Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Apr 9;76(Pt 5):646–650. doi: 10.1107/S2056989020004648

Syntheses and crystal structures of two piperine derivatives

Toshinari Ezawa a, Yutaka Inoue a,*, Isamu Murata a, Mitsuaki Suzuki b, Koichi Takao a, Yoshiaki Sugita a, Ikuo Kanamoto a
PMCID: PMC7199259  PMID: 32431925

The title compounds, 5-(2H-1,3-benzodioxol-5-yl)-N-cyclo­hexyl­penta-2,4-dienamide, (I), and 5-(2H-1,3-benzodioxol-5-yl)-1-(pyrrolidin-1-yl)penta-2,4-dien-1-one (II), are derivatives of piperine, which is known as a pungent component of pepper. Their geometrical parameters are similar to those of the three polymorphs of piperine, which indicate conjugation of electrons over the length of the mol­ecules. The extended structure of (I) features N—H⋯O amide hydrogen bonds, which generate C(4) [010] chains. The crystal of (II) features aromatic π–π stacking, as for two of three known piperine polymorphs.

Keywords: crystal structure, organic crystal, piperine, hydrogen bond

Abstract

The title compounds, 5-(2H-1,3-benzodioxol-5-yl)-N-cyclo­hexyl­penta-2,4-dienamide, C18H21NO3 (I), and 5-(2H-1,3-benzodioxol-5-yl)-1-(pyrrolidin-1-yl)penta-2,4-dien-1-one C16H17NO3 (II), are derivatives of piperine, which is known as a pungent component of pepper. Their geometrical parameters are similar to those of the three polymorphs of piperine, which indicate conjugation of electrons over the length of the mol­ecules. The extended structure of (I) features N—H⋯O amide hydrogen bonds, which generate C(4) [010] chains. The crystal of (II) features aromatic π–π stacking, as for two of three known piperine polymorphs.

Chemical context  

Piperine [(2E,4E)-1-[5-(1,3-benzodioxol-5­yl)-1-oxo-2,4-pen­ta­dien­yl]piperidine, C17H19NO3, is the major pungent ingredient of Piperaceae pepper (Piper nigrum). Piperine is an amide having a methyl­ene­dioxy­phenyl grouping as a characteristic of its chemical structure (Fig. 1). Inter­estingly, when the amide group is in a near planar conformation, the conjugated state of the penta­diene chain of piperine has the property that electrons are easily donated and the stretching vibration of the amide carbonyl group is affected (Pfund et al., 2015). As part of our studies in this area, we have already reported a complex using the poorly water-soluble piperine (log P = 2.25) and the cyclic polysaccharide cyclo­dextrin (Szejtli, 1998; Ezawa et al., 2016). In addition, piperine has been evaluated for its inclusion mechanism and dissolution properties using various cyclo­dextrins (Ezawa et al., 2018, 2019). The synthesis of piperine derivatives was necessary to understand the inclusion mechanism of piperine and cyclo­dextrin and the detailed mol­ecular behaviour of piperine.graphic file with name e-76-00646-scheme1.jpg

Figure 1.

Figure 1

The chemical structure of piperine.

Therefore, the aim of this study was to synthesize the title compounds (2E,4E)-5-(2H-1,3-benzodioxol-5-yl)-N-cyclo­hexyl­penta-2,4-dienamide, C18H21NO3, (I), and (2E,4E)-5-(2H-1,3-benzodioxol-5-yl)-1-(pyrrolidin-1-yl)penta-2,4-dien-1-one, C16H17NO3, (II), from piperine and to determine their X-ray crystal structures. The log P of (I) is 3.36 and that of (II) is 2.36. Assessing the structural properties of the title compounds (crystal structure, geometry, inter­molecular inter­actions, etc.) will help to evaluate the inclusion behaviour of piperine with cyclo­dextrin.

Structural commentary  

Compound (I) (Fig. 2) crystallizes in the monoclinic space group P21/c with four mol­ecules per unit cell. The C1–C6 cyclo­hexyl ring adopts a chair conformation with the exocyclic C5—N1 bond in an equatorial orientation. The C7–C12/O2/O3 fused-ring system is almost planar (r.m.s. deviation = 0.020 Å) and subtends a dihedral angle of 21.57 (4)° with the cyclo­hexyl ring. The bond distances and angles (amide, penta­diene and methyl­ene­dioxy­phenyl moieties) of (I) are not significantly different from the equivalent data for the three polymorphs of piperine (Pfund et al., 2015) (Table 1).

Figure 2.

Figure 2

Displacement ellipsoid drawing at a 50% probability level of the asymmetric unit of (I).

Table 1. Key geometrical parameters (Å) for the title compounds and piperine polymorphs.

  (I) (II) PIPINE10 PIPINE12 PIPINE13
Amide C18—N1 (1.344) C1—N1 (1.350) C1—N1 (1.331) C1—N1 (1.363) C1—N1 (1.353)
  C18—O1 (1.242) C1—O1 (1.243) C1—O1 (1.218) C1—O1 (1.235) C1—O1 (1.482)
  C14—C15 (1.346) C4—C5 (1.345) C4—C5 (1.312) C4—C5 (1.330) C4—C5 (1.347)
Penta­diene C15—C16 (1.444) C3—C4 (1.441) C3—C4 (1.437) C3—C4 (1.440) C3—C4 (1.442)
  C16—C17 (1.342) C2—C3 (1.341) C2—C3 (1.311) C2—C3 (1.332) C2—C3 (1.341)
  C17—C18 (1.479) C1—C2 (1.480) C1—C2 (1.473) C1—C2 (1.477) C1—C2 (1.482)
  C8—C9 (1.390) C6—C7 (1.397) C6—C7 (1.387) C6—C7 (1.399) C6—C7 (1.403)
  C8—C13 (1.371) C6—C12 (1.412) C6—C12 (1.396) C6—C12 (1.414) C6—C12 (1.412)
  C9—C10 (1.374) C7—C8 (1.403) C7—C8 (1.393) C7—C8 (1.395) C7—C8 (1.393)
Methyl­ene­dioxy­phen­yl C10—C11 (1.402) C8—C9 (1.369) C8—C9 (1.343) C8—C9 (1.360) C8—C9 (1.371)
  C11—C12 (1.399) C9—C11 (1.385) C9—C11 (1.357) C9—C11 (1.377) C9—C11 (1.381)
  C12—C13 (1.412) C11—C12 (1.364) C11—C12 (1.364) C11—C12 (1.370) C11—C12 (1.367)
  C8—O2 (1.371) C9—O2 (1.378) C9—O2 (1.373) c9—O2 (1.383) C9—O2 (1.378)
  C9—O3 (1.370) C11—O3 (1.376) C11—O3 (1.362) C11—O3 (1.383) C11—O3 (1.383)
π-stacking close contacts   C9⋯C9 (3.268)   C8⋯C8 (3.110) C9⋯C12 (3.327)
    C9⋯C12 (3.322)   C8⋯C8 (3.303)  
    C11⋯C12 (3.287)      

Compound (II) (Fig. 3), also known as piperilyn, crystallizes in the ortho­rhom­bic space group Pbca with eight mol­ecules per unit cell. The C13–C16/N1 ring is well described as being twisted with C14 and C15 deviating from C13/N1/C16 by 0.205 (2) and −0.382 (2) Å, respectively. The C9/O2/C10/O3/C11 ring has a clear tendency towards an envelope conformation [deviation of C10 from the other four atoms = −0.216 (2) Å]. The dihedral angle between the C13–C16/N1 and C6–C12/O2/O3 rings (all atoms) is 12.29 (10)°. As with (I), the key bond-distance data for (II) are comparable to those of piperine (Table 1).

Figure 3.

Figure 3

Displacement ellipsoid drawing at a 50% probability level of the asymmetric unit of (II).

Thus, we may conclude that the title compounds show intra­molecular resonance from the amide group to the ether O atoms of the methyl­ene­dioxy­phenyl moiety, similar to piperine.

Supra­molecular features  

Piperine crystallizes in three polymorphs: form I [CCDC (Groom et al., 2016) refcode: PIPINE10] and form II (PIPINE12) in space group P21/n and form III (PIPINE13) in space group C2/c (Table 1) (Pfund et al., 2015). The packing for forms II and III features aromatic π–π stacking inter­actions, while that of form I does not.

The crystal structure of (I) does not feature π–π stacking inter­actions, which is similar to piperine form I. Compound (I) possesses an N—H grouping, which forms a classical N1—H⋯O1 hydrogen bond (Table 2) between the amide-bond sites, generating [010] C(4) chains (Fig. 4) with adjacent mol­ecules related by simple translation. The unit-cell packing for (I) is illustrated in Fig. 5.

Table 2. Hydrogen-bond geometry (Å, °) for (I) .

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.874 (16) 2.086 (16) 2.9547 (12) 172.8 (14)

Symmetry code: (i) Inline graphic.

Figure 4.

Figure 4

A view along the c-axis direction of the crystal packing of (I). The N—H⋯O hydrogen bonds are drawn as dashed lines.

Figure 5.

Figure 5

The unit-cell packing for (I) viewed down [100] with hydrogen bonds drawn as dashed lines.

The structure of (II) does feature π–π stacking with the closest inter­molecular contacts being C9⋯C9 = 3.268 (3), C9⋯C12 = 3.322 (3) and C11⋯C12 = 3.287 (3) Å (Fig. 6). The overall packing for (II) can be described as undulating sheets propagating in the (010) plane (Fig. 7).

Figure 6.

Figure 6

Fragment of the crystal of (II) showing close C⋯C contacts due to π–π stacking.

Figure 7.

Figure 7

The unit-cell packing for (II) viewed down [100].

Synthesis and crystallization  

Piperine was purchased from Fujifilm Wako Pure Chemical Co., Ltd. The synthesis of piperine derivatives was performed using a previously reported procedure (Takao et al., 2015). After dissolving piperine in ethanol, hydrolysis was performed by stirring for 20 h in the presence of KOH. After evaporating the solvent under vacuum, the resulting reaction mixture was suspended in water and acidified with 4 M HCl to pH < 1. The resultant pale-brown precipitate was collected by filtration, washed with cold water and recrystallized from methanol solution to give piperic acid. The piperic acid (1.0 mmol) was dissolved in CH2Cl2 (5 ml) and oxalyl chloride (10 mmol) was added and the mixture was stirred at room temperature for 3 h. The solvent and excess oxalyl chloride were then evaporated under reduced pressure.

To prepare (I), the crude acid chloride generated was dissolved in CH2Cl2 (2 ml) and cyclo­hexyl­amine (1.2 mmol) and Et3N (8 mmol) were added, and the mixture was stirred at 273 K for 5 h. Ice-cold water was added to the mixture, followed by extraction with chloro­form (5 ml). The organic layer was dried over Na2SO4 and the solvent was evaporated under reduced pressure. The residue was purified by silica-gel column chromatography (eluent hexa­ne:etyl acetate 1:1 v/v) to give (I) in the form of a yellow powder. Light-yellow needles of (I) were recrystallized from ethyl acetate solution.

Compound (II) was prepared by the same procedure with pyrrolidine (1.2 mmol) replacing the cyclo­hexyl­amine to give (II) in the form of a white powder. Colourless needles of (II) were recrystallized from ethyl acetate solution.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. Hydrogen atoms for carbon atom were included in their calculated positions and refined as riding atoms with U iso(H) = 1.2U eq(C). The hydrogen atom attached to N1 in (I) was located in a difference-Fourier map and its position freely refined with U iso(H) = 1.2U eq(N).

Table 3. Experimental details.

  (I) (II)
Crystal data
Chemical formula C18H21NO3 C16H17NO3
M r 299.36 271.30
Crystal system, space group Monoclinic, P21/c Orthorhombic, P b c a
Temperature (K) 90 90
a, b, c (Å) 11.4982 (7), 5.0086 (3), 26.7240 (16) 11.8747 (10), 7.2485 (6), 30.392 (2)
α, β, γ (°) 90, 97.683 (2), 90 90, 90, 90
V3) 1525.22 (16) 2616.0 (4)
Z 4 8
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.09 0.10
Crystal size (mm) 0.58 × 0.07 × 0.07 0.28 × 0.06 × 0.06
 
Data collection
Diffractometer Bruker D8 goniometer Bruker D8 goniometer
Absorption correction Multi-scan (SADABS; Bruker, 2018) Multi-scan (SADABS; Bruker, 2018)
T min, T max 0.580, 0.747 0.666, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 27741, 4862, 4204 41504, 3506, 2193
R int 0.066 0.128
(sin θ/λ)max−1) 0.725 0.685
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.049, 0.121, 1.07 0.050, 0.143, 1.05
No. of reflections 4862 3506
No. of parameters 202 182
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.42, −0.26 0.28, −0.26

Computer programs: APEX3 and SAINT (Bruker, 2018), SHELXT2014/5 (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ) and ShelXle (Hübschle et al., 2011).

Supplementary Material

Crystal structure: contains datablock(s) I, II, global. DOI: 10.1107/S2056989020004648/hb7897sup1.cif

e-76-00646-sup1.cif (2.1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020004648/hb7897Isup2.hkl

e-76-00646-Isup2.hkl (387.1KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989020004648/hb7897IIsup3.hkl

e-76-00646-IIsup3.hkl (280.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020004648/hb7897Isup4.cml

Supporting information file. DOI: 10.1107/S2056989020004648/hb7897IIsup5.cml

CCDC references: 1994582, 1994581

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

5-(2H-1,3-Benzodioxol-5-yl)-N-cyclohexylpenta-2,4-dienamide (I) . Crystal data

C18H21NO3 F(000) = 640
Mr = 299.36 Dx = 1.304 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 11.4982 (7) Å Cell parameters from 9948 reflections
b = 5.0086 (3) Å θ = 2.5–33.5°
c = 26.7240 (16) Å µ = 0.09 mm1
β = 97.683 (2)° T = 90 K
V = 1525.22 (16) Å3 Needle, light-yellow
Z = 4 0.58 × 0.07 × 0.07 mm

5-(2H-1,3-Benzodioxol-5-yl)-N-cyclohexylpenta-2,4-dienamide (I) . Data collection

Bruker D8 goniometer diffractometer 4862 independent reflections
Radiation source: microfocus X-ray tube 4204 reflections with I > 2σ(I)
Multilayered conforacal mirror monochromator Rint = 0.066
Detector resolution: 7.391 pixels mm-1 θmax = 31.0°, θmin = 2.2°
ω scans h = −16→16
Absorption correction: multi-scan (SADABS; Bruker, 2018) k = −7→7
Tmin = 0.580, Tmax = 0.747 l = −38→38
27741 measured reflections

5-(2H-1,3-Benzodioxol-5-yl)-N-cyclohexylpenta-2,4-dienamide (I) . Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.049 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.0455P)2 + 0.7464P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max = 0.001
4862 reflections Δρmax = 0.42 e Å3
202 parameters Δρmin = −0.26 e Å3
0 restraints

5-(2H-1,3-Benzodioxol-5-yl)-N-cyclohexylpenta-2,4-dienamide (I) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

5-(2H-1,3-Benzodioxol-5-yl)-N-cyclohexylpenta-2,4-dienamide (I) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.96864 (7) 0.23821 (16) 0.65434 (3) 0.01577 (17)
O2 0.26072 (7) 0.95788 (18) 0.47532 (3) 0.01982 (18)
O3 0.09239 (7) 0.7586 (2) 0.49784 (4) 0.0246 (2)
N1 1.02983 (8) 0.66732 (19) 0.66764 (4) 0.01464 (18)
H1 1.0072 (13) 0.834 (3) 0.6656 (6) 0.018*
C1 1.35763 (10) 0.7868 (2) 0.69502 (4) 0.0179 (2)
H1A 1.387593 0.633931 0.677037 0.021*
H1AB 1.404140 0.946479 0.688562 0.021*
C2 1.37316 (10) 0.7289 (2) 0.75164 (4) 0.0177 (2)
H2A 1.456652 0.689410 0.763536 0.021*
H2AB 1.350298 0.887869 0.770054 0.021*
C3 1.29754 (11) 0.4914 (2) 0.76259 (4) 0.0184 (2)
H3A 1.306633 0.458942 0.799445 0.022*
H3AB 1.324548 0.329830 0.746168 0.022*
C4 1.16802 (10) 0.5412 (2) 0.74321 (4) 0.0174 (2)
H4A 1.121475 0.381401 0.749567 0.021*
H4AB 1.139004 0.693282 0.761708 0.021*
C5 1.15165 (9) 0.6024 (2) 0.68667 (4) 0.01204 (19)
H5 1.174757 0.440743 0.668389 0.014*
C6 1.22876 (10) 0.8346 (2) 0.67461 (4) 0.0156 (2)
H6A 1.201602 1.000303 0.689604 0.019*
H6AB 1.220984 0.859459 0.637563 0.019*
C7 0.13448 (10) 0.9561 (2) 0.46564 (4) 0.0178 (2)
H00F 0.103160 1.134167 0.472821 0.021*
H00G 0.108313 0.912274 0.429779 0.021*
C8 0.29070 (10) 0.7663 (2) 0.51139 (4) 0.0146 (2)
C9 0.19016 (9) 0.6451 (2) 0.52444 (4) 0.0157 (2)
C10 0.19552 (10) 0.4395 (2) 0.55871 (4) 0.0172 (2)
H10 0.126694 0.356487 0.567425 0.021*
C11 0.30804 (10) 0.3586 (2) 0.58014 (4) 0.0154 (2)
H11 0.315407 0.213891 0.603318 0.018*
C12 0.40980 (9) 0.4841 (2) 0.56850 (4) 0.0135 (2)
C13 0.40115 (9) 0.6936 (2) 0.53284 (4) 0.0142 (2)
H13 0.469038 0.780458 0.524074 0.017*
C14 0.52399 (9) 0.3949 (2) 0.59388 (4) 0.0151 (2)
H14 0.528504 0.219194 0.607404 0.018*
C15 0.62312 (9) 0.5413 (2) 0.59963 (4) 0.0153 (2)
H15 0.618873 0.720765 0.588024 0.018*
C16 0.73553 (9) 0.4407 (2) 0.62246 (4) 0.0144 (2)
H16 0.741526 0.256496 0.630909 0.017*
C17 0.83199 (9) 0.5927 (2) 0.63240 (4) 0.0147 (2)
H17 0.825437 0.779183 0.626212 0.018*
C18 0.94810 (9) 0.4819 (2) 0.65259 (4) 0.01252 (19)

5-(2H-1,3-Benzodioxol-5-yl)-N-cyclohexylpenta-2,4-dienamide (I) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0151 (4) 0.0087 (3) 0.0230 (4) 0.0010 (3) 0.0008 (3) 0.0012 (3)
O2 0.0130 (4) 0.0226 (4) 0.0237 (4) 0.0022 (3) 0.0019 (3) 0.0074 (3)
O3 0.0116 (4) 0.0333 (5) 0.0284 (5) 0.0015 (4) 0.0014 (3) 0.0109 (4)
N1 0.0124 (4) 0.0082 (4) 0.0228 (5) 0.0014 (3) 0.0006 (3) 0.0001 (3)
C1 0.0146 (5) 0.0186 (5) 0.0199 (5) −0.0044 (4) 0.0007 (4) 0.0004 (4)
C2 0.0181 (5) 0.0134 (5) 0.0201 (5) 0.0006 (4) −0.0034 (4) −0.0003 (4)
C3 0.0222 (5) 0.0137 (5) 0.0181 (5) 0.0006 (4) −0.0016 (4) 0.0024 (4)
C4 0.0191 (5) 0.0176 (5) 0.0160 (5) −0.0002 (4) 0.0037 (4) 0.0016 (4)
C5 0.0112 (4) 0.0089 (4) 0.0158 (5) 0.0010 (3) 0.0012 (3) 0.0004 (3)
C6 0.0160 (5) 0.0119 (5) 0.0181 (5) −0.0033 (4) −0.0007 (4) 0.0031 (4)
C7 0.0140 (5) 0.0196 (5) 0.0195 (5) 0.0029 (4) 0.0010 (4) 0.0003 (4)
C8 0.0149 (5) 0.0148 (5) 0.0144 (5) 0.0007 (4) 0.0035 (4) −0.0001 (4)
C9 0.0106 (4) 0.0198 (5) 0.0167 (5) 0.0007 (4) 0.0020 (4) −0.0022 (4)
C10 0.0128 (5) 0.0208 (5) 0.0183 (5) −0.0038 (4) 0.0035 (4) −0.0010 (4)
C11 0.0148 (5) 0.0160 (5) 0.0156 (5) −0.0028 (4) 0.0031 (4) 0.0003 (4)
C12 0.0121 (4) 0.0134 (5) 0.0153 (5) −0.0005 (4) 0.0030 (3) −0.0015 (4)
C13 0.0117 (4) 0.0145 (5) 0.0169 (5) −0.0008 (4) 0.0037 (4) 0.0006 (4)
C14 0.0137 (5) 0.0148 (5) 0.0169 (5) 0.0016 (4) 0.0030 (4) 0.0016 (4)
C15 0.0138 (5) 0.0138 (5) 0.0183 (5) 0.0025 (4) 0.0027 (4) 0.0006 (4)
C16 0.0144 (5) 0.0129 (5) 0.0162 (5) 0.0023 (4) 0.0029 (4) 0.0011 (4)
C17 0.0138 (5) 0.0110 (4) 0.0194 (5) 0.0030 (4) 0.0023 (4) 0.0020 (4)
C18 0.0127 (4) 0.0108 (4) 0.0143 (5) 0.0006 (4) 0.0027 (3) 0.0010 (3)

5-(2H-1,3-Benzodioxol-5-yl)-N-cyclohexylpenta-2,4-dienamide (I) . Geometric parameters (Å, º)

O1—C18 1.2429 (13) C6—H6A 0.9900
O2—C8 1.3710 (14) C6—H6AB 0.9900
O2—C7 1.4400 (14) C7—H00F 0.9900
O3—C9 1.3705 (14) C7—H00G 0.9900
O3—C7 1.4372 (15) C8—C13 1.3710 (15)
N1—C18 1.3440 (14) C8—C9 1.3909 (15)
N1—C5 1.4614 (13) C9—C10 1.3741 (16)
N1—H1 0.874 (16) C10—C11 1.4028 (15)
C1—C2 1.5275 (16) C10—H10 0.9500
C1—C6 1.5279 (16) C11—C12 1.3991 (15)
C1—H1A 0.9900 C11—H11 0.9500
C1—H1AB 0.9900 C12—C13 1.4120 (15)
C2—C3 1.5246 (17) C12—C14 1.4648 (15)
C2—H2A 0.9900 C13—H13 0.9500
C2—H2AB 0.9900 C14—C15 1.3468 (15)
C3—C4 1.5305 (16) C14—H14 0.9500
C3—H3A 0.9900 C15—C16 1.4442 (15)
C3—H3AB 0.9900 C15—H15 0.9500
C4—C5 1.5284 (15) C16—C17 1.3423 (15)
C4—H4A 0.9900 C16—H16 0.9500
C4—H4AB 0.9900 C17—C18 1.4793 (15)
C5—C6 1.5228 (15) C17—H17 0.9500
C5—H5 1.0000
C8—O2—C7 105.94 (9) H6A—C6—H6AB 107.9
C9—O3—C7 106.11 (9) O3—C7—O2 107.98 (9)
C18—N1—C5 123.36 (9) O3—C7—H00F 110.1
C18—N1—H1 116.8 (10) O2—C7—H00F 110.1
C5—N1—H1 119.9 (10) O3—C7—H00G 110.1
C2—C1—C6 111.27 (9) O2—C7—H00G 110.1
C2—C1—H1A 109.4 H00F—C7—H00G 108.4
C6—C1—H1A 109.4 C13—C8—O2 127.72 (10)
C2—C1—H1AB 109.4 C13—C8—C9 122.25 (10)
C6—C1—H1AB 109.4 O2—C8—C9 110.03 (10)
H1A—C1—H1AB 108.0 O3—C9—C10 128.10 (10)
C3—C2—C1 110.13 (9) O3—C9—C8 109.91 (10)
C3—C2—H2A 109.6 C10—C9—C8 121.98 (10)
C1—C2—H2A 109.6 C9—C10—C11 116.43 (10)
C3—C2—H2AB 109.6 C9—C10—H10 121.8
C1—C2—H2AB 109.6 C11—C10—H10 121.8
H2A—C2—H2AB 108.1 C12—C11—C10 122.19 (11)
C2—C3—C4 111.23 (9) C12—C11—H11 118.9
C2—C3—H3A 109.4 C10—C11—H11 118.9
C4—C3—H3A 109.4 C11—C12—C13 119.88 (10)
C2—C3—H3AB 109.4 C11—C12—C14 118.98 (10)
C4—C3—H3AB 109.4 C13—C12—C14 121.13 (10)
H3A—C3—H3AB 108.0 C8—C13—C12 117.22 (10)
C5—C4—C3 110.66 (9) C8—C13—H13 121.4
C5—C4—H4A 109.5 C12—C13—H13 121.4
C3—C4—H4A 109.5 C15—C14—C12 125.40 (10)
C5—C4—H4AB 109.5 C15—C14—H14 117.3
C3—C4—H4AB 109.5 C12—C14—H14 117.3
H4A—C4—H4AB 108.1 C14—C15—C16 123.65 (11)
N1—C5—C6 108.34 (9) C14—C15—H15 118.2
N1—C5—C4 111.98 (9) C16—C15—H15 118.2
C6—C5—C4 111.37 (9) C17—C16—C15 123.70 (10)
N1—C5—H5 108.3 C17—C16—H16 118.1
C6—C5—H5 108.3 C15—C16—H16 118.1
C4—C5—H5 108.3 C16—C17—C18 122.76 (10)
C5—C6—C1 111.66 (9) C16—C17—H17 118.6
C5—C6—H6A 109.3 C18—C17—H17 118.6
C1—C6—H6A 109.3 O1—C18—N1 123.06 (10)
C5—C6—H6AB 109.3 O1—C18—C17 122.66 (10)
C1—C6—H6AB 109.3 N1—C18—C17 114.26 (9)

5-(2H-1,3-Benzodioxol-5-yl)-N-cyclohexylpenta-2,4-dienamide (I) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.874 (16) 2.086 (16) 2.9547 (12) 172.8 (14)

Symmetry code: (i) x, y+1, z.

5-(2H-1,3-Benzodioxol-5-yl)-1-(pyrrolidin-1-yl)penta-2,4-dien-1-one (II) . Crystal data

C16H17NO3 Dx = 1.378 Mg m3
Mr = 271.30 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pbca Cell parameters from 3874 reflections
a = 11.8747 (10) Å θ = 2.7–25.8°
b = 7.2485 (6) Å µ = 0.10 mm1
c = 30.392 (2) Å T = 90 K
V = 2616.0 (4) Å3 Needle, colorless
Z = 8 0.28 × 0.06 × 0.06 mm
F(000) = 1152

5-(2H-1,3-Benzodioxol-5-yl)-1-(pyrrolidin-1-yl)penta-2,4-dien-1-one (II) . Data collection

Bruker D8 goniometer diffractometer 3506 independent reflections
Radiation source: microfocus X-ray tube 2193 reflections with I > 2σ(I)
Multilayered conforacal mirror monochromator Rint = 0.128
Detector resolution: 7.391 pixels mm-1 θmax = 29.1°, θmin = 2.7°
ω scans h = −16→16
Absorption correction: multi-scan (SADABS; Bruker, 2018) k = −9→9
Tmin = 0.666, Tmax = 0.746 l = −41→41
41504 measured reflections

5-(2H-1,3-Benzodioxol-5-yl)-1-(pyrrolidin-1-yl)penta-2,4-dien-1-one (II) . Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.050 w = 1/[σ2(Fo2) + (0.0492P)2 + 1.9223P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.143 (Δ/σ)max = 0.001
S = 1.05 Δρmax = 0.28 e Å3
3506 reflections Δρmin = −0.26 e Å3
182 parameters Extinction correction: SHELXL-2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0038 (6)

5-(2H-1,3-Benzodioxol-5-yl)-1-(pyrrolidin-1-yl)penta-2,4-dien-1-one (II) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

5-(2H-1,3-Benzodioxol-5-yl)-1-(pyrrolidin-1-yl)penta-2,4-dien-1-one (II) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.90586 (12) 0.3421 (2) 0.67241 (5) 0.0219 (3)
O2 0.77314 (12) 0.9757 (2) 0.35830 (4) 0.0239 (4)
O3 0.62806 (12) 0.8589 (2) 0.40118 (5) 0.0238 (3)
N1 0.72232 (13) 0.3304 (2) 0.69173 (5) 0.0178 (4)
C1 0.80525 (16) 0.3650 (3) 0.66249 (6) 0.0179 (4)
C2 0.77084 (17) 0.4355 (3) 0.61881 (6) 0.0200 (4)
H2 0.693195 0.435608 0.611273 0.024*
C3 0.84580 (17) 0.4994 (3) 0.58954 (6) 0.0195 (4)
H3 0.923497 0.493700 0.596862 0.023*
C4 0.81458 (18) 0.5762 (3) 0.54755 (6) 0.0202 (4)
H4 0.737486 0.571321 0.539278 0.024*
C5 0.88758 (17) 0.6543 (3) 0.51932 (6) 0.0204 (4)
H5 0.964674 0.654787 0.527665 0.024*
C6 0.85964 (17) 0.7386 (3) 0.47701 (6) 0.0189 (4)
C7 0.94619 (18) 0.8085 (3) 0.45072 (7) 0.0233 (5)
H7 1.021461 0.801352 0.461170 0.028*
C8 0.92613 (18) 0.8889 (3) 0.40946 (7) 0.0238 (5)
H8 0.985763 0.934891 0.391755 0.029*
C9 0.81622 (17) 0.8975 (3) 0.39603 (6) 0.0197 (4)
C10 0.65583 (18) 0.9250 (3) 0.35806 (7) 0.0243 (5)
H10A 0.608744 1.033210 0.350559 0.029*
H10B 0.642106 0.827357 0.335911 0.029*
C11 0.72958 (17) 0.8288 (3) 0.42176 (6) 0.0192 (4)
C12 0.74749 (17) 0.7485 (3) 0.46174 (6) 0.0194 (4)
H12 0.686800 0.701056 0.478668 0.023*
C13 0.74989 (17) 0.2759 (3) 0.73696 (6) 0.0191 (4)
H13A 0.803365 0.364049 0.750477 0.023*
H13B 0.783182 0.150743 0.737737 0.023*
C14 0.63666 (17) 0.2799 (3) 0.76059 (7) 0.0214 (4)
H14A 0.633146 0.183869 0.783722 0.026*
H14B 0.622901 0.401963 0.774158 0.026*
C15 0.55179 (17) 0.2411 (3) 0.72417 (7) 0.0229 (5)
H15A 0.476464 0.289608 0.731974 0.028*
H15B 0.545712 0.107030 0.718398 0.028*
C16 0.59994 (16) 0.3421 (3) 0.68437 (7) 0.0202 (4)
H16A 0.578131 0.280454 0.656583 0.024*
H16B 0.574336 0.472052 0.683550 0.024*

5-(2H-1,3-Benzodioxol-5-yl)-1-(pyrrolidin-1-yl)penta-2,4-dien-1-one (II) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0160 (7) 0.0250 (8) 0.0247 (7) 0.0012 (6) −0.0006 (6) 0.0005 (6)
O2 0.0236 (8) 0.0286 (8) 0.0195 (7) −0.0012 (6) −0.0007 (6) 0.0050 (6)
O3 0.0196 (8) 0.0307 (8) 0.0209 (7) 0.0019 (6) −0.0009 (6) 0.0048 (6)
N1 0.0134 (8) 0.0218 (9) 0.0181 (8) −0.0001 (7) −0.0008 (6) 0.0024 (7)
C1 0.0177 (10) 0.0158 (9) 0.0204 (10) −0.0005 (8) −0.0011 (8) −0.0021 (8)
C2 0.0186 (10) 0.0206 (10) 0.0208 (10) 0.0005 (8) −0.0025 (8) −0.0014 (8)
C3 0.0199 (10) 0.0194 (10) 0.0191 (10) 0.0002 (8) −0.0009 (8) −0.0017 (8)
C4 0.0201 (10) 0.0201 (10) 0.0203 (10) 0.0012 (8) −0.0022 (8) −0.0017 (8)
C5 0.0181 (10) 0.0214 (10) 0.0216 (10) 0.0014 (8) −0.0003 (8) −0.0002 (8)
C6 0.0187 (10) 0.0197 (10) 0.0184 (10) 0.0013 (8) 0.0002 (8) −0.0022 (8)
C7 0.0185 (10) 0.0283 (11) 0.0230 (10) −0.0001 (9) 0.0006 (8) 0.0003 (9)
C8 0.0214 (11) 0.0265 (11) 0.0236 (10) −0.0015 (9) 0.0048 (8) 0.0028 (9)
C9 0.0232 (11) 0.0204 (10) 0.0156 (9) −0.0011 (8) 0.0008 (8) 0.0006 (8)
C10 0.0218 (11) 0.0308 (12) 0.0204 (10) 0.0001 (9) −0.0006 (8) 0.0026 (9)
C11 0.0180 (10) 0.0197 (10) 0.0200 (10) 0.0009 (8) −0.0011 (8) −0.0004 (8)
C12 0.0182 (10) 0.0202 (10) 0.0197 (9) −0.0001 (8) 0.0025 (8) −0.0001 (8)
C13 0.0198 (10) 0.0196 (10) 0.0180 (9) 0.0017 (8) −0.0007 (8) 0.0008 (8)
C14 0.0206 (10) 0.0218 (10) 0.0218 (10) 0.0007 (9) 0.0021 (8) 0.0008 (8)
C15 0.0171 (10) 0.0266 (11) 0.0251 (10) −0.0011 (9) 0.0018 (8) −0.0016 (9)
C16 0.0144 (9) 0.0241 (11) 0.0221 (10) 0.0011 (8) −0.0007 (8) 0.0000 (8)

5-(2H-1,3-Benzodioxol-5-yl)-1-(pyrrolidin-1-yl)penta-2,4-dien-1-one (II) . Geometric parameters (Å, º)

O1—C1 1.243 (2) C7—H7 0.9500
O2—C9 1.377 (2) C8—C9 1.369 (3)
O2—C10 1.441 (2) C8—H8 0.9500
O3—C11 1.376 (2) C9—C11 1.385 (3)
O3—C10 1.434 (2) C10—H10A 0.9900
N1—C1 1.350 (2) C10—H10B 0.9900
N1—C13 1.467 (2) C11—C12 1.364 (3)
N1—C16 1.473 (2) C12—H12 0.9500
C1—C2 1.480 (3) C13—C14 1.525 (3)
C2—C3 1.341 (3) C13—H13A 0.9900
C2—H2 0.9500 C13—H13B 0.9900
C3—C4 1.441 (3) C14—C15 1.523 (3)
C3—H3 0.9500 C14—H14A 0.9900
C4—C5 1.345 (3) C14—H14B 0.9900
C4—H4 0.9500 C15—C16 1.525 (3)
C5—C6 1.462 (3) C15—H15A 0.9900
C5—H5 0.9500 C15—H15B 0.9900
C6—C7 1.397 (3) C16—H16A 0.9900
C6—C12 1.412 (3) C16—H16B 0.9900
C7—C8 1.403 (3)
C9—O2—C10 104.98 (15) O2—C10—H10A 110.2
C11—O3—C10 105.50 (15) O3—C10—H10B 110.2
C1—N1—C13 120.26 (16) O2—C10—H10B 110.2
C1—N1—C16 127.52 (16) H10A—C10—H10B 108.5
C13—N1—C16 112.21 (15) C12—C11—O3 127.55 (19)
O1—C1—N1 121.10 (18) C12—C11—C9 122.74 (19)
O1—C1—C2 121.93 (18) O3—C11—C9 109.69 (17)
N1—C1—C2 116.95 (17) C11—C12—C6 117.50 (19)
C3—C2—C1 122.08 (19) C11—C12—H12 121.3
C3—C2—H2 119.0 C6—C12—H12 121.3
C1—C2—H2 119.0 N1—C13—C14 103.86 (16)
C2—C3—C4 123.4 (2) N1—C13—H13A 111.0
C2—C3—H3 118.3 C14—C13—H13A 111.0
C4—C3—H3 118.3 N1—C13—H13B 111.0
C5—C4—C3 124.2 (2) C14—C13—H13B 111.0
C5—C4—H4 117.9 H13A—C13—H13B 109.0
C3—C4—H4 117.9 C15—C14—C13 103.75 (16)
C4—C5—C6 126.23 (19) C15—C14—H14A 111.0
C4—C5—H5 116.9 C13—C14—H14A 111.0
C6—C5—H5 116.9 C15—C14—H14B 111.0
C7—C6—C12 119.16 (18) C13—C14—H14B 111.0
C7—C6—C5 119.19 (18) H14A—C14—H14B 109.0
C12—C6—C5 121.64 (18) C14—C15—C16 103.87 (16)
C6—C7—C8 122.5 (2) C14—C15—H15A 111.0
C6—C7—H7 118.8 C16—C15—H15A 111.0
C8—C7—H7 118.8 C14—C15—H15B 111.0
C9—C8—C7 116.59 (19) C16—C15—H15B 111.0
C9—C8—H8 121.7 H15A—C15—H15B 109.0
C7—C8—H8 121.7 N1—C16—C15 102.81 (16)
C8—C9—O2 128.41 (18) N1—C16—H16A 111.2
C8—C9—C11 121.54 (19) C15—C16—H16A 111.2
O2—C9—C11 110.01 (18) N1—C16—H16B 111.2
O3—C10—O2 107.62 (16) C15—C16—H16B 111.2
O3—C10—H10A 110.2 H16A—C16—H16B 109.1

Funding Statement

This work was funded by Josai University grant .

References

  1. Bruker (2018). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Ezawa, T., Inoue, Y., Murata, I., Takao, K., Sugita, Y. & Kanamoto, I. (2018). AAPS PharmSciTech, 19, 923–933. [DOI] [PubMed]
  3. Ezawa, T., Inoue, Y., Murata, I., Takao, K., Sugita, Y. & Kanamoto, I. (2019). Int. J. Med. Chem. 2019, 1–14. [DOI] [PMC free article] [PubMed]
  4. Ezawa, T., Inoue, Y., Tunvichien, S., Suzuki, R. & Kanamoto, I. (2016). Int. J. Med. Chem. 2016, 1–9. [DOI] [PMC free article] [PubMed]
  5. Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. [DOI] [PMC free article] [PubMed]
  6. Pfund, L. Y., Chamberlin, B. L. & Matzger, A. J. (2015). Cryst. Growth Des. 15, 2047–2051. [DOI] [PMC free article] [PubMed]
  7. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  8. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  9. Szejtli, J. (1998). Chem. Rev. 98, 1743–1754. [DOI] [PubMed]
  10. Takao, K., Miyashiro, T. & Sugita, Y. (2015). Chem. Pharm. Bull. 63, 326–333. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, II, global. DOI: 10.1107/S2056989020004648/hb7897sup1.cif

e-76-00646-sup1.cif (2.1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020004648/hb7897Isup2.hkl

e-76-00646-Isup2.hkl (387.1KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989020004648/hb7897IIsup3.hkl

e-76-00646-IIsup3.hkl (280.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020004648/hb7897Isup4.cml

Supporting information file. DOI: 10.1107/S2056989020004648/hb7897IIsup5.cml

CCDC references: 1994582, 1994581

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES