 (2) C313—C314—C315—C316 −0.3 (4)
C14—C15—C16—C11 0.1 (4) C314—C315—C316—C311 −0.4 (4)
C12—C11—C16—C15 0.7 (3) C312—C311—C316—C315 1.0 (3)
C1—C11—C16—C15 −177.7 (2) N31—C311—C316—C315 −179.9 (2)
C13—C14—N14—N15 −2.7 (3) N31—C35—O351—C351 −115.8 (2)
C15—C14—N14—N15 177.1 (2) C34—C35—O351—C351 70.1 (3)
C35—N31—N32—C33 0.1 (2) C35—O351—C351—C356 21.6 (3)
C311—N31—N32—C33 173.08 (17) C35—O351—C351—C352 −159.61 (18)
N31—N32—C33—C34 −0.7 (2) C356—C351—C352—C353 −1.0 (3)
N31—N32—C33—C331 177.90 (19) O351—C351—C352—C353 −179.69 (19)
N32—C33—C34—C35 1.0 (2) C356—C351—C352—C357 180.0 (2)
C331—C33—C34—C35 −177.5 (2) O351—C351—C352—C357 1.3 (3)
N32—C33—C34—C3 −178.03 (18) C351—C352—C353—C354 0.4 (4)
C331—C33—C34—C3 3.5 (3) C357—C352—C353—C354 179.4 (3)
C2—C3—C34—C35 0.2 (4) C352—C353—C354—C355 0.3 (4)
C2—C3—C34—C33 179.0 (2) C353—C354—C355—C356 −0.4 (4)
N32—N31—C35—O351 −174.87 (17) C352—C351—C356—C355 0.8 (3)
C311—N31—C35—O351 13.1 (3) O351—C351—C356—C355 179.5 (2)
N32—N31—C35—C34 0.5 (2) C354—C355—C356—C351 −0.1 (4)

1-(4-Azidophenyl)-3-[3-methyl-5-(2-methylphenoxy)-1-phenyl-1H-pyrazol-4-yl]prop-2-en-1-one (IIa) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C357—H35B···O1i 0.96 2.51 3.396 (4) 154

Symmetry code: (i) −x+1, −y+1, −z+2.

1-(4-Azidophenyl)-3-[5-(2,4-dichlorophenoxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl]prop-2-en-1-one (IId) . Crystal data

C25H17Cl2N5O2 F(000) = 2016
Mr = 490.33 Dx = 1.377 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 28.1916 (17) Å Cell parameters from 4176 reflections
b = 8.0537 (5) Å θ = 2.9–25.0°
c = 22.0446 (12) Å µ = 0.31 mm1
β = 109.070 (1)° T = 297 K
V = 4730.5 (5) Å3 Block, colourless
Z = 8 0.18 × 0.15 × 0.15 mm

1-(4-Azidophenyl)-3-[5-(2,4-dichlorophenoxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl]prop-2-en-1-one (IId) . Data collection

Bruker APEXII diffractometer 4174 independent reflections
Radiation source: fine focussealed tube 3181 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.049
φ and ω scans θmax = 25.0°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Bruker, 2016) h = −33→33
Tmin = 0.881, Tmax = 0.955 k = −9→9
31508 measured reflections l = −26→21

1-(4-Azidophenyl)-3-[5-(2,4-dichlorophenoxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl]prop-2-en-1-one (IId) . Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.086 w = 1/[σ2(Fo2) + (0.0265P)2 + 10.5248P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.155 (Δ/σ)max < 0.001
S = 1.36 Δρmax = 0.21 e Å3
4174 reflections Δρmin = −0.23 e Å3
382 parameters Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
291 restraints Extinction coefficient: 0.0018 (3)
Primary atom site location: dual

1-(4-Azidophenyl)-3-[5-(2,4-dichlorophenoxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl]prop-2-en-1-one (IId) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

1-(4-Azidophenyl)-3-[5-(2,4-dichlorophenoxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl]prop-2-en-1-one (IId) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.42395 (14) 0.7441 (5) 0.5060 (2) 0.0497 (10)
O1 0.42708 (11) 0.8068 (4) 0.55744 (16) 0.0731 (10)
C2 0.46893 (14) 0.7129 (5) 0.48791 (19) 0.0509 (10)
H2 0.4658 0.6524 0.4509 0.061*
C3 0.51394 (14) 0.7686 (5) 0.52294 (19) 0.0505 (10)
H3 0.5154 0.8257 0.5602 0.061*
C11 0.37362 (14) 0.6992 (5) 0.45998 (19) 0.0472 (10)
C12 0.33110 (15) 0.7460 (6) 0.4740 (2) 0.0637 (12)
H12 0.3346 0.8036 0.5118 0.076*
C13 0.28398 (17) 0.7089 (7) 0.4332 (2) 0.0741 (14)
H13 0.2558 0.7415 0.4433 0.089*
C14 0.27855 (15) 0.6239 (6) 0.3778 (2) 0.0624 (12)
C15 0.31991 (16) 0.5748 (6) 0.3626 (2) 0.0665 (13)
H15 0.3162 0.5164 0.3250 0.080*
C16 0.36695 (15) 0.6129 (6) 0.4038 (2) 0.0616 (12)
H16 0.3950 0.5796 0.3935 0.074*
N14 0.22805 (15) 0.5915 (6) 0.3381 (2) 0.0911 (15)
N15 0.22323 (16) 0.4999 (7) 0.2916 (3) 0.0912 (15)
N16 0.2133 (2) 0.4157 (9) 0.2483 (3) 0.128 (2)
N31 0.61980 (11) 0.6957 (4) 0.46689 (15) 0.0498 (9)
N32 0.64431 (12) 0.7692 (5) 0.52519 (15) 0.0577 (10)
C33 0.60890 (15) 0.8028 (5) 0.55055 (19) 0.0539 (11)
C34 0.56086 (13) 0.7514 (5) 0.51031 (18) 0.0455 (9)
C35 0.56997 (13) 0.6852 (5) 0.45798 (18) 0.0449 (9)
C311 0.64806 (14) 0.6459 (5) 0.42690 (18) 0.0489 (10)
C312 0.63370 (15) 0.5118 (6) 0.3859 (2) 0.0576 (11)
H312 0.6047 0.4527 0.3832 0.069*
C313 0.66276 (18) 0.4666 (6) 0.3491 (2) 0.0702 (13)
H313 0.6530 0.3781 0.3207 0.084*
C314 0.70616 (19) 0.5516 (7) 0.3541 (2) 0.0782 (15)
H314 0.7257 0.5199 0.3293 0.094*
C315 0.72076 (17) 0.6827 (7) 0.3955 (3) 0.0784 (15)
H315 0.7505 0.7383 0.3993 0.094*
C316 0.69143 (16) 0.7326 (6) 0.4316 (2) 0.0672 (13)
H316 0.7008 0.8237 0.4588 0.081*
C331 0.62281 (17) 0.8821 (7) 0.6150 (2) 0.0720 (14)
H33A 0.6193 0.8029 0.6457 0.108*
H33B 0.6011 0.9752 0.6133 0.108*
H33C 0.6570 0.9194 0.6274 0.108*
O351 0.53813 (9) 0.6158 (3) 0.40327 (12) 0.0483 (7) 0.55 (4)
C351 0.5093 (7) 0.7253 (10) 0.3559 (10) 0.030 (5) 0.55 (4)
C352 0.4689 (8) 0.6575 (11) 0.3090 (11) 0.038 (5) 0.55 (4)
Cl52 0.4590 (5) 0.4465 (11) 0.3077 (7) 0.118 (4) 0.55 (4)
C353 0.4349 (9) 0.7567 (14) 0.2647 (12) 0.048 (6) 0.55 (4)
H353 0.4104 0.7108 0.2295 0.058* 0.55 (4)
C354 0.4384 (7) 0.9280 (13) 0.2743 (10) 0.039 (5) 0.55 (4)
Cl54 0.3988 (2) 1.0506 (7) 0.2131 (2) 0.067 (3) 0.55 (4)
C355 0.4787 (8) 0.9973 (14) 0.3206 (11) 0.043 (5) 0.55 (4)
H355 0.4832 1.1119 0.3225 0.051* 0.55 (4)
C356 0.5125 (8) 0.8960 (12) 0.3640 (12) 0.047 (6) 0.55 (4)
H356 0.5374 0.9420 0.3987 0.056* 0.55 (4)
O451 0.53813 (9) 0.6158 (3) 0.40327 (12) 0.0483 (7) 0.45 (4)
C451 0.5023 (8) 0.7239 (13) 0.3633 (11) 0.031 (5) 0.45 (4)
C452 0.4619 (10) 0.6533 (14) 0.3172 (14) 0.040 (7) 0.45 (4)
Cl62 0.4539 (3) 0.4410 (9) 0.3133 (5) 0.058 (3) 0.45 (4)
C453 0.4287 (11) 0.7504 (17) 0.2708 (15) 0.047 (6) 0.45 (4)
H453 0.3980 0.7085 0.2450 0.056* 0.45 (4)
C454 0.4429 (9) 0.913 (2) 0.2639 (13) 0.050 (7) 0.45 (4)
Cl64 0.3977 (4) 1.0402 (17) 0.2112 (5) 0.128 (6) 0.45 (4)
C455 0.4832 (9) 0.9854 (19) 0.3095 (14) 0.045 (6) 0.45 (4)
H455 0.4889 1.0989 0.3086 0.054* 0.45 (4)
C456 0.5150 (8) 0.8875 (16) 0.3564 (13) 0.036 (5) 0.45 (4)
H456 0.5450 0.9310 0.3835 0.043* 0.45 (4)

1-(4-Azidophenyl)-3-[5-(2,4-dichlorophenoxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl]prop-2-en-1-one (IId) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.048 (2) 0.045 (2) 0.056 (3) −0.0079 (19) 0.016 (2) −0.003 (2)
O1 0.0606 (19) 0.091 (3) 0.072 (2) −0.0197 (17) 0.0267 (16) −0.0303 (19)
C2 0.048 (2) 0.056 (3) 0.047 (2) −0.0035 (19) 0.0118 (19) −0.003 (2)
C3 0.051 (2) 0.053 (2) 0.045 (2) −0.004 (2) 0.0127 (19) −0.0012 (19)
C11 0.048 (2) 0.043 (2) 0.051 (2) 0.0000 (18) 0.0167 (19) 0.0025 (19)
C12 0.051 (3) 0.079 (3) 0.061 (3) 0.006 (2) 0.018 (2) −0.008 (2)
C13 0.049 (3) 0.100 (4) 0.071 (3) 0.011 (3) 0.017 (2) −0.004 (3)
C14 0.045 (2) 0.069 (3) 0.065 (3) −0.001 (2) 0.006 (2) 0.007 (2)
C15 0.051 (3) 0.079 (3) 0.063 (3) −0.001 (2) 0.011 (2) −0.016 (3)
C16 0.044 (2) 0.072 (3) 0.070 (3) −0.002 (2) 0.019 (2) −0.010 (3)
N14 0.053 (3) 0.113 (4) 0.091 (3) 0.001 (2) 0.003 (2) −0.017 (3)
N15 0.061 (3) 0.122 (4) 0.077 (3) −0.009 (3) 0.004 (3) −0.003 (3)
N16 0.105 (4) 0.175 (6) 0.087 (4) −0.023 (4) 0.009 (3) −0.030 (4)
N31 0.0388 (18) 0.061 (2) 0.0452 (19) −0.0027 (16) 0.0082 (15) 0.0027 (16)
N32 0.0398 (18) 0.081 (3) 0.044 (2) −0.0093 (18) 0.0023 (15) 0.0002 (18)
C33 0.045 (2) 0.066 (3) 0.046 (2) −0.008 (2) 0.0093 (19) 0.002 (2)
C34 0.038 (2) 0.049 (2) 0.044 (2) −0.0037 (18) 0.0057 (17) 0.0053 (19)
C35 0.037 (2) 0.047 (2) 0.044 (2) −0.0005 (17) 0.0041 (17) 0.0081 (19)
C311 0.038 (2) 0.057 (3) 0.046 (2) 0.0033 (19) 0.0063 (18) 0.012 (2)
C312 0.047 (2) 0.059 (3) 0.065 (3) 0.004 (2) 0.016 (2) 0.010 (2)
C313 0.063 (3) 0.074 (3) 0.072 (3) 0.015 (3) 0.020 (3) −0.002 (3)
C314 0.065 (3) 0.103 (4) 0.073 (3) 0.016 (3) 0.032 (3) 0.006 (3)
C315 0.052 (3) 0.105 (4) 0.081 (4) −0.010 (3) 0.025 (3) 0.006 (3)
C316 0.051 (3) 0.083 (3) 0.064 (3) −0.007 (2) 0.015 (2) −0.001 (3)
C331 0.057 (3) 0.103 (4) 0.050 (3) −0.017 (3) 0.010 (2) −0.012 (3)
O351 0.0413 (14) 0.0446 (15) 0.0480 (16) −0.0012 (12) −0.0005 (12) −0.0026 (12)
C351 0.019 (5) 0.035 (6) 0.043 (8) −0.004 (4) 0.018 (5) −0.006 (4)
C352 0.035 (6) 0.041 (6) 0.043 (8) 0.001 (4) 0.017 (7) −0.008 (5)
Cl52 0.132 (7) 0.064 (4) 0.115 (6) −0.019 (4) −0.018 (4) −0.012 (4)
C353 0.035 (7) 0.067 (9) 0.039 (8) −0.011 (6) 0.008 (6) −0.013 (6)
C354 0.042 (6) 0.046 (6) 0.030 (7) 0.028 (5) 0.013 (6) 0.010 (5)
Cl54 0.058 (3) 0.068 (4) 0.051 (3) 0.033 (2) −0.014 (3) 0.020 (2)
C355 0.046 (6) 0.045 (6) 0.039 (7) 0.009 (5) 0.017 (7) −0.007 (5)
C356 0.052 (10) 0.049 (8) 0.035 (7) 0.000 (6) 0.010 (7) −0.016 (6)
O451 0.0413 (14) 0.0446 (15) 0.0480 (16) −0.0012 (12) −0.0005 (12) −0.0026 (12)
C451 0.026 (8) 0.057 (9) 0.018 (5) 0.000 (5) 0.017 (6) 0.000 (5)
C452 0.040 (9) 0.050 (8) 0.037 (8) −0.011 (6) 0.021 (7) −0.006 (6)
Cl62 0.052 (4) 0.036 (3) 0.073 (4) −0.012 (2) 0.001 (2) −0.013 (2)
C453 0.035 (8) 0.067 (10) 0.039 (8) 0.002 (7) 0.011 (8) 0.000 (7)
C454 0.042 (8) 0.077 (11) 0.036 (9) 0.005 (8) 0.020 (6) −0.008 (7)
Cl64 0.103 (8) 0.150 (10) 0.130 (9) 0.036 (6) 0.037 (7) 0.023 (6)
C455 0.057 (9) 0.041 (8) 0.047 (10) 0.009 (6) 0.032 (7) 0.003 (7)
C456 0.020 (7) 0.047 (10) 0.043 (10) −0.009 (7) 0.012 (6) 0.002 (8)

1-(4-Azidophenyl)-3-[5-(2,4-dichlorophenoxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl]prop-2-en-1-one (IId) . Geometric parameters (Å, º)

C1—O1 1.218 (5) C313—H313 0.9300
C1—C2 1.470 (5) C314—C315 1.367 (7)
C1—C11 1.494 (5) C314—H314 0.9300
C2—C3 1.329 (5) C315—C316 1.382 (6)
C2—H2 0.9300 C315—H315 0.9300
C3—C34 1.445 (5) C316—H316 0.9300
C3—H3 0.9300 C331—H33A 0.9600
C11—C16 1.378 (6) C331—H33B 0.9600
C11—C12 1.385 (5) C331—H33C 0.9600
C12—C13 1.372 (6) O351—C351 1.405 (7)
C12—H12 0.9300 C351—C352 1.377 (7)
C13—C14 1.365 (6) C351—C356 1.385 (11)
C13—H13 0.9300 C352—C353 1.377 (8)
C14—C15 1.372 (6) C352—Cl52 1.721 (7)
C14—N14 1.431 (6) C353—C354 1.395 (13)
C15—C16 1.375 (6) C353—H353 0.9300
C15—H15 0.9300 C354—C355 1.374 (8)
C16—H16 0.9300 C354—Cl54 1.748 (6)
N14—N15 1.233 (7) C355—C356 1.375 (8)
N15—N16 1.128 (7) C355—H355 0.9300
N31—C35 1.356 (5) C356—H356 0.9300
N31—N32 1.378 (4) C451—C452 1.378 (8)
N31—C311 1.425 (5) C451—C456 1.387 (12)
N32—C33 1.322 (5) C452—C453 1.381 (8)
C33—C34 1.417 (5) C452—Cl62 1.723 (7)
C33—C331 1.488 (6) C453—C454 1.394 (15)
C34—C35 1.369 (5) C453—H453 0.9300
C35—O351 1.366 (4) C454—C455 1.376 (9)
C311—C312 1.381 (6) C454—Cl64 1.746 (8)
C311—C316 1.382 (6) C455—C456 1.373 (8)
C312—C313 1.378 (6) C455—H455 0.9300
C312—H312 0.9300 C456—H456 0.9300
C313—C314 1.374 (7)
O1—C1—C2 121.1 (4) C315—C314—C313 120.3 (5)
O1—C1—C11 119.8 (4) C315—C314—H314 119.8
C2—C1—C11 119.1 (4) C313—C314—H314 119.8
C3—C2—C1 121.9 (4) C314—C315—C316 120.1 (5)
C3—C2—H2 119.0 C314—C315—H315 119.9
C1—C2—H2 119.0 C316—C315—H315 119.9
C2—C3—C34 128.0 (4) C315—C316—C311 119.4 (5)
C2—C3—H3 116.0 C315—C316—H316 120.3
C34—C3—H3 116.0 C311—C316—H316 120.3
C16—C11—C12 117.7 (4) C33—C331—H33A 109.5
C16—C11—C1 123.5 (4) C33—C331—H33B 109.5
C12—C11—C1 118.8 (4) H33A—C331—H33B 109.5
C13—C12—C11 121.2 (4) C33—C331—H33C 109.5
C13—C12—H12 119.4 H33A—C331—H33C 109.5
C11—C12—H12 119.4 H33B—C331—H33C 109.5
C14—C13—C12 119.8 (4) C35—O351—C351 117.0 (5)
C14—C13—H13 120.1 C352—C351—C356 119.5 (7)
C12—C13—H13 120.1 C352—C351—O351 116.5 (6)
C13—C14—C15 120.5 (4) C356—C351—O351 122.0 (9)
C13—C14—N14 115.9 (4) C351—C352—C353 121.1 (6)
C15—C14—N14 123.6 (5) C351—C352—Cl52 119.6 (6)
C14—C15—C16 119.2 (4) C353—C352—Cl52 119.3 (6)
C14—C15—H15 120.4 C352—C353—C354 117.9 (8)
C16—C15—H15 120.4 C352—C353—H353 121.1
C15—C16—C11 121.6 (4) C354—C353—H353 121.1
C15—C16—H16 119.2 C355—C354—C353 121.0 (8)
C11—C16—H16 119.2 C355—C354—Cl54 120.5 (6)
N15—N14—C14 115.8 (5) C353—C354—Cl54 116.5 (8)
N16—N15—N14 172.3 (6) C354—C355—C356 119.5 (7)
C35—N31—N32 110.0 (3) C354—C355—H355 120.3
C35—N31—C311 130.9 (3) C356—C355—H355 120.3
N32—N31—C311 119.1 (3) C355—C356—C351 119.9 (8)
C33—N32—N31 105.3 (3) C355—C356—H356 120.0
N32—C33—C34 112.0 (4) C351—C356—H356 120.0
N32—C33—C331 119.4 (4) C452—C451—C456 119.5 (9)
C34—C33—C331 128.5 (4) C451—C452—C453 120.6 (8)
C35—C34—C33 103.7 (3) C451—C452—Cl62 120.6 (7)
C35—C34—C3 129.5 (3) C453—C452—Cl62 118.6 (7)
C33—C34—C3 126.8 (4) C452—C453—C454 117.7 (11)
N31—C35—O351 120.3 (3) C452—C453—H453 121.1
N31—C35—C34 108.9 (3) C454—C453—H453 121.1
O351—C35—C34 130.8 (3) C455—C454—C453 121.0 (10)
C312—C311—C316 120.5 (4) C455—C454—Cl64 119.3 (9)
C312—C311—N31 121.4 (4) C453—C454—Cl64 116.8 (11)
C316—C311—N31 118.1 (4) C456—C455—C454 119.2 (8)
C313—C312—C311 119.2 (4) C456—C455—H455 120.4
C313—C312—H312 120.4 C454—C455—H455 120.4
C311—C312—H312 120.4 C455—C456—C451 120.0 (9)
C314—C313—C312 120.4 (5) C455—C456—H456 120.0
C314—C313—H313 119.8 C451—C456—H456 120.0
C312—C313—H313 119.8
O1—C1—C2—C3 −8.0 (6) N32—N31—C311—C312 149.6 (4)
C11—C1—C2—C3 171.4 (4) C35—N31—C311—C316 151.0 (4)
C1—C2—C3—C34 −178.2 (4) N32—N31—C311—C316 −28.4 (5)
O1—C1—C11—C16 −173.2 (4) C316—C311—C312—C313 −0.9 (6)
C2—C1—C11—C16 7.4 (6) N31—C311—C312—C313 −178.8 (4)
O1—C1—C11—C12 6.7 (6) C311—C312—C313—C314 1.5 (7)
C2—C1—C11—C12 −172.7 (4) C312—C313—C314—C315 −0.4 (8)
C16—C11—C12—C13 −0.5 (7) C313—C314—C315—C316 −1.3 (8)
C1—C11—C12—C13 179.6 (4) C314—C315—C316—C311 1.9 (7)
C11—C12—C13—C14 0.2 (8) C312—C311—C316—C315 −0.8 (7)
C12—C13—C14—C15 0.2 (8) N31—C311—C316—C315 177.2 (4)
C12—C13—C14—N14 −179.7 (5) N31—C35—O351—C351 −102.1 (15)
C13—C14—C15—C16 −0.3 (8) C34—C35—O351—C351 78.3 (16)
N14—C14—C15—C16 179.6 (5) C35—O351—C351—C352 −164 (2)
C14—C15—C16—C11 0.0 (7) C35—O351—C351—C356 0 (4)
C12—C11—C16—C15 0.4 (7) C356—C351—C352—C353 8 (5)
C1—C11—C16—C15 −179.7 (4) O351—C351—C352—C353 172 (3)
C13—C14—N14—N15 −172.6 (5) C356—C351—C352—Cl52 −169 (3)
C15—C14—N14—N15 7.5 (8) O351—C351—C352—Cl52 −4 (4)
C35—N31—N32—C33 −0.3 (4) C351—C352—C353—C354 −9 (5)
C311—N31—N32—C33 179.3 (4) Cl52—C352—C353—C354 168 (3)
N31—N32—C33—C34 0.6 (5) C352—C353—C354—C355 10 (5)
N31—N32—C33—C331 179.2 (4) C352—C353—C354—Cl54 174 (3)
N32—C33—C34—C35 −0.6 (5) C353—C354—C355—C356 −9 (5)
C331—C33—C34—C35 −179.1 (5) Cl54—C354—C355—C356 −173 (3)
N32—C33—C34—C3 180.0 (4) C354—C355—C356—C351 8 (5)
C331—C33—C34—C3 1.5 (7) C352—C351—C356—C355 −8 (5)
C2—C3—C34—C35 5.1 (7) O351—C351—C356—C355 −171 (3)
C2—C3—C34—C33 −175.7 (4) C456—C451—C452—C453 −11 (6)
N32—N31—C35—O351 −179.8 (3) C456—C451—C452—Cl62 164 (3)
C311—N31—C35—O351 0.7 (6) C451—C452—C453—C454 13 (6)
N32—N31—C35—C34 −0.1 (5) Cl62—C452—C453—C454 −163 (4)
C311—N31—C35—C34 −179.6 (4) C452—C453—C454—C455 −13 (6)
C33—C34—C35—N31 0.4 (4) C452—C453—C454—Cl64 −173 (3)
C3—C34—C35—N31 179.8 (4) C453—C454—C455—C456 11 (6)
C33—C34—C35—O351 −179.9 (4) Cl64—C454—C455—C456 171 (3)
C3—C34—C35—O351 −0.5 (7) C454—C455—C456—C451 −10 (6)
C35—N31—C311—C312 −31.0 (6) C452—C451—C456—C455 10 (6)

1-(4-Azidophenyl)-3-[5-(2,4-dichlorophenoxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl]prop-2-en-1-one (IId) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C356—H356···O1i 0.93 2.32 3.115 (18) 143
C456—H456···O1i 0.93 2.47 3.21 (2) 137

Symmetry code: (i) −x+1, −y+2, −z+1.

1-(4-Azidophenyl)-3-[3-methyl-5-(naphthalen-2-yloxy)-1-phenyl-1H-pyrazol-4-yl]prop-2-en-1-on (IIe) . Crystal data

C29H21N5O2 F(000) = 984
Mr = 471.51 Dx = 1.324 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 9.8460 (8) Å Cell parameters from 4197 reflections
b = 22.4303 (18) Å θ = 3.1–25.1°
c = 11.0490 (9) Å µ = 0.09 mm1
β = 104.157 (2)° T = 297 K
V = 2366.0 (3) Å3 Block, orange
Z = 4 0.22 × 0.21 × 0.16 mm

1-(4-Azidophenyl)-3-[3-methyl-5-(naphthalen-2-yloxy)-1-phenyl-1H-pyrazol-4-yl]prop-2-en-1-on (IIe) . Data collection

Bruker APEXII diffractometer 4196 independent reflections
Radiation source: fine focussealed tube 2463 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.092
φ and ω scans θmax = 25.1°, θmin = 3.1°
Absorption correction: multi-scan (SADABS; Bruker, 2016) h = −11→11
Tmin = 0.930, Tmax = 0.986 k = −26→26
43217 measured reflections l = −12→13

1-(4-Azidophenyl)-3-[3-methyl-5-(naphthalen-2-yloxy)-1-phenyl-1H-pyrazol-4-yl]prop-2-en-1-on (IIe) . Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.063 w = 1/[σ2(Fo2) + (0.0268P)2 + 3.4386P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.154 (Δ/σ)max < 0.001
S = 1.06 Δρmax = 0.23 e Å3
4196 reflections Δρmin = −0.27 e Å3
327 parameters Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0143 (9)
Primary atom site location: dual

1-(4-Azidophenyl)-3-[3-methyl-5-(naphthalen-2-yloxy)-1-phenyl-1H-pyrazol-4-yl]prop-2-en-1-on (IIe) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

1-(4-Azidophenyl)-3-[3-methyl-5-(naphthalen-2-yloxy)-1-phenyl-1H-pyrazol-4-yl]prop-2-en-1-on (IIe) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.3799 (4) 0.50783 (16) 0.2247 (3) 0.0478 (9)
O1 0.2646 (3) 0.49934 (13) 0.1526 (2) 0.0673 (8)
C2 0.5060 (4) 0.47779 (16) 0.2070 (3) 0.0489 (9)
H2 0.5904 0.4830 0.2662 0.059*
C3 0.5026 (4) 0.44316 (15) 0.1078 (3) 0.0465 (9)
H3 0.4164 0.4406 0.0502 0.056*
C11 0.3908 (3) 0.54796 (15) 0.3332 (3) 0.0433 (8)
C12 0.2693 (4) 0.56999 (17) 0.3595 (4) 0.0543 (10)
H12 0.1831 0.5588 0.3088 0.065*
C13 0.2725 (4) 0.60784 (17) 0.4580 (4) 0.0552 (10)
H13 0.1896 0.6212 0.4748 0.066*
C14 0.3990 (4) 0.62554 (16) 0.5309 (3) 0.0486 (9)
C15 0.5220 (4) 0.6051 (2) 0.5074 (4) 0.0656 (12)
H15 0.6078 0.6174 0.5572 0.079*
C16 0.5169 (4) 0.56643 (19) 0.4095 (4) 0.0595 (11)
H16 0.6001 0.5524 0.3944 0.071*
N14 0.4149 (4) 0.66594 (16) 0.6335 (3) 0.0655 (10)
N15 0.3037 (4) 0.68821 (16) 0.6481 (3) 0.0621 (9)
N16 0.2126 (4) 0.71190 (18) 0.6714 (4) 0.0877 (13)
N31 0.8165 (3) 0.36482 (13) 0.0799 (3) 0.0495 (8)
N32 0.7208 (3) 0.33982 (14) −0.0191 (3) 0.0551 (8)
C33 0.6012 (4) 0.36732 (16) −0.0196 (3) 0.0487 (9)
C34 0.6151 (4) 0.40921 (15) 0.0783 (3) 0.0444 (9)
C35 0.7544 (4) 0.40565 (15) 0.1390 (3) 0.0446 (9)
C311 0.9557 (4) 0.34178 (17) 0.1152 (3) 0.0491 (9)
C312 1.0685 (4) 0.37933 (18) 0.1521 (3) 0.0530 (10)
H312 1.0555 0.4204 0.1536 0.064*
C313 1.2010 (4) 0.3553 (2) 0.1870 (4) 0.0634 (11)
H313 1.2778 0.3805 0.2116 0.076*
C314 1.2215 (5) 0.2949 (2) 0.1861 (4) 0.0762 (13)
H314 1.3115 0.2792 0.2102 0.091*
C315 1.1087 (5) 0.2577 (2) 0.1496 (5) 0.0831 (15)
H315 1.1227 0.2167 0.1496 0.100*
C316 0.9736 (4) 0.28021 (19) 0.1125 (4) 0.0704 (13)
H316 0.8971 0.2549 0.0866 0.084*
C331 0.4703 (4) 0.35114 (19) −0.1150 (4) 0.0665 (12)
H33A 0.4924 0.3233 −0.1734 0.100*
H33B 0.4298 0.3864 −0.1585 0.100*
H33C 0.4047 0.3333 −0.0743 0.100*
O351 0.8283 (2) 0.42967 (10) 0.2482 (2) 0.0485 (6)
C351 0.8655 (3) 0.51795 (16) 0.3666 (3) 0.0455 (9)
H351 0.8589 0.4953 0.4355 0.055*
C352 0.8523 (3) 0.49169 (15) 0.2527 (3) 0.0423 (8)
C353 0.8651 (4) 0.52368 (17) 0.1473 (3) 0.0498 (9)
H353 0.8558 0.5046 0.0709 0.060*
C354 0.8917 (4) 0.58332 (18) 0.1585 (3) 0.0551 (10)
H354 0.9021 0.6047 0.0893 0.066*
C355 0.9276 (4) 0.67581 (18) 0.2850 (4) 0.0664 (12)
H355 0.9410 0.6977 0.2175 0.080*
C356 0.9309 (5) 0.7037 (2) 0.3951 (5) 0.0732 (13)
H356 0.9446 0.7447 0.4017 0.088*
C357 0.9139 (4) 0.6714 (2) 0.4975 (4) 0.0685 (12)
H357 0.9152 0.6913 0.5716 0.082*
C358 0.8951 (4) 0.61082 (19) 0.4919 (4) 0.0570 (10)
H358 0.8862 0.5897 0.5620 0.068*
C359 0.9037 (4) 0.61317 (16) 0.2727 (3) 0.0498 (9)
C360 0.8896 (3) 0.58065 (16) 0.3779 (3) 0.0437 (9)

1-(4-Azidophenyl)-3-[3-methyl-5-(naphthalen-2-yloxy)-1-phenyl-1H-pyrazol-4-yl]prop-2-en-1-on (IIe) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.042 (2) 0.052 (2) 0.048 (2) 0.0016 (18) 0.0093 (17) 0.0008 (18)
O1 0.0452 (16) 0.089 (2) 0.0630 (17) 0.0038 (15) 0.0042 (14) −0.0216 (16)
C2 0.037 (2) 0.058 (2) 0.050 (2) 0.0027 (17) 0.0077 (16) −0.0056 (19)
C3 0.041 (2) 0.051 (2) 0.047 (2) 0.0013 (17) 0.0080 (16) 0.0021 (18)
C11 0.0349 (19) 0.048 (2) 0.046 (2) 0.0009 (16) 0.0098 (16) −0.0019 (17)
C12 0.036 (2) 0.064 (3) 0.062 (2) −0.0024 (18) 0.0092 (18) −0.011 (2)
C13 0.042 (2) 0.063 (3) 0.061 (2) −0.0017 (19) 0.0130 (18) −0.014 (2)
C14 0.048 (2) 0.051 (2) 0.045 (2) −0.0011 (18) 0.0082 (17) −0.0036 (18)
C15 0.037 (2) 0.093 (3) 0.061 (3) 0.002 (2) 0.0013 (19) −0.019 (2)
C16 0.039 (2) 0.082 (3) 0.056 (2) 0.007 (2) 0.0096 (18) −0.013 (2)
N14 0.054 (2) 0.078 (2) 0.064 (2) 0.0027 (19) 0.0129 (17) −0.0171 (19)
N15 0.066 (2) 0.058 (2) 0.061 (2) −0.0092 (19) 0.0140 (19) −0.0108 (18)
N16 0.076 (3) 0.085 (3) 0.107 (3) 0.002 (2) 0.032 (2) −0.036 (2)
N31 0.0454 (18) 0.0521 (19) 0.0493 (18) 0.0013 (15) 0.0080 (15) −0.0150 (15)
N32 0.0519 (19) 0.057 (2) 0.0527 (19) −0.0057 (16) 0.0061 (15) −0.0154 (16)
C33 0.048 (2) 0.049 (2) 0.047 (2) −0.0067 (18) 0.0065 (17) −0.0048 (18)
C34 0.045 (2) 0.045 (2) 0.042 (2) −0.0008 (17) 0.0099 (16) −0.0052 (17)
C35 0.046 (2) 0.044 (2) 0.042 (2) −0.0012 (17) 0.0079 (17) −0.0064 (17)
C311 0.046 (2) 0.056 (2) 0.047 (2) 0.0025 (19) 0.0137 (17) −0.0074 (19)
C312 0.050 (2) 0.056 (2) 0.053 (2) 0.000 (2) 0.0148 (18) −0.0016 (19)
C313 0.048 (2) 0.084 (3) 0.058 (3) 0.001 (2) 0.0133 (19) −0.006 (2)
C314 0.054 (3) 0.089 (4) 0.086 (3) 0.017 (3) 0.018 (2) −0.013 (3)
C315 0.072 (3) 0.069 (3) 0.109 (4) 0.019 (3) 0.024 (3) −0.021 (3)
C316 0.062 (3) 0.059 (3) 0.093 (3) 0.003 (2) 0.023 (2) −0.023 (2)
C331 0.060 (3) 0.068 (3) 0.066 (3) −0.009 (2) 0.004 (2) −0.014 (2)
O351 0.0554 (15) 0.0442 (14) 0.0417 (14) −0.0010 (12) 0.0042 (11) −0.0085 (12)
C351 0.040 (2) 0.053 (2) 0.040 (2) −0.0020 (17) 0.0057 (16) −0.0060 (18)
C352 0.0357 (19) 0.043 (2) 0.044 (2) −0.0003 (16) 0.0026 (15) −0.0079 (18)
C353 0.052 (2) 0.056 (3) 0.040 (2) 0.0036 (18) 0.0078 (17) −0.0031 (18)
C354 0.058 (2) 0.060 (3) 0.045 (2) 0.005 (2) 0.0081 (18) 0.005 (2)
C355 0.070 (3) 0.053 (3) 0.071 (3) 0.002 (2) 0.007 (2) −0.001 (2)
C356 0.074 (3) 0.055 (3) 0.083 (3) 0.006 (2) 0.005 (3) −0.014 (3)
C357 0.056 (3) 0.072 (3) 0.072 (3) 0.000 (2) 0.007 (2) −0.029 (3)
C358 0.050 (2) 0.070 (3) 0.049 (2) −0.003 (2) 0.0093 (18) −0.018 (2)
C359 0.045 (2) 0.052 (2) 0.047 (2) 0.0021 (18) 0.0028 (17) −0.0025 (19)
C360 0.0306 (18) 0.055 (2) 0.042 (2) 0.0002 (16) 0.0034 (15) −0.0121 (18)

1-(4-Azidophenyl)-3-[3-methyl-5-(naphthalen-2-yloxy)-1-phenyl-1H-pyrazol-4-yl]prop-2-en-1-on (IIe) . Geometric parameters (Å, º)

C1—O1 1.232 (4) C312—H312 0.9300
C1—C2 1.467 (5) C313—C314 1.371 (6)
C1—C11 1.482 (5) C313—H313 0.9300
C2—C3 1.337 (5) C314—C315 1.368 (6)
C2—H2 0.9300 C314—H314 0.9300
C3—C34 1.446 (5) C315—C316 1.387 (6)
C3—H3 0.9300 C315—H315 0.9300
C11—C16 1.382 (5) C316—H316 0.9300
C11—C12 1.389 (5) C331—H33A 0.9600
C12—C13 1.375 (5) C331—H33B 0.9600
C12—H12 0.9300 C331—H33C 0.9600
C13—C14 1.367 (5) O351—C352 1.410 (4)
C13—H13 0.9300 C351—C352 1.367 (5)
C14—C15 1.377 (5) C351—C360 1.427 (5)
C14—N14 1.430 (5) C351—H351 0.9300
C15—C16 1.378 (5) C352—C353 1.400 (5)
C15—H15 0.9300 C353—C354 1.363 (5)
C16—H16 0.9300 C353—H353 0.9300
N14—N15 1.249 (5) C354—C359 1.407 (5)
N15—N16 1.126 (5) C354—H354 0.9300
N31—C35 1.353 (4) C355—C356 1.360 (6)
N31—N32 1.376 (4) C355—C359 1.426 (5)
N31—C311 1.427 (4) C355—H355 0.9300
N32—C33 1.327 (4) C356—C357 1.388 (6)
C33—C34 1.414 (5) C356—H356 0.9300
C33—C331 1.497 (5) C357—C358 1.371 (6)
C34—C35 1.374 (5) C357—H357 0.9300
C35—O351 1.359 (4) C358—C360 1.419 (5)
C311—C312 1.374 (5) C358—H358 0.9300
C311—C316 1.394 (5) C359—C360 1.408 (5)
C312—C313 1.377 (5)
O1—C1—C2 121.3 (3) C314—C313—H313 119.5
O1—C1—C11 119.3 (3) C312—C313—H313 119.5
C2—C1—C11 119.4 (3) C315—C314—C313 119.6 (4)
C3—C2—C1 121.6 (3) C315—C314—H314 120.2
C3—C2—H2 119.2 C313—C314—H314 120.2
C1—C2—H2 119.2 C314—C315—C316 121.0 (4)
C2—C3—C34 128.6 (3) C314—C315—H315 119.5
C2—C3—H3 115.7 C316—C315—H315 119.5
C34—C3—H3 115.7 C315—C316—C311 118.2 (4)
C16—C11—C12 117.2 (3) C315—C316—H316 120.9
C16—C11—C1 123.5 (3) C311—C316—H316 120.9
C12—C11—C1 119.3 (3) C33—C331—H33A 109.5
C13—C12—C11 122.1 (3) C33—C331—H33B 109.5
C13—C12—H12 119.0 H33A—C331—H33B 109.5
C11—C12—H12 119.0 C33—C331—H33C 109.5
C14—C13—C12 119.2 (3) H33A—C331—H33C 109.5
C14—C13—H13 120.4 H33B—C331—H33C 109.5
C12—C13—H13 120.4 C35—O351—C352 118.1 (3)
C13—C14—C15 120.6 (4) C352—C351—C360 118.8 (3)
C13—C14—N14 124.0 (3) C352—C351—H351 120.6
C15—C14—N14 115.5 (3) C360—C351—H351 120.6
C14—C15—C16 119.5 (3) C351—C352—C353 122.5 (3)
C14—C15—H15 120.2 C351—C352—O351 115.8 (3)
C16—C15—H15 120.2 C353—C352—O351 121.7 (3)
C15—C16—C11 121.5 (3) C354—C353—C352 118.8 (3)
C15—C16—H16 119.3 C354—C353—H353 120.6
C11—C16—H16 119.3 C352—C353—H353 120.6
N15—N14—C14 115.2 (3) C353—C354—C359 121.4 (4)
N16—N15—N14 172.4 (4) C353—C354—H354 119.3
C35—N31—N32 110.9 (3) C359—C354—H354 119.3
C35—N31—C311 129.0 (3) C356—C355—C359 120.4 (4)
N32—N31—C311 119.6 (3) C356—C355—H355 119.8
C33—N32—N31 104.3 (3) C359—C355—H355 119.8
N32—C33—C34 112.7 (3) C355—C356—C357 120.5 (4)
N32—C33—C331 120.0 (3) C355—C356—H356 119.7
C34—C33—C331 127.2 (3) C357—C356—H356 119.7
C35—C34—C33 103.4 (3) C358—C357—C356 121.5 (4)
C35—C34—C3 130.5 (3) C358—C357—H357 119.3
C33—C34—C3 126.0 (3) C356—C357—H357 119.3
N31—C35—O351 119.3 (3) C357—C358—C360 119.2 (4)
N31—C35—C34 108.6 (3) C357—C358—H358 120.4
O351—C35—C34 131.6 (3) C360—C358—H358 120.4
C312—C311—C316 121.1 (4) C354—C359—C360 119.4 (3)
C312—C311—N31 120.8 (3) C354—C359—C355 122.0 (4)
C316—C311—N31 118.1 (3) C360—C359—C355 118.6 (4)
C311—C312—C313 119.0 (4) C359—C360—C358 119.7 (3)
C311—C312—H312 120.5 C359—C360—C351 119.1 (3)
C313—C312—H312 120.5 C358—C360—C351 121.2 (4)
C314—C313—C312 121.1 (4)
O1—C1—C2—C3 4.4 (6) C35—N31—C311—C312 −47.2 (5)
C11—C1—C2—C3 −177.2 (3) N32—N31—C311—C312 140.9 (3)
C1—C2—C3—C34 −178.0 (3) C35—N31—C311—C316 132.0 (4)
O1—C1—C11—C16 −171.1 (4) N32—N31—C311—C316 −39.9 (5)
C2—C1—C11—C16 10.4 (5) C316—C311—C312—C313 0.0 (6)
O1—C1—C11—C12 7.1 (5) N31—C311—C312—C313 179.2 (3)
C2—C1—C11—C12 −171.4 (3) C311—C312—C313—C314 −0.5 (6)
C16—C11—C12—C13 −1.0 (6) C312—C313—C314—C315 0.3 (7)
C1—C11—C12—C13 −179.3 (4) C313—C314—C315—C316 0.4 (7)
C11—C12—C13—C14 1.5 (6) C314—C315—C316—C311 −0.9 (7)
C12—C13—C14—C15 −0.9 (6) C312—C311—C316—C315 0.7 (6)
C12—C13—C14—N14 178.3 (4) N31—C311—C316—C315 −178.5 (4)
C13—C14—C15—C16 −0.1 (6) N31—C35—O351—C352 118.1 (3)
N14—C14—C15—C16 −179.4 (4) C34—C35—O351—C352 −71.1 (5)
C14—C15—C16—C11 0.6 (7) C360—C351—C352—C353 1.7 (5)
C12—C11—C16—C15 −0.1 (6) C360—C351—C352—O351 −179.8 (3)
C1—C11—C16—C15 178.2 (4) C35—O351—C352—C351 150.9 (3)
C13—C14—N14—N15 −5.0 (6) C35—O351—C352—C353 −30.7 (4)
C15—C14—N14—N15 174.2 (4) C351—C352—C353—C354 −0.1 (5)
C35—N31—N32—C33 1.2 (4) O351—C352—C353—C354 −178.4 (3)
C311—N31—N32—C33 174.5 (3) C352—C353—C354—C359 −1.2 (5)
N31—N32—C33—C34 −1.1 (4) C359—C355—C356—C357 1.3 (6)
N31—N32—C33—C331 −179.2 (3) C355—C356—C357—C358 0.8 (7)
N32—C33—C34—C35 0.5 (4) C356—C357—C358—C360 −1.6 (6)
C331—C33—C34—C35 178.6 (4) C353—C354—C359—C360 0.7 (5)
N32—C33—C34—C3 −175.5 (3) C353—C354—C359—C355 −178.2 (4)
C331—C33—C34—C3 2.5 (6) C356—C355—C359—C354 176.3 (4)
C2—C3—C34—C35 −3.7 (7) C356—C355—C359—C360 −2.6 (6)
C2—C3—C34—C33 171.2 (4) C354—C359—C360—C358 −177.1 (3)
N32—N31—C35—O351 171.8 (3) C355—C359—C360—C358 1.8 (5)
C311—N31—C35—O351 −0.6 (6) C354—C359—C360—C351 0.9 (5)
N32—N31—C35—C34 −0.9 (4) C355—C359—C360—C351 179.9 (3)
C311—N31—C35—C34 −173.4 (3) C357—C358—C360—C359 0.2 (5)
C33—C34—C35—N31 0.2 (4) C357—C358—C360—C351 −177.8 (3)
C3—C34—C35—N31 176.0 (3) C352—C351—C360—C359 −2.1 (5)
C33—C34—C35—O351 −171.3 (4) C352—C351—C360—C358 175.9 (3)
C3—C34—C35—O351 4.4 (7)

1-(4-Azidophenyl)-3-[3-methyl-5-(naphthalen-2-yloxy)-1-phenyl-1H-pyrazol-4-yl]prop-2-en-1-on (IIe) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C353—H353···O1i 0.93 2.47 3.288 (4) 147
C12—H12···Cg3ii 0.93 2.93 3.761 (4) 150
C13—H13···Cg4ii 0.93 2.73 3.547 (4) 148

Symmetry codes: (i) −x+1, −y+1, −z; (ii) x−1, y, z.

Funding Statement

This work was funded by University Grants Commission grant .

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bruker (2016). APEX2, SADABS and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Carvalho, S. A., Feitosa, L. O., Soares, M., Costa, T. E. M. M., Henriques, M. G., Salomão, K., de Castro, S. L., Kaiser, M., Brun, R., Wardell, J. L., Wardell, S. M. S. V., Trossini, G. H. G., Andricopulo, A. D., da Silva, E. F. & Fraga, C. A. M. (2012). Eur. J. Med. Chem. 54, 512–521. [DOI] [PubMed]
  4. Cuartas, V., Insuasty, B., Cobo, J. & Glidewell, C. (2017). Acta Cryst. C73, 784–790. [DOI] [PubMed]
  5. Dheer, D., Singh, V. & Shankar, R. (2017). Bioorg. Chem. 71, 30–54. [DOI] [PubMed]
  6. Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126.
  7. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  8. Glidewell, C., Kalluraya, B., Rathore, R. S. & Yathirajan, H. S. (2019). CSD Communication (deposition number 1897876). CCDC, Cambridge, UK.
  9. Imai, Y. N., Inoue, Y., Nakanishi, I. & Kitaura, K. (2008). Protein Sci. 17, 1129–1137. [DOI] [PMC free article] [PubMed]
  10. Kharb, R., Sharma, P. C. & Yar, M. S. (2011). J. Enzyme Inhib. Med. Chem. 26, 1–21. [DOI] [PubMed]
  11. Kiran Kumar, H., Yathirajan, H. S., Manju, N., Kalluraya, B., Rathore, R. S. & Glidewell, C. (2019). Acta Cryst. C75, 768–776. [DOI] [PubMed]
  12. Mishra, N., Arora, P., Kumar, B., Mishra, L. C., Bhattacharya, A., Awasthi, S. K. & Bhasin, V. K. (2008). Eur. J. Med. Chem. 43, 1530–1535. [DOI] [PubMed]
  13. Murthy, Y. L. N., Suhasini, K. P., Pathania, A. S., Bhushan, S. & Sastry, Y. N. (2013). Eur. J. Med. Chem. 62, 545–555. [DOI] [PubMed]
  14. Naylor, R. E. & Wilson, E. B. (1957). J. Chem. Phys. 26, 1057–1060.
  15. Riddell, F. G. & Rogerson, M. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 493–504.
  16. Riddell, F. G. & Rogerson, M. (1997). J. Chem. Soc. Perkin Trans. 2, pp. 249–256.
  17. Shaibah, M. A. E., Yathirajan, H. S., Manju, N., Kalluraya, B., Rathore, R. S. & Glidewell, C. (2020). Acta Cryst. E76, 48–52. [DOI] [PMC free article] [PubMed]
  18. Sharma, H., Patil, S., Sanchez, T. W., Neamati, N., Schinazi, R. F. & Buolamwini, J. K. (2011). Bioorg. Med. Chem. 19, 2030–2045. [DOI] [PMC free article] [PubMed]
  19. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  20. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  21. Spek, A. L. (2015). Acta Cryst. C71, 9–18. [DOI] [PubMed]
  22. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  23. Sunitha, V. M., Manju, N., Naveen, S., Kalluraya, B., Lokanath, N. K. & Manjunath, H. R. (2016). IUCrData, 1, x161593.
  24. Tannenbaum, E., Myers, R. J. & Gwinn, W. D. (1956). J. Chem. Phys. 25, 42–47.
  25. Vinutha, N., Kumar, S. M., Shobhitha, S., Kalluraya, B., Lokanath, N. K. & Revannasiddaiah, D. (2014). Acta Cryst. E70, o560. [DOI] [PMC free article] [PubMed]
  26. Yadav, N., Dixit, S. K., Bhattacharya, A., Mishra, L. C., Sharma, M., Awasthi, S. K. & Bhasin, V. K. (2012). Chem. Biol. Drug Des. 80, 340–347. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, Ib, Ic, Ie, IIa, IId, IIe. DOI: 10.1107/S2056989020005113/mw2158sup1.cif

e-76-00683-sup1.cif (6.3MB, cif)

Structure factors: contains datablock(s) Ib. DOI: 10.1107/S2056989020005113/mw2158Ibsup2.hkl

e-76-00683-Ibsup2.hkl (467.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020005113/mw2158Ibsup8.cml

Structure factors: contains datablock(s) Ic. DOI: 10.1107/S2056989020005113/mw2158Icsup3.hkl

e-76-00683-Icsup3.hkl (385KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020005113/mw2158Icsup9.cml

Structure factors: contains datablock(s) Ie. DOI: 10.1107/S2056989020005113/mw2158Iesup4.hkl

e-76-00683-Iesup4.hkl (348.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020005113/mw2158IIasup10.cml

Structure factors: contains datablock(s) IIa. DOI: 10.1107/S2056989020005113/mw2158IIasup5.hkl

e-76-00683-IIasup5.hkl (322.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020005113/mw2158IIdsup11.cml

Structure factors: contains datablock(s) IId. DOI: 10.1107/S2056989020005113/mw2158IIdsup6.hkl

e-76-00683-IIdsup6.hkl (333KB, hkl)

Structure factors: contains datablock(s) IIe. DOI: 10.1107/S2056989020005113/mw2158IIesup7.hkl

e-76-00683-IIesup7.hkl (334.4KB, hkl)

CCDC references: 1996407, 1996406, 1996405, 1996404, 1996403, 1996402

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES