Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Apr 9;76(Pt 5):656–659. doi: 10.1107/S2056989020004910

Crystal structure of trans-di­chlorido­(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4 N)chromium(III) bis­(form­amide-κO)(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4 N)chromium(III) bis­[tetra­chlorido­zincate(II)]

Dohyun Moon a, Jong-Ha Choi b,*
PMCID: PMC7199251  PMID: 32431927

In the title compound, [CrCl2(C10H24N4)][Cr(HCONH2)2(C10H24N4)][ZnCl4]2, the two CrIII ions each show a distorted octa­hedral coordination with four N atoms of cyclam in the equatorial plane and two Cl anions or O-bonded formamide groups in axial positions. The macrocyclic moieties adopt the most stable trans-III conformation. In the crystal, extensive N—H⋯Cl and C—H⋯Cl hydrogen bonds connect the [CrCl2(C10H24N4)]+ and [Cr(HCONH2)2(C10H24N4)]3+ cations and tetra­chlorido­zincate anions, forming a three-dimensional network.

Keywords: crystal structure, cyclam, chloride, formamide, trans-isomer, chromium(III) complex, synchrotron radiation

Abstract

The structure of the title compound, [CrCl2(C10H24N4)][Cr(HCONH2)2(C10H24N4)][ZnCl4]2 (C10H24N4 = 1,4,8,11-tetra­aza­cyclo­tetra­decane, cyclam; HCONH2 = formamide, fa), has been determined from synchrotron X-ray data. The asymmetric unit contains two independent halves of the [CrCl2(cyclam)]+ and [Cr(fa)(cyclam)]3+ cations, and one tetra­chlorido­zincate anion. In each complex cation, the CrIII ion is coordinated by the four N atoms of the cyclam ligand in the equatorial plane and two Cl ligands or two O-bonded formamide mol­ecules in a trans axial arrangement, displaying a distorted octa­hedral geometry with crystallographic inversion symmetry. The Cr—N(cyclam) bond lengths are in the range 2.061 (2) to 2.074 (2) Å, while the Cr—Cl and Cr—O(fa) bond distances are 2.3194 (7) and 1.9953 (19) Å, respectively. The macrocyclic cyclam moieties adopt the centrosymmetric trans-III conformation with six- and five-membered chelate rings in chair and gauche conformations. The crystal structure is stabilized by inter­molecular hydrogen bonds involving the NH or CH groups of cyclam and the NH2 group of coordinated formamide as donors, and Cl atoms of the ZnCl4 2− anion as acceptors.

Chemical context  

The 14-membered cyclam (1,4,8,11-tetra­aza­cyclo­tetra­decane, C10H24N4) has a moderately flexible structure, and its metal complexes can form either trans or cis-[ML 2(cyclam)]n+ (L = a monodentate ligand) geometric isomers (Poon & Pun, 1980). Furthermore, the trans isomer can adopt five conformers, viz. trans-I (+ + + +), trans-II (+ − + +), trans-III (+ − − +), trans-IV (+ + − −) and trans-V (+ − + −), which differ in the chirality of the sec-NH centres (Choi, 2009), and where the plus sign indicates the hydrogen atom of the NH group is above the plane of the macrocycle and the minus sign indicates that it is below. The trans-I, trans-II and trans-V conformations can also fold to form cis-I, cis-II and cis-V conformers, respectively (Subhan et al., 2011). Recently, it has been shown that cyclam derivatives and their metal complexes exhibit stem-cell mobilization and anti-HIV activity (Ronconi & Sadler, 2007; De Clercq, 2010; Ross et al., 2012). The conformation of the macrocycle and the orientations of the N—H bonds in the complex are very important factors for co-receptor recognition. Therefore, knowledge of the conformation and the crystal packing in transition-metal compounds containing cyclam has become important in the development of new highly effective anti-HIV drugs (De Clercq, 2010). In addition, the formamide group can be coordinated to a metal ion through the oxygen or nitro­gen atoms (Balahura & Jordan, 1970). It should be noted that the geometric assignment and determination of the coordination mode based on spectroscopic properties is not always conclusive. We describe here the synthesis and structural characterization of a new double complex, [CrCl2(cyclam)][Cr(fa-O)2(cyclam)][ZnCl4]2, (I), which was performed to elucidate and confirm its mol­ecular structure unambiguously.graphic file with name e-76-00656-scheme1.jpg

Structural commentary  

Fig. 1 shows a displacement ellipsoid plot of (I) with the atom-numbering scheme. The crystallographic asymmetric unit of (I) is composed of two halves of independent [CrCl2(cyclam)]+ and [Cr(fa)(cyclam)]3+ cations and one tetra­chlorido­zincate anion. The two Cr atoms are located on crystallographic centers of symmetry, so these complex cations both have mol­ecular Ci symmetry. Each cyclam moiety in the two CrIII complex cations adopts the most stable trans-III conformation. The CrIII ions are six-coordinated in a distorted octa­hedral geometry with the four N atoms of the macrocyclic ligand in equatorial positions and two Cl ligands or two O atoms of formamide mol­ecules in axial positions (Fig. 1). The Cr—N(cyclam) bond lengths are in the range 2.061 (2) to 2.074 (2) Å, in good agreement with those observed in trans-[Cr(ONO)2)(cyclam)]BF4 [2.064 (4)–2.073 (4) Å; De Leo et al., 2000], trans-[Cr(NH3)2(cyclam)][ZnCl4]Cl·H2O [2.0501 (15)–2.0615 (15) Å; Moon & Choi, 2016a ], trans-[Cr(NCS)2(cyclam)]2[ZnCl4] [2.0614 (10)–2.0700 (10) Å; Moon et al., 2015], trans-[Cr(NCS)2(cyclam)]ClO4 [2.046 (2)–2.060 (2) Å; Friesen et al., 1997], trans-[Cr(nic-O)2(cyclam)]ClO4 [2.057 (4)–2.064 (4) Å; Choi, 2009], [Cr(ox)(cyclam)]ClO4 [2.062 (4)–2.085 (5) Å; Choi et al., 2004b ], [Cr(acac)(cyclam)](ClO4)2·0.5H2O [2.065 (5)–2.089 (5) Å; Subhan et al., 2011] and cis-[Cr(ONO)2(cyclam)]NO2 [2.0874 (16)–2.0916 (15) Å; Choi et al., 2004a ]. However, the Cr—N bond lengths for the secondary amine of cyclam in the trans isomer are slightly shorter than those of the primary amine found in trans-[CrCl2(Me2tn)2]Cl [2.0861 (18)–2.1076 (18) Å; Choi et al., 2007] and trans-[CrCl2(Me2tn)2]2ZnCl4 [2.0741 (19)–2.0981 (18) Å; Choi et al., 2011]. The Cr—Cl and Cr–O (fa) bond lengths are 2.3194 (7) and 1.9953 (19) Å, respectively. The Cr—Cl distance is comparable to the values in trans-[CrCl2(cyclam)]Cl [2.3295 (6) Å; Solano-Peralta et al., 2004], trans-[CrCl2(cyclam)]2[ZnCl4] [2.3472 (9) Å; Flores-Vélez et al., 1991] and [CrCl2(cyclam)][Cr(ox)(cyclam)](ClO4)2 [2.3358 (14) Å; Moon & Choi, 2016b ]. As expected, the five-membered chelate rings adopt a gauche conformation, and the six-membered ring is in the chair conformation. The average bond angles of the five- and six-membered chelate rings around chromium(III) are 85.03 (9) and 94.97 (9)°, respectively. The uncoordinated ZnCl4 2− counter-anion remains outside the coordination sphere of the two CrIII ions and has a distorted tetra­hedral geometry as a result of its involvement in hydrogen-bonding inter­actions. It exhibits Zn—Cl bond distances in the range 2.2555 (8) to 2.3035 (8) Å and Cl—Zn—Cl angles ranging from 104.84 (4)–114.54 (3)°.

Figure 1.

Figure 1

Mol­ecular structure of (I), drawn with displacement ellipsoids at the 50% probability level. The primed and double-primed atoms are related by symmetry operations (−x + 1, −y + 1, −z + 1) and (−x + 1, −y + 1, −z), respectively. Hydrogen bonds are shown as dashed lines.

Supra­molecular features  

Extensive C—H⋯Cl and N–H⋯Cl hydrogen-bonding inter­actions occur between the NH or CH groups of cyclam and the NH2 group of formamide, the Cl ligand and the Cl atoms of the tetra­chloro­zincate anion (Table 1). The ZnCl4 2− anion is linked to two [CrCl2(cyclam)]+ and [Cr(fa)(cyclam)]3+ cations via a series of N—H⋯Cl and C—H⋯Cl hydrogen bonds. In addition, two CrIII complex cations are inter­connected to each other via a C3—H3A⋯Cl1vi [symmetry code: (vi) −x + Inline graphic, y + Inline graphic, −z + Inline graphic] hydrogen bond. The extensive array of these contacts generates a three-dimensional network and helps to consolidate the crystal structure. The crystal packing diagram of (I) viewed perpendicular to the bc plane is shown in Fig. 2.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl4i 0.99 2.46 3.346 (2) 149
N2—H2⋯Cl3 0.99 2.31 3.255 (2) 159
N3—H3AN⋯Cl5ii 0.87 2.65 3.505 (3) 167
N3—H3BN⋯Cl2iii 0.87 2.61 3.334 (3) 141
C2—H2A⋯Cl2i 0.98 2.65 3.606 (3) 165
N4—H4⋯Cl3iv 0.99 2.56 3.493 (2) 157
N5—H5⋯Cl4v 0.99 2.76 3.549 (2) 137
C3—H3A⋯Cl1vi 0.98 2.71 3.650 (3) 160
C4—H4A⋯Cl5ii 0.98 2.78 3.555 (3) 136
C7—H7AB⋯Cl2iv 0.98 2.81 3.738 (3) 159

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Figure 2.

Figure 2

Crystal packing of (I), viewed along the a axis. Dashed lines represent hydrogen-bonding inter­actions [N—H⋯Cl (pink) and C—H⋯Cl (green)].

Database survey  

A search of the Cambridge Structural Database (CSD, Version 5.41, November 2019; Groom et al., 2016) indicated 76 hits for a [CrL 2(C10H24N4)]n+ unit. More than 30 different ligand types L including halogenides, cyanide, azide, thio­cyanate, oxalate, ammonia, sulfate, nitrite, DMSO and esters have been reported. It has been found that trans-[Cr(NCS)2(C10H24N4)]ClO4 (RAVGEA; Friesen et al., 1997), trans-[Cr(nic-O)2(C10H24N4)]ClO4 (NUKMUC; Choi, 2009) and trans-[Cr(ONO)2)(C10H24N4)]BF4 (MEMHAN; De Leo et al., 2000) adopt the trans-III conformations. On the other hand, cis-[Cr(NCS)2(C10H24N4)]ClO4 (RAVGOK; Friesen et al., 1997), [Cr(C2O4)(C10H24N4)]ClO4 (IHAFOM; Choi et al., 2004b ), [Cr(CH3COCHCOCH3)(C10H24N4)](ClO4)2·0.5H2O (SAYSES; Subhan et al., 2011) and cis-[Cr(NCS)2(C10H24N4)]NCS (ADUXOO; Moon et al., 2013) have the folded cis-V conformations. A search of the CSD gave 698 hits for cyclam (C10H24N4) with any metal but no hit for uncomplexed cyclam. In addition, no compounds containing [Cr(HCONH2)2(C10H24N4)]3+ were known until now.

Synthesis and crystallization  

The free ligand cyclam and formamide were purchased from Sigma–Aldrich. The formamide was purified and dried by standard methods. All other chemicals were reagent-grade materials and used without further purification. The starting material, trans-[Cr(CN)2(cyclam)]ClO4, was prepared according to the literature (Kane-Maguire et al., 1983). The yellow solid, trans-[Cr(CN)2(cyclam)]ClO4 (0.08 g) was dissolved in 5 mL of 0.01 M HCl, and heated for 2 h at 333 K. The solution was added to 3 mL of 6 M HCl containing 0.2 g of solid ZnCl2, and then 2 mL of formamide were added dropwise under magnetic stirring. The resulting solution was filtered, and allowed to stand at room temperature for a few weeks to give purple crystals of (I) suitable for X-ray structural analysis.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.94–0.98 Å and N—H = 0.87–0.99 Å and with U iso(H) = 1.2U eq(C,N).

Table 2. Experimental details.

Crystal data
Chemical formula [CrCl2(C10H24N4)][Cr(CH3NO)2(C10H24N4)][ZnCl4]2
M r 1079.99
Crystal system, space group Monoclinic, P21/n
Temperature (K) 220
a, b, c (Å) 10.406 (2), 13.212 (3), 15.011 (3)
β (°) 95.85 (3)
V3) 2053.0 (7)
Z 2
Radiation type Synchrotron, λ = 0.610 Å
μ (mm−1) 1.53
Crystal size (mm) 0.13 × 0.11 × 0.08
 
Data collection
Diffractometer Rayonix MX225HS CCD area detector
Absorption correction Empirical (using intensity measurements) (HKL3000sm SCALEPACK; Otwinowski & Minor, 1997)
T min, T max 0.856, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 20797, 5718, 5424
R int 0.065
(sin θ/λ)max−1) 0.693
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.042, 0.120, 1.08
No. of reflections 5718
No. of parameters 220
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.02, −1.05

Computer programs: PAL BL2D-SMDC (Shin et al., 2016), HKL3000sm (Otwinowski & Minor, 1997), SHELXT2018 (Sheldrick, 2015a ), SHELXL2018 (Sheldrick, 2015b ), DIAMOND 4 (Putz & Brandenburg, 2014) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989020004910/vm2231sup1.cif

e-76-00656-sup1.cif (1.1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020004910/vm2231Isup2.hkl

e-76-00656-Isup2.hkl (313.4KB, hkl)

CCDC reference: 1995114

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

[CrCl2(C10H24N4)][Cr(CH3NO)2(C10H24N4)][ZnCl4]2 F(000) = 1100
Mr = 1079.99 Dx = 1.747 Mg m3
Monoclinic, P21/n Synchrotron radiation, λ = 0.610 Å
a = 10.406 (2) Å Cell parameters from 71380 reflections
b = 13.212 (3) Å θ = 0.4–33.7°
c = 15.011 (3) Å µ = 1.53 mm1
β = 95.85 (3)° T = 220 K
V = 2053.0 (7) Å3 Plate, purple
Z = 2 0.13 × 0.11 × 0.08 mm

Data collection

Rayonix MX225HS CCD area detector diffractometer 5424 reflections with I > 2σ(I)
Radiation source: PLSII 2D bending magnet Rint = 0.065
ω scan θmax = 25.0°, θmin = 1.8°
Absorption correction: empirical (using intensity measurements) (HKL3000sm Scalepack; Otwinowski & Minor, 1997) h = −14→14
Tmin = 0.856, Tmax = 1.000 k = −18→18
20797 measured reflections l = −20→20
5718 independent reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042 H-atom parameters constrained
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0579P)2 + 2.3444P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max = 0.001
5718 reflections Δρmax = 1.02 e Å3
220 parameters Δρmin = −1.05 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cr1 0.500000 0.500000 0.500000 0.01905 (11)
O1 0.40779 (18) 0.59415 (14) 0.57570 (12) 0.0304 (4)
N1 0.6599 (2) 0.50926 (16) 0.59314 (13) 0.0263 (4)
H1 0.733309 0.478812 0.565654 0.032*
N2 0.5477 (2) 0.62362 (15) 0.42632 (14) 0.0270 (4)
H2 0.612781 0.600675 0.387054 0.032*
N3 0.2731 (3) 0.6910 (2) 0.64216 (15) 0.0381 (5)
H3AN 0.332356 0.736628 0.655071 0.046*
H3BN 0.195781 0.699839 0.657996 0.046*
C1 0.6336 (3) 0.4436 (2) 0.66990 (16) 0.0335 (5)
H1A 0.576230 0.478762 0.707614 0.040*
H1AB 0.714487 0.427910 0.706529 0.040*
C2 0.6985 (3) 0.6141 (2) 0.62080 (19) 0.0352 (6)
H2A 0.776779 0.611563 0.662933 0.042*
H2AB 0.629729 0.645040 0.651654 0.042*
C3 0.7237 (3) 0.6793 (2) 0.5405 (2) 0.0399 (6)
H3A 0.768805 0.740799 0.562773 0.048*
H3AB 0.781941 0.642161 0.504919 0.048*
C4 0.6046 (3) 0.7105 (2) 0.4789 (2) 0.0362 (6)
H4A 0.539889 0.738832 0.514956 0.043*
H4AB 0.628599 0.763302 0.437894 0.043*
C5 0.4294 (3) 0.6526 (2) 0.36674 (17) 0.0343 (5)
H5A 0.452908 0.695465 0.317621 0.041*
H5AB 0.369790 0.690444 0.400752 0.041*
C6 0.3001 (3) 0.60960 (19) 0.59923 (15) 0.0280 (5)
H6 0.235060 0.561016 0.585794 0.034*
Cr2 0.500000 0.500000 0.000000 0.02063 (12)
Cl1 0.53785 (6) 0.37596 (5) −0.10350 (4) 0.03271 (14)
N4 0.3223 (2) 0.52342 (16) −0.07214 (13) 0.0249 (4)
H4 0.312441 0.470207 −0.118767 0.030*
N5 0.4335 (2) 0.38790 (16) 0.08048 (13) 0.0259 (4)
H5 0.431725 0.324363 0.045410 0.031*
C7 0.3340 (2) 0.62148 (19) −0.11970 (16) 0.0289 (5)
H7A 0.326491 0.677919 −0.078176 0.035*
H7AB 0.264587 0.627579 −0.168695 0.035*
C8 0.2067 (2) 0.5165 (2) −0.02153 (17) 0.0307 (5)
H8A 0.128505 0.524049 −0.063273 0.037*
H8AB 0.208634 0.572239 0.021703 0.037*
C9 0.2009 (3) 0.4161 (2) 0.02812 (19) 0.0342 (5)
H9A 0.210352 0.361121 −0.014533 0.041*
H9AB 0.114986 0.409655 0.048899 0.041*
C10 0.3022 (3) 0.4014 (2) 0.10863 (17) 0.0319 (5)
H10A 0.301640 0.460400 0.148121 0.038*
H10B 0.279482 0.341775 0.142624 0.038*
C11 0.5356 (3) 0.3751 (2) 0.15662 (16) 0.0297 (5)
H11A 0.524570 0.310127 0.186461 0.036*
H11B 0.529597 0.429393 0.200469 0.036*
Zn1 0.96538 (3) 0.56371 (2) 0.28510 (2) 0.02620 (9)
Cl2 0.98118 (7) 0.39522 (5) 0.26256 (6) 0.04267 (17)
Cl3 0.74908 (6) 0.60423 (6) 0.27489 (4) 0.03418 (15)
Cl4 1.06521 (7) 0.61932 (6) 0.41833 (4) 0.03892 (16)
Cl5 1.04313 (8) 0.64946 (6) 0.17226 (5) 0.04333 (17)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cr1 0.0141 (2) 0.0235 (2) 0.0203 (2) −0.00100 (17) 0.00503 (17) −0.00244 (16)
O1 0.0269 (9) 0.0323 (8) 0.0318 (8) −0.0007 (7) 0.0021 (7) −0.0048 (7)
N1 0.0193 (9) 0.0342 (10) 0.0252 (9) 0.0019 (8) 0.0023 (7) −0.0054 (7)
N2 0.0258 (9) 0.0278 (9) 0.0290 (9) −0.0009 (8) 0.0112 (8) −0.0015 (7)
N3 0.0382 (12) 0.0437 (12) 0.0337 (11) 0.0089 (11) 0.0106 (9) −0.0063 (9)
C1 0.0319 (13) 0.0465 (14) 0.0219 (10) 0.0058 (11) 0.0012 (9) −0.0015 (9)
C2 0.0252 (12) 0.0393 (13) 0.0396 (13) −0.0027 (11) −0.0040 (10) −0.0118 (11)
C3 0.0270 (12) 0.0382 (13) 0.0551 (16) −0.0124 (11) 0.0073 (12) −0.0071 (12)
C4 0.0354 (14) 0.0298 (11) 0.0448 (14) −0.0075 (11) 0.0120 (11) −0.0030 (10)
C5 0.0367 (13) 0.0367 (12) 0.0302 (11) 0.0044 (11) 0.0076 (10) 0.0056 (10)
C6 0.0286 (11) 0.0343 (11) 0.0216 (9) 0.0002 (10) 0.0045 (8) 0.0011 (8)
Cr2 0.0185 (2) 0.0252 (2) 0.0181 (2) 0.00430 (18) 0.00144 (18) −0.00252 (16)
Cl1 0.0330 (3) 0.0374 (3) 0.0274 (3) 0.0097 (3) 0.0014 (2) −0.0065 (2)
N4 0.0218 (9) 0.0307 (9) 0.0218 (8) 0.0056 (8) 0.0000 (7) −0.0043 (7)
N5 0.0242 (9) 0.0311 (9) 0.0224 (8) 0.0015 (8) 0.0022 (7) −0.0003 (7)
C7 0.0258 (11) 0.0338 (11) 0.0264 (10) 0.0108 (10) −0.0003 (8) 0.0010 (9)
C8 0.0189 (10) 0.0417 (13) 0.0313 (11) 0.0054 (10) 0.0024 (9) −0.0029 (10)
C9 0.0216 (11) 0.0435 (13) 0.0375 (13) −0.0062 (11) 0.0029 (10) −0.0013 (11)
C10 0.0261 (11) 0.0406 (13) 0.0297 (11) −0.0020 (10) 0.0066 (9) 0.0008 (10)
C11 0.0301 (12) 0.0351 (12) 0.0235 (10) 0.0041 (10) 0.0011 (9) 0.0028 (9)
Zn1 0.02112 (15) 0.03240 (16) 0.02530 (14) 0.00089 (11) 0.00344 (11) 0.00152 (10)
Cl2 0.0293 (3) 0.0332 (3) 0.0636 (4) 0.0034 (3) −0.0047 (3) −0.0042 (3)
Cl3 0.0233 (3) 0.0487 (4) 0.0312 (3) 0.0076 (3) 0.0060 (2) 0.0028 (2)
Cl4 0.0373 (3) 0.0493 (4) 0.0288 (3) 0.0094 (3) −0.0033 (2) −0.0059 (3)
Cl5 0.0461 (4) 0.0509 (4) 0.0353 (3) −0.0029 (3) 0.0155 (3) 0.0100 (3)

Geometric parameters (Å, º)

Cr1—O1 1.9953 (19) Cr2—N4 2.069 (2)
Cr1—O1i 1.9954 (19) Cr2—N4ii 2.069 (2)
Cr1—N2 2.061 (2) Cr2—N5ii 2.074 (2)
Cr1—N2i 2.061 (2) Cr2—N5 2.074 (2)
Cr1—N1i 2.065 (2) Cr2—Cl1 2.3194 (7)
Cr1—N1 2.065 (2) Cr2—Cl1ii 2.3194 (7)
O1—C6 1.226 (3) N4—C8 1.490 (3)
N1—C1 1.489 (3) N4—C7 1.490 (3)
N1—C2 1.490 (3) N4—H4 0.9900
N1—H1 0.9900 N5—C10 1.482 (3)
N2—C4 1.482 (3) N5—C11 1.488 (3)
N2—C5 1.495 (3) N5—H5 0.9900
N2—H2 0.9900 C7—C11ii 1.519 (4)
N3—C6 1.299 (3) C7—H7A 0.9800
N3—H3AN 0.8700 C7—H7AB 0.9800
N3—H3BN 0.8700 C8—C9 1.526 (4)
C1—C5i 1.509 (4) C8—H8A 0.9800
C1—H1A 0.9800 C8—H8AB 0.9800
C1—H1AB 0.9800 C9—C10 1.533 (4)
C2—C3 1.525 (4) C9—H9A 0.9800
C2—H2A 0.9800 C9—H9AB 0.9800
C2—H2AB 0.9800 C10—H10A 0.9800
C3—C4 1.525 (4) C10—H10B 0.9800
C3—H3A 0.9800 C11—H11A 0.9800
C3—H3AB 0.9800 C11—H11B 0.9800
C4—H4A 0.9800 Zn1—Cl5 2.2555 (8)
C4—H4AB 0.9800 Zn1—Cl2 2.2602 (9)
C5—H5A 0.9800 Zn1—Cl4 2.2792 (9)
C5—H5AB 0.9800 Zn1—Cl3 2.3035 (8)
C6—H6 0.9400
O1—Cr1—O1i 180.0 N4—Cr2—N4ii 180.0
O1—Cr1—N2 88.14 (8) N4—Cr2—N5ii 85.50 (8)
O1i—Cr1—N2 91.86 (8) N4ii—Cr2—N5ii 94.49 (8)
O1—Cr1—N2i 91.86 (8) N4—Cr2—N5 94.49 (8)
O1i—Cr1—N2i 88.14 (8) N4ii—Cr2—N5 85.51 (8)
N2—Cr1—N2i 180.00 (7) N5ii—Cr2—N5 180.0
O1—Cr1—N1i 91.23 (8) N4—Cr2—Cl1 87.64 (6)
O1i—Cr1—N1i 88.77 (8) N4ii—Cr2—Cl1 92.36 (6)
N2—Cr1—N1i 84.54 (9) N5ii—Cr2—Cl1 91.43 (6)
N2i—Cr1—N1i 95.46 (9) N5—Cr2—Cl1 88.57 (6)
O1—Cr1—N1 88.77 (8) N4—Cr2—Cl1ii 92.36 (6)
O1i—Cr1—N1 91.23 (8) N4ii—Cr2—Cl1ii 87.64 (6)
N2—Cr1—N1 95.45 (9) N5ii—Cr2—Cl1ii 88.57 (6)
N2i—Cr1—N1 84.54 (9) N5—Cr2—Cl1ii 91.43 (6)
N1i—Cr1—N1 180.0 Cl1—Cr2—Cl1ii 180.0
C6—O1—Cr1 140.79 (18) C8—N4—C7 114.01 (19)
C1—N1—C2 113.0 (2) C8—N4—Cr2 116.69 (15)
C1—N1—Cr1 106.88 (16) C7—N4—Cr2 105.58 (15)
C2—N1—Cr1 114.80 (16) C8—N4—H4 106.6
C1—N1—H1 107.3 C7—N4—H4 106.6
C2—N1—H1 107.3 Cr2—N4—H4 106.6
Cr1—N1—H1 107.3 C10—N5—C11 113.65 (19)
C4—N2—C5 112.3 (2) C10—N5—Cr2 116.90 (16)
C4—N2—Cr1 115.64 (16) C11—N5—Cr2 105.93 (15)
C5—N2—Cr1 107.20 (15) C10—N5—H5 106.6
C4—N2—H2 107.1 C11—N5—H5 106.6
C5—N2—H2 107.1 Cr2—N5—H5 106.6
Cr1—N2—H2 107.1 N4—C7—C11ii 108.69 (19)
C6—N3—H3AN 120.0 N4—C7—H7A 110.0
C6—N3—H3BN 120.0 C11ii—C7—H7A 110.0
H3AN—N3—H3BN 120.0 N4—C7—H7AB 110.0
N1—C1—C5i 108.4 (2) C11ii—C7—H7AB 110.0
N1—C1—H1A 110.0 H7A—C7—H7AB 108.3
C5i—C1—H1A 110.0 N4—C8—C9 112.1 (2)
N1—C1—H1AB 110.0 N4—C8—H8A 109.2
C5i—C1—H1AB 110.0 C9—C8—H8A 109.2
H1A—C1—H1AB 108.4 N4—C8—H8AB 109.2
N1—C2—C3 111.6 (2) C9—C8—H8AB 109.2
N1—C2—H2A 109.3 H8A—C8—H8AB 107.9
C3—C2—H2A 109.3 C8—C9—C10 115.9 (2)
N1—C2—H2AB 109.3 C8—C9—H9A 108.3
C3—C2—H2AB 109.3 C10—C9—H9A 108.3
H2A—C2—H2AB 108.0 C8—C9—H9AB 108.3
C4—C3—C2 115.9 (2) C10—C9—H9AB 108.3
C4—C3—H3A 108.3 H9A—C9—H9AB 107.4
C2—C3—H3A 108.3 N5—C10—C9 111.7 (2)
C4—C3—H3AB 108.3 N5—C10—H10A 109.3
C2—C3—H3AB 108.3 C9—C10—H10A 109.3
H3A—C3—H3AB 107.4 N5—C10—H10B 109.3
N2—C4—C3 111.7 (2) C9—C10—H10B 109.3
N2—C4—H4A 109.3 H10A—C10—H10B 107.9
C3—C4—H4A 109.3 N5—C11—C7ii 108.09 (19)
N2—C4—H4AB 109.3 N5—C11—H11A 110.1
C3—C4—H4AB 109.3 C7ii—C11—H11A 110.1
H4A—C4—H4AB 107.9 N5—C11—H11B 110.1
N2—C5—C1i 107.6 (2) C7ii—C11—H11B 110.1
N2—C5—H5A 110.2 H11A—C11—H11B 108.4
C1i—C5—H5A 110.2 Cl5—Zn1—Cl2 110.19 (3)
N2—C5—H5AB 110.2 Cl5—Zn1—Cl4 109.31 (3)
C1i—C5—H5AB 110.2 Cl2—Zn1—Cl4 114.54 (3)
H5A—C5—H5AB 108.5 Cl5—Zn1—Cl3 104.84 (4)
O1—C6—N3 122.1 (3) Cl2—Zn1—Cl3 107.73 (3)
O1—C6—H6 118.9 Cl4—Zn1—Cl3 109.78 (4)
N3—C6—H6 118.9
C2—N1—C1—C5i 168.9 (2) C8—N4—C7—C11ii 171.66 (19)
Cr1—N1—C1—C5i 41.6 (2) Cr2—N4—C7—C11ii 42.3 (2)
C1—N1—C2—C3 −179.6 (2) C7—N4—C8—C9 −178.4 (2)
Cr1—N1—C2—C3 −56.6 (3) Cr2—N4—C8—C9 −54.8 (2)
N1—C2—C3—C4 72.1 (3) N4—C8—C9—C10 70.3 (3)
C5—N2—C4—C3 179.0 (2) C11—N5—C10—C9 179.0 (2)
Cr1—N2—C4—C3 55.5 (3) Cr2—N5—C10—C9 55.1 (3)
C2—C3—C4—N2 −71.2 (3) C8—C9—C10—N5 −70.4 (3)
C4—N2—C5—C1i −169.7 (2) C10—N5—C11—C7ii −171.3 (2)
Cr1—N2—C5—C1i −41.6 (2) Cr2—N5—C11—C7ii −41.7 (2)
Cr1—O1—C6—N3 −170.2 (2)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+1, −z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···Cl4iii 0.99 2.46 3.346 (2) 149
N2—H2···Cl3 0.99 2.31 3.255 (2) 159
N3—H3AN···Cl5iv 0.87 2.65 3.505 (3) 167
N3—H3BN···Cl2i 0.87 2.61 3.334 (3) 141
C2—H2A···Cl2iii 0.98 2.65 3.606 (3) 165
N4—H4···Cl3ii 0.99 2.56 3.493 (2) 157
N5—H5···Cl4v 0.99 2.76 3.549 (2) 137
C3—H3A···Cl1vi 0.98 2.71 3.650 (3) 160
C4—H4A···Cl5iv 0.98 2.78 3.555 (3) 136
C7—H7AB···Cl2ii 0.98 2.81 3.738 (3) 159

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+1, −z; (iii) −x+2, −y+1, −z+1; (iv) x−1/2, −y+3/2, z+1/2; (v) −x+3/2, y−1/2, −z+1/2; (vi) −x+3/2, y+1/2, −z+1/2.

Funding Statement

This work was funded by Andong National University grant . Ministry of Science and ICT, South Korea grant . Pohang University of Science and Technology grant .

References

  1. Balahura, R. J. & Jordan, R. B. (1970). J. Am. Chem. Soc. 92, 1533–1539.
  2. Choi, J.-H. (2009). Inorg. Chim. Acta, 362, 4231–4236.
  3. Choi, J.-H., Clegg, W., Nichol, G. S., Lee, S. H., Park, Y. C. & Habibi, M. H. (2007). Spectrochim. Acta Part A, 68, 796–801. [DOI] [PubMed]
  4. Choi, J.-H., Joshi, T. & Spiccia, L. (2011). Z. Anorg. Allg. Chem. 637, 1194–1198.
  5. Choi, J.-H., Oh, I.-G., Lim, W.-T. & Park, K.-M. (2004a). Acta Cryst. C60, m238–m240. [DOI] [PubMed]
  6. Choi, J.-H., Oh, I.-G., Suzuki, T. & Kaizaki, S. (2004b). J. Mol. Struct. 694, 39–44.
  7. De Clercq, E. (2010). J. Med. Chem. 53, 1438–1450. [DOI] [PubMed]
  8. De Leo, M. A., Bu, X., Bentow, J. & Ford, P. C. (2000). Inorg. Chim. Acta, 300–302, 944–950.
  9. Flores-Vélez, L. M., Sosa-Rivadeneyra, J., Sosa-Torres, M. E., Rosales-Hoz, M. J. & Toscano, R. A. (1991). J. Chem. Soc. Dalton Trans. pp. 3243–3247.
  10. Friesen, D. A., Quail, J. W., Waltz, W. L. & Nashiem, R. E. (1997). Acta Cryst. C53, 687–691.
  11. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  12. Kane-Maguire, N. A. P., Bennett, J. A. & Miller, P. K. (1983). Inorg. Chim. Acta, 76, L123–L125.
  13. Moon, D. & Choi, J.-H. (2016a). Acta Cryst. E72, 456–459. [DOI] [PMC free article] [PubMed]
  14. Moon, D. & Choi, J.-H. (2016b). Acta Cryst. E72, 1417–1420. [DOI] [PMC free article] [PubMed]
  15. Moon, D., Choi, J.-H., Ryoo, K. S. & Hong, Y. P. (2013). Acta Cryst. E69, m376–m377. [DOI] [PMC free article] [PubMed]
  16. Moon, D., Ryoo, K. S. & Choi, J.-H. (2015). Acta Cryst. E71, 540–543. [DOI] [PMC free article] [PubMed]
  17. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  18. Poon, C.-K. & Pun, K.-C. (1980). Inorg. Chem. 19, 568–569.
  19. Putz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  20. Ronconi, L. & Sadler, P. J. (2007). Coord. Chem. Rev. 251, 1633–1648.
  21. Ross, A., Choi, J.-H., Hunter, T. M., Pannecouque, C., Moggach, S. A., Parsons, S., De Clercq, E. & Sadler, P. J. (2012). Dalton Trans. 41, 6408–6418. [DOI] [PubMed]
  22. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  23. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  24. Shin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369–373. [DOI] [PubMed]
  25. Solano-Peralta, A., Sosa-Torres, M. E., Flores-Alamo, M., El-Mkami, H., Smith, G. M., Toscano, R. A. & Nakamura, T. (2004). Dalton Trans. pp. 2444–2449. [DOI] [PubMed]
  26. Subhan, M. A., Choi, J.-H. & Ng, S. W. (2011). Z. Anorg. Allg. Chem. 637, 2193–2197.
  27. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989020004910/vm2231sup1.cif

e-76-00656-sup1.cif (1.1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020004910/vm2231Isup2.hkl

e-76-00656-Isup2.hkl (313.4KB, hkl)

CCDC reference: 1995114

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES