Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Apr 21;76(Pt 5):673–676. doi: 10.1107/S2056989020005058

Crystal structure of bis­(1-mesityl-1H-imidazole-κN 3)di­phenyl­boron tri­fluoro­methane­sulfonate

Aniffa Kouton a, Yafei Gao a, Veronica Carta a,*
PMCID: PMC7199260  PMID: 32431931

In this manuscript, we report the the crystal structure of di­phenyl­bis­(mesityl­imidazole)­borane tri­fluoro­methane­sulfonate. Weak inter­actions, such as π–π stacking are present in the structure.

Keywords: crystal structure, weak inter­actions, bulky ligand

Abstract

The solid-state structure of bis­(1-mesityl-1H-imidazole-κN 3)di­phenyl­boron tri­fluoro­methane­sulfonate, C36H38BN4 +·CF3SO3 or (Ph2B(MesIm)2OTf), is reported. Bis(1-mesityl-1H-imidazole-κN 3)di­phenyl­boron (Ph2B(MesIm)2+) is a bulky ligand that crystallizes in the ortho­rhom­bic space group Pbcn. The asymmetric unit contains one Ph2B(MesIm)2+ cationic ligand and one tri­fluoro­methane­sulfonate anion that balances the positive charge of the ligand. The tetra­hedral geometry around the boron center is distorted as a result of the steric bulk of the phenyl groups. Weak inter­actions, such as π–π stacking are present in the crystal structure.

Chemical context  

Ph2B(MesIm)2+ (Fig. 1) can undergo C—H activation on the imidazole functionalities, generating a bi(carbene)borate ligand, which can coordinate to a metal center with two carbenes. The ligand is bulky and has strong σ-donor character. For this reason, it can be used to stabilize a metal center. Similar bulky ligands, such as tris­(mesityl­imidazole)­phenyl­borane, PhB(MesIm)3 (Fig. 2) have been used to synthesize iron nitride complexes (Smith & Subedi, 2012), which have shown promising applications in catalysis (Scepaniak et al., 2009) and in the production of ammonia both in biological and in industrial processes (Smith & Subedi, 2012). The threefold symmetry and the bulk of [PhB(MesIm)3]2+ ligand are key to stabilizing iron–nitro­gen multiple bonds and isolate the terminal iron nitride complexes (Smith & Subedi, 2012).graphic file with name e-76-00673-scheme1.jpg

Figure 1.

Figure 1

Chemical structure of di­phenyldi(mesityl­imidazole)­borane Ph2B(MesIm)2+.

Figure 2.

Figure 2

Chemical structure of phenyl­tris­(mesityl­imidazole)­borane PhB(MesIm)32+.

In this paper, we discuss the synthesis and crystal structure of Ph2B(MesIm)2OTf, which can potentially be used to synthesize low-coordinate metal complexes for small-mol­ecule activation and catalysis. The synthesis of Ph2B(MesIm)2OTf started from the reaction of 1 eq. of Ph2BCl with 2 eq. of 1-mesityl-1H-imidazole. The product was further reacted with 1 eq. of tri­methyl­silyl tri­fluoro­methane­sulfonate (TMSOTf) to yield the title compound.

Structural commentary  

The title compound crystallizes in the ortho­rhom­bic space group Pbcn. The asymmetric unit consists of one Ph2B(MesIm)2+ ligand and one triflate anion that balances the total positive charge of Ph2B(MesIm)2+ (Fig. 3).

Figure 3.

Figure 3

Mol­ecular structure of Ph2B(MesIm)2OTf with atom labels. Displacement ellipsoids are shown at the 50% probability level. Hydrogen atoms are omitted for clarity.

The boron atom has tetra­hedral geometry. As a result of the steric repulsion of the phenyl groups, the angle between the boron and the two phenyl groups (C1—B1—C7) is 116.7 (3)° and larger than the typical tetra­hedral angle (109°), whereas the angle between the imidazole moieties and the boron center (N1—B1–N3) is smaller at 105.8 (3)°. The remaining two angles are 107.4 (3) and 109.3 (3)°. The bulky mesityl groups point away from each other, creating a pocket in which the triflate mol­ecule is located (Fig. 4). The dihedral angles between the imidazole and mesityl mean planes are 63.1 (2)° for N1/N2/C13–C15 and C16—C21, and 67.85 (17)° for N3/N4/C25–C27 and C28–C33. The dihedral angle between the mean planes defined by the phenyl rings on the boron atom (C1–C6 and C7–C12) is 58.28 (19)°.

Figure 4.

Figure 4

Partial packing diagram of Ph2B(MesIm)2OTf along the c axis. Hydrogen atoms are omitted for clarity. Dotteded lines indicate the weak inter­molecular inter­actions between tri­fluoro­methane­sulfonate and di­phenyldi(mesityl­imidazole)­borane.

Supra­molecular features  

Although no classical hydrogen bonds were found in the structure, weak inter­molecular inter­actions between the triflate anion and the protons on the imidazole groups are present (Table 1). The triflate anion also inter­acts weakly with one of the imidazole rings (N3/N4/C25–C27) through one oxygen atom (O1), with a centroid–oxygen distance of 3.529 (3) Å. Additional weak inter­actions, namely π–π stacking, are present in the packing for one of the mesityl groups (C28–C36), with a perpendicular distance of 3.5727 (13) Å between the mesityl ring (C28–C33) and the least-squares mean plane of a neighboring symmetry-equivalent moiety (Fig. 5). The centroid–centroid distance between the two mesityl rings is 3.947 (2) Å and the slippage between the two π-rings is 1.677 Å. The dihedral angle between the two mesityl mean planes is 7.58 (15)°. The second mesityl ring (C16–C24) is not involved in π–π stacking inter­actions, with the closest aromatic rings, C1–C6 and C7–C12, at centroid–centroid distances of 5.710 (2) and 5.139 (3) Å, respectively, and with mean-plane dihedral angles of 16.31 (19) and 49.8 (2)°, respectively. The two mesityl groups are almost perpendicular, subtending a dihedral angle of 88.39 (17)°.

Table 1. Weak inter­molecular inter­actions (Å, °) between the tri­fluoro­methane­sulfonate anion and the imidazole moieties in Ph2B(MesIm)2 + .

  Distance Angle
C26⋯S1i 3.793 (4) 149.4
C26⋯O2i 3.264 (5) 160.0
C15⋯O1 3.132 (5) 118.7
C14⋯O3ii 3.242 (5) 159.4
N3—C27⋯O1 3.529 (3) 125.0

Symmetry codes: (i) x, −y + 1, z − Inline graphic; (ii) −x + Inline graphic, y + Inline graphic, z.

Figure 5.

Figure 5

π–π stacking in the crystal structure of Ph2B(MesIm)2+ between the mesityl ring C28–C33 and its neighboring symmetry-equivalent moiety. The rings involved in π–π stacking are represented in black.

Database survey  

A survey of the Cambridge Structural Database (CSD Version 5.41, 2020.0 CSD Release; Groom et al., 2016) was undertaken for structures related to Ph2B(MesIm)2OTf. One example is the structure of (3-butyl­imidazole)­tri­phenyl­boron [Ph3B(3-ButIm); refcode OFAFIK; Stenzel et al., 2002), a neutral mol­ecule with an additional phenyl ring instead of an imidazole group (three phenyl rings) and with an alkyl chain instead of the mesityl moiety. Ph3B(3-ButIm) crystallizes in the space group P Inline graphic, and has a very different crystal packing from Ph2B(MesIm)2OTf. However, the two mol­ecules have a similar geometry around the boron atom, with the tetra­hedral angles around the boron atom impacted by the bulky phenyl groups. The C—B—C angles involving phenyl moieties range between 108 and 114°, while the angles between imidazole and phenyl moieties are accordingly smaller (C—B—N angles of about 104–109°). Ph3B(3-ButIm) shows C—H⋯π inter­actions from the imidazole hydrogen to the phenyl ring. These inter­actions are not present in Ph2B(MesIm)2OTf, where the imidazole inter­acts only weakly with the triflate oxygen atoms. Another similar example is phenyl­imidazole tri­phenyl­borane [Ph3B(PhIm); ACIPEH; Kiviniemi et al., 2001]. Ph3B(PhIm) is a neutral mol­ecule with three phenyl rings on the boron atom and one phenyl ring on the imidazole functionality. Ph3B(PhIm) crystallizes in the monoclinic space group C2/c and again has a different crystal packing from Ph2B(MesIm)2OTf, characterized by chains that are stabilized by weak π–π stacking inter­actions between the phenyl groups on the imidazole.

The CSD search also revealed one di­phenyl­bis­(ada­man­tyl­imidazole)­borane chloride salt, Ph2B(AdIm)2Cl (CAX­MAS; Xiong et al., 2017). In this compound, the imidazole functionalities are bound to adamantyl groups and the tetra­hedral boron atom is bound to two toluene and two imidazole groups. The protons on the imidazole groups inter­act via hydrogen bonds with the chloride anion, which is located in a pocket between the two bulky adamantyl groups, similar to that observed for the triflate anion in Ph2B(MesIm)2OTf. The crystal packing shows weak inter­molecular C—H⋯π inter­actions between the methyl group on the toluene functionality and the aromatic ring on the neighboring toluene. Despite some similarities with the title compound, Ph2B(AdIm)2Cl crystallizes in the space group C2/c and has a different crystal packing structure.

Few boron dimers with bridging imidazole groups were found in the CSD. One example is [Ph 2 B(3-BuIm)]2 (FULPAE; Arrowsmith et al., 2009), which crystallizes in the space group C2/c. In this boron dimer, the two tetra­hedral boron centers are bridged by two 3-butyl­imidazole groups and each boron atom is bound to two phenyl groups. A second example of a boron dimer is [Ph 2 B(3-BuIm)]2 (PONLOW; Su et al., 2019), space group P21/n. In this compound one boron atom is bound to two phenyl groups and the second boron atom is bound to one chloride and one hydrogen atom. The boron atoms are bridged by two di­phenyl­mesityl­imidazole groups.

Synthesis and crystallization  

The synthesis of Ph2B(MesIm)2OTf is shown in Fig. 6. A 25 mL flask was charged with Ph2BCl (914 mg, 4.5 mmol), 1-mesityl-1H-imidazole (1.7 g, 9 mmol) and toluene (10 mL). The mixture was stirred at room temperature for 2 h. During the course of the reaction, a white precipitate formed. Then TMS OTf (1.0 g, 4.5 mmol) was added as a brown liquid. The mixture was further stirred at 383 K overnight. The toluene was evaporated under vacuum, affording a white residue that was washed with Et2O (3 × 10 mL) to obtain Ph2B(MesIm)2OTf as a white powder (2.6 g, 79% yield). Single crystals suitable for X-ray diffraction were grown by vapor diffusion using diethyl ether and DCM. 1H NMR (400 MHz, CDCl3, 298 K): δ (ppm) 7.81 (s, 2H), 7.47 (s, 2H), 7.35 (s, 2H), 7.24–7.27 (m, 6H), 7.10 (d, J = 8.0 Hz, 4H), 6.93 (s, 4H), 2.25 (s, 6H), 1.99 (s, 12H). 13C NMR (101 MHz, CDCl3, 298 K): δ (ppm) 104.92 (s), 137.99 (s), 134.31 (s), 133.06 (s), 131.05 (s), 129.66 (s), 128.99 (s), 128.28 (s), 127.85 (s), 126.45 (s), 124.23 (s), 21.03 (s), 17.38 (s).

Figure 6.

Figure 6

Reaction for the synthesis of Ph2B(MesIm)2OTf. Ph2BCl (1 equiv.), 1-mesityl-1H-imidazole (2 equiv.) were stirred in toluene at room temperature for 2 h. TMS OTf (1 equiv.) was then added and the mixture was further stirred at 383 K overnight.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The hydrogen atoms were placed in ideal positions and refined as riding atoms with relative isotropic displacement parameters [U iso(H) = 1.2 or 1.5 × U eq(parent atom)].

Table 2. Experimental details.

Crystal data
Chemical formula C36H38BN4 +·CF3O3S
M r 686.58
Crystal system, space group Orthorhombic, P b c n
Temperature (K) 100
a, b, c (Å) 28.661 (4), 15.979 (3), 15.352 (3)
V3) 7031 (2)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.15
Crystal size (mm) 0.20 × 0.10 × 0.05
 
Data collection
Diffractometer Bruker Venture D8
Absorption correction Multi-scan (SADABS; Bruker, 2016)
T min, T max 0.620, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 55395, 8077, 4090
R int 0.207
(sin θ/λ)max−1) 0.650
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.084, 0.225, 1.01
No. of reflections 8077
No. of parameters 448
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.29, −0.56

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989020005058/jj2222sup1.cif

e-76-00673-sup1.cif (1.7MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020005058/jj2222Isup3.hkl

e-76-00673-Isup3.hkl (641.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020005058/jj2222Isup4.cdx

CCDC reference: 1983246

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C36H38BN4+·CF3O3S Dx = 1.297 Mg m3
Mr = 686.58 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pbcn Cell parameters from 783 reflections
a = 28.661 (4) Å θ = 2.7–22.0°
b = 15.979 (3) Å µ = 0.15 mm1
c = 15.352 (3) Å T = 100 K
V = 7031 (2) Å3 Plate, clear colourless
Z = 8 0.20 × 0.10 × 0.05 mm
F(000) = 2880

Data collection

Bruker Venture D8 diffractometer 4090 reflections with I > 2σ(I)
φ and ω scans Rint = 0.207
Absorption correction: multi-scan (SADABS; Bruker, 2016) θmax = 27.5°, θmin = 2.0°
Tmin = 0.620, Tmax = 0.746 h = −37→37
55395 measured reflections k = −20→17
8077 independent reflections l = −16→19

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.084 H-atom parameters constrained
wR(F2) = 0.225 w = 1/[σ2(Fo2) + (0.086P)2] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max < 0.001
8077 reflections Δρmax = 0.29 e Å3
448 parameters Δρmin = −0.56 e Å3
0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. A colorless crystal (plate, approximate dimensions 0.20 × 0.10 × 0.05 mm3) was placed onto the tip of a MiTeGen pin and mounted on a Bruker Venture D8 diffractometer equipped with a Photon II detector at 100.0 K. The data collection was carried out using Mo Kα radiation (λ = 0.71073 Å, graphite monochromator) with a frame time of 0.5 seconds and a detector distance of 50 mm. Complete data to a resolution of 0.77 Å with a redundancy of 4 were collected. The frames were integrated with the Bruker software package SAINT using a narrow-frame algorithm (Bruker, 2016) to a resolution of 0.77 Å.The space group Pbcn was determined based on intensity statistics and systematic absences. The structure was solved using SHELXT (Sheldrick, 2015) and refined using full-matrix least-squares on F2with the OLEX2 suite (Dolomanov et al., 2009). An intrinsic phasing solution was calculated, which provided most non-hydrogen atoms from the E-map. Full-matrix least squares / difference Fourier cycles were performed, which located the remaining non-hydrogen atoms. All non-hydrogen atoms were refined with anisotropic displacement parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.33052 (3) 0.51497 (7) 0.84291 (6) 0.0314 (3)
F3 0.28584 (8) 0.47946 (19) 0.98737 (17) 0.0591 (8)
O2 0.36630 (8) 0.55684 (18) 0.89278 (18) 0.0381 (7)
O3 0.33701 (8) 0.42598 (18) 0.83416 (18) 0.0382 (7)
N4 0.41363 (9) 0.56867 (19) 0.61232 (19) 0.0243 (7)
F2 0.24174 (8) 0.4902 (2) 0.87503 (19) 0.0667 (9)
N3 0.38087 (9) 0.69119 (19) 0.63308 (19) 0.0243 (7)
F1 0.27011 (9) 0.6001 (2) 0.9347 (2) 0.0737 (9)
N1 0.31506 (9) 0.7835 (2) 0.6882 (2) 0.0294 (7)
N2 0.24087 (9) 0.7535 (2) 0.6981 (2) 0.0295 (7)
O1 0.31616 (10) 0.5576 (2) 0.76506 (19) 0.0504 (8)
C27 0.40732 (11) 0.6326 (2) 0.6686 (2) 0.0240 (8)
H27 0.420079 0.635150 0.725618 0.029*
C26 0.38945 (11) 0.5878 (2) 0.5366 (2) 0.0261 (8)
H26 0.387282 0.554329 0.485583 0.031*
C6 0.38221 (12) 0.7486 (2) 0.8345 (2) 0.0281 (8)
H6 0.356319 0.711763 0.829601 0.034*
C28 0.44454 (11) 0.4982 (2) 0.6233 (2) 0.0239 (8)
C25 0.36961 (11) 0.6633 (2) 0.5499 (2) 0.0275 (8)
H25 0.350952 0.692778 0.508910 0.033*
C30 0.45687 (12) 0.3513 (2) 0.6343 (2) 0.0292 (8)
H30 0.444921 0.295880 0.636712 0.035*
C15 0.28330 (11) 0.7240 (3) 0.6763 (2) 0.0288 (9)
H15 0.289568 0.669035 0.655722 0.035*
C33 0.49270 (11) 0.5138 (2) 0.6266 (2) 0.0257 (8)
C29 0.42563 (12) 0.4176 (2) 0.6266 (2) 0.0270 (8)
C1 0.39593 (11) 0.7953 (2) 0.7613 (2) 0.0273 (8)
C16 0.19747 (11) 0.7084 (2) 0.6921 (2) 0.0293 (9)
C2 0.43327 (11) 0.8508 (2) 0.7742 (2) 0.0284 (8)
H2 0.443153 0.884817 0.726861 0.034*
C32 0.52197 (11) 0.4447 (3) 0.6345 (2) 0.0291 (9)
H32 0.554723 0.453509 0.637309 0.035*
C21 0.17238 (12) 0.6943 (2) 0.7690 (2) 0.0310 (9)
C36 0.51244 (12) 0.6001 (2) 0.6162 (3) 0.0307 (9)
H36A 0.499383 0.626166 0.563814 0.046*
H36B 0.546454 0.596740 0.610783 0.046*
H36C 0.504378 0.633941 0.667323 0.046*
C5 0.40513 (12) 0.7545 (3) 0.9134 (3) 0.0326 (9)
H5 0.395486 0.720892 0.961213 0.039*
C7 0.38224 (12) 0.8477 (2) 0.5930 (2) 0.0295 (9)
C31 0.50495 (12) 0.3631 (3) 0.6386 (2) 0.0306 (9)
C17 0.18141 (12) 0.6840 (3) 0.6106 (2) 0.0299 (9)
C12 0.42784 (12) 0.8482 (3) 0.5586 (2) 0.0321 (9)
H12 0.450052 0.809883 0.581303 0.038*
C19 0.11264 (12) 0.6264 (3) 0.6814 (3) 0.0331 (9)
C20 0.12978 (13) 0.6533 (3) 0.7608 (3) 0.0344 (9)
H20 0.111768 0.643484 0.811775 0.041*
C34 0.37388 (11) 0.4017 (3) 0.6219 (3) 0.0329 (9)
H34A 0.357322 0.444354 0.655747 0.049*
H34B 0.366979 0.346176 0.645772 0.049*
H34C 0.363669 0.404164 0.561004 0.049*
C13 0.29209 (12) 0.8530 (3) 0.7202 (3) 0.0340 (9)
H13 0.306240 0.904756 0.735551 0.041*
C14 0.24595 (12) 0.8351 (3) 0.7261 (3) 0.0361 (10)
H14 0.221897 0.871463 0.745661 0.043*
C3 0.45621 (12) 0.8580 (3) 0.8530 (3) 0.0338 (9)
H3 0.481451 0.896091 0.859329 0.041*
C8 0.35079 (13) 0.9032 (3) 0.5542 (3) 0.0349 (9)
H8 0.319328 0.903991 0.573675 0.042*
C11 0.44155 (14) 0.9023 (3) 0.4933 (2) 0.0374 (10)
H11 0.472803 0.901466 0.472694 0.045*
C10 0.40973 (14) 0.9575 (3) 0.4579 (3) 0.0406 (10)
H10 0.419101 0.995255 0.413444 0.049*
C22 0.20862 (12) 0.7009 (3) 0.5280 (2) 0.0386 (10)
H22A 0.219943 0.758818 0.528540 0.058*
H22B 0.188329 0.692459 0.477424 0.058*
H22C 0.235230 0.662562 0.524665 0.058*
C18 0.13875 (12) 0.6426 (3) 0.6070 (3) 0.0329 (9)
H18 0.127120 0.624903 0.552073 0.039*
C4 0.44202 (12) 0.8092 (3) 0.9228 (3) 0.0356 (10)
H4 0.457721 0.813342 0.977122 0.043*
C37 0.28007 (13) 0.5219 (3) 0.9132 (3) 0.0418 (11)
C9 0.36438 (15) 0.9577 (3) 0.4874 (3) 0.0425 (11)
H9 0.342258 0.994901 0.462425 0.051*
C23 0.06599 (13) 0.5824 (3) 0.6753 (3) 0.0444 (11)
H23A 0.056297 0.564060 0.733422 0.067*
H23B 0.068812 0.533700 0.636871 0.067*
H23C 0.042650 0.621045 0.651571 0.067*
C35 0.53809 (14) 0.2904 (3) 0.6448 (3) 0.0426 (11)
H35A 0.524844 0.247568 0.683221 0.064*
H35B 0.567944 0.309684 0.668652 0.064*
H35C 0.543085 0.266699 0.586731 0.064*
C24 0.18976 (15) 0.7225 (3) 0.8564 (3) 0.0419 (11)
H24A 0.223609 0.714367 0.859655 0.063*
H24B 0.174540 0.689721 0.902275 0.063*
H24C 0.182489 0.781963 0.864474 0.063*
B1 0.36969 (13) 0.7823 (3) 0.6694 (3) 0.0273 (10)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0263 (5) 0.0332 (6) 0.0347 (6) −0.0018 (4) −0.0037 (4) 0.0032 (5)
F3 0.0434 (14) 0.083 (2) 0.0510 (17) −0.0021 (13) 0.0132 (12) 0.0086 (15)
O2 0.0316 (13) 0.0371 (18) 0.0456 (17) −0.0116 (12) −0.0116 (12) 0.0105 (14)
O3 0.0362 (14) 0.0332 (18) 0.0453 (18) 0.0009 (12) −0.0041 (12) −0.0057 (14)
N4 0.0203 (13) 0.0241 (18) 0.0284 (17) −0.0011 (12) 0.0002 (12) −0.0022 (14)
F2 0.0227 (12) 0.104 (3) 0.074 (2) −0.0032 (13) −0.0044 (12) −0.0208 (17)
N3 0.0224 (13) 0.0230 (18) 0.0274 (16) 0.0024 (12) −0.0004 (12) −0.0012 (13)
F1 0.0653 (17) 0.062 (2) 0.093 (2) 0.0289 (15) −0.0020 (16) −0.0247 (18)
N1 0.0237 (15) 0.032 (2) 0.0327 (18) 0.0071 (13) 0.0000 (13) −0.0064 (15)
N2 0.0241 (14) 0.035 (2) 0.0296 (17) 0.0062 (13) −0.0014 (12) −0.0038 (15)
O1 0.0512 (17) 0.056 (2) 0.0436 (18) 0.0009 (15) −0.0141 (14) 0.0211 (16)
C27 0.0231 (16) 0.025 (2) 0.0240 (19) 0.0029 (14) −0.0004 (14) −0.0023 (16)
C26 0.0218 (16) 0.031 (2) 0.0260 (19) 0.0007 (14) −0.0050 (14) −0.0003 (17)
C6 0.0257 (17) 0.026 (2) 0.032 (2) 0.0032 (15) −0.0004 (15) 0.0009 (17)
C28 0.0225 (16) 0.023 (2) 0.0264 (19) 0.0016 (14) 0.0017 (14) 0.0023 (16)
C25 0.0245 (17) 0.031 (2) 0.027 (2) 0.0037 (15) −0.0036 (14) −0.0006 (17)
C30 0.0357 (19) 0.022 (2) 0.030 (2) 0.0009 (16) 0.0035 (16) −0.0021 (17)
C15 0.0232 (17) 0.029 (2) 0.034 (2) 0.0039 (15) 0.0004 (15) −0.0005 (17)
C33 0.0276 (17) 0.026 (2) 0.0239 (19) 0.0010 (15) 0.0032 (15) 0.0006 (16)
C29 0.0301 (17) 0.029 (2) 0.0215 (18) 0.0014 (15) 0.0007 (15) −0.0025 (16)
C1 0.0220 (16) 0.031 (2) 0.029 (2) 0.0064 (15) 0.0007 (14) −0.0009 (17)
C16 0.0220 (17) 0.031 (2) 0.035 (2) 0.0079 (15) −0.0015 (15) −0.0008 (18)
C2 0.0299 (18) 0.028 (2) 0.027 (2) −0.0007 (15) 0.0064 (15) −0.0011 (17)
C32 0.0225 (17) 0.039 (3) 0.026 (2) 0.0063 (16) 0.0024 (14) 0.0012 (17)
C21 0.0345 (19) 0.030 (2) 0.028 (2) 0.0065 (16) 0.0003 (16) 0.0022 (18)
C36 0.0255 (17) 0.031 (2) 0.036 (2) −0.0025 (16) 0.0002 (16) −0.0020 (18)
C5 0.0328 (19) 0.034 (3) 0.030 (2) 0.0057 (17) 0.0022 (16) −0.0023 (18)
C7 0.0296 (18) 0.030 (2) 0.029 (2) 0.0014 (16) −0.0075 (15) −0.0033 (17)
C31 0.0338 (19) 0.034 (3) 0.0237 (19) 0.0104 (17) 0.0036 (15) −0.0027 (17)
C17 0.0259 (17) 0.034 (2) 0.030 (2) 0.0058 (16) 0.0019 (15) 0.0011 (18)
C12 0.0360 (19) 0.030 (2) 0.031 (2) −0.0008 (16) −0.0001 (16) −0.0005 (18)
C19 0.0269 (18) 0.030 (2) 0.042 (2) 0.0043 (16) 0.0011 (16) 0.0012 (19)
C20 0.036 (2) 0.031 (2) 0.037 (2) 0.0047 (17) 0.0059 (17) 0.0034 (19)
C34 0.0302 (19) 0.031 (2) 0.038 (2) −0.0092 (16) 0.0029 (16) 0.0004 (19)
C13 0.0305 (19) 0.028 (2) 0.044 (2) 0.0026 (16) 0.0009 (17) −0.0080 (19)
C14 0.0243 (18) 0.041 (3) 0.043 (2) 0.0059 (16) −0.0004 (16) −0.010 (2)
C3 0.0292 (18) 0.035 (3) 0.038 (2) −0.0032 (16) 0.0025 (16) −0.0080 (19)
C8 0.041 (2) 0.030 (3) 0.033 (2) 0.0017 (17) −0.0090 (17) −0.0038 (19)
C11 0.047 (2) 0.040 (3) 0.025 (2) −0.0025 (19) 0.0048 (17) 0.0006 (19)
C10 0.059 (3) 0.029 (3) 0.034 (2) −0.011 (2) −0.005 (2) 0.002 (2)
C22 0.0320 (19) 0.054 (3) 0.030 (2) −0.0007 (18) 0.0011 (16) −0.005 (2)
C18 0.0287 (18) 0.036 (3) 0.034 (2) 0.0064 (16) −0.0025 (16) −0.0002 (19)
C4 0.0278 (19) 0.048 (3) 0.031 (2) 0.0030 (17) −0.0006 (16) −0.006 (2)
C37 0.030 (2) 0.048 (3) 0.047 (3) 0.0011 (19) −0.0069 (18) −0.005 (2)
C9 0.053 (3) 0.032 (3) 0.042 (3) 0.0027 (19) −0.016 (2) 0.006 (2)
C23 0.036 (2) 0.038 (3) 0.059 (3) −0.0036 (18) 0.003 (2) 0.001 (2)
C35 0.042 (2) 0.041 (3) 0.045 (3) 0.0127 (19) 0.0011 (19) −0.006 (2)
C24 0.058 (3) 0.041 (3) 0.027 (2) 0.000 (2) 0.0003 (19) 0.0040 (19)
B1 0.0191 (18) 0.024 (3) 0.038 (3) 0.0029 (16) −0.0023 (17) 0.000 (2)

Geometric parameters (Å, º)

S1—O2 1.444 (3) C36—H36B 0.9800
S1—O3 1.440 (3) C36—H36C 0.9800
S1—O1 1.436 (3) C5—H5 0.9500
S1—C37 1.808 (4) C5—C4 1.379 (5)
F3—C37 1.335 (5) C7—C12 1.410 (5)
N4—C27 1.350 (4) C7—C8 1.398 (5)
N4—C26 1.387 (4) C7—B1 1.611 (6)
N4—C28 1.443 (4) C31—C35 1.503 (5)
F2—C37 1.344 (4) C17—C22 1.513 (5)
N3—C27 1.322 (4) C17—C18 1.391 (5)
N3—C25 1.391 (4) C12—H12 0.9500
N3—B1 1.592 (5) C12—C11 1.381 (5)
F1—C37 1.323 (5) C19—C20 1.384 (5)
N1—C15 1.330 (5) C19—C18 1.389 (5)
N1—C13 1.382 (5) C19—C23 1.513 (5)
N1—B1 1.592 (5) C20—H20 0.9500
N2—C15 1.347 (4) C34—H34A 0.9800
N2—C16 1.441 (5) C34—H34B 0.9800
N2—C14 1.380 (5) C34—H34C 0.9800
C27—H27 0.9500 C13—H13 0.9500
C26—H26 0.9500 C13—C14 1.356 (5)
C26—C25 1.350 (5) C14—H14 0.9500
C6—H6 0.9500 C3—H3 0.9500
C6—C1 1.406 (5) C3—C4 1.387 (5)
C6—C5 1.381 (5) C8—H8 0.9500
C28—C33 1.404 (5) C8—C9 1.401 (6)
C28—C29 1.398 (5) C11—H11 0.9500
C25—H25 0.9500 C11—C10 1.380 (6)
C30—H30 0.9500 C10—H10 0.9500
C30—C29 1.392 (5) C10—C9 1.376 (6)
C30—C31 1.392 (5) C22—H22A 0.9800
C15—H15 0.9500 C22—H22B 0.9800
C33—C32 1.392 (5) C22—H22C 0.9800
C33—C36 1.500 (5) C18—H18 0.9500
C29—C34 1.507 (5) C4—H4 0.9500
C1—C2 1.405 (5) C9—H9 0.9500
C1—B1 1.611 (5) C23—H23A 0.9800
C16—C21 1.400 (5) C23—H23B 0.9800
C16—C17 1.390 (5) C23—H23C 0.9800
C2—H2 0.9500 C35—H35A 0.9800
C2—C3 1.382 (5) C35—H35B 0.9800
C32—H32 0.9500 C35—H35C 0.9800
C32—C31 1.394 (5) C24—H24A 0.9800
C21—C20 1.391 (5) C24—H24B 0.9800
C21—C24 1.502 (5) C24—H24C 0.9800
C36—H36A 0.9800
O2—S1—C37 102.90 (18) C7—C12—H12 118.6
O3—S1—O2 114.52 (16) C11—C12—C7 122.7 (4)
O3—S1—C37 102.7 (2) C11—C12—H12 118.6
O1—S1—O2 115.16 (18) C20—C19—C18 118.4 (3)
O1—S1—O3 115.30 (19) C20—C19—C23 120.8 (4)
O1—S1—C37 103.82 (19) C18—C19—C23 120.8 (4)
C27—N4—C26 107.6 (3) C21—C20—H20 118.8
C27—N4—C28 126.7 (3) C19—C20—C21 122.5 (4)
C26—N4—C28 125.2 (3) C19—C20—H20 118.8
C27—N3—C25 106.6 (3) C29—C34—H34A 109.5
C27—N3—B1 128.2 (3) C29—C34—H34B 109.5
C25—N3—B1 124.6 (3) C29—C34—H34C 109.5
C15—N1—C13 107.4 (3) H34A—C34—H34B 109.5
C15—N1—B1 129.8 (3) H34A—C34—H34C 109.5
C13—N1—B1 122.9 (3) H34B—C34—H34C 109.5
C15—N2—C16 126.0 (3) N1—C13—H13 125.7
C15—N2—C14 108.3 (3) C14—C13—N1 108.6 (4)
C14—N2—C16 125.7 (3) C14—C13—H13 125.7
N4—C27—H27 124.8 N2—C14—H14 126.8
N3—C27—N4 110.4 (3) C13—C14—N2 106.4 (3)
N3—C27—H27 124.8 C13—C14—H14 126.8
N4—C26—H26 126.9 C2—C3—H3 120.3
C25—C26—N4 106.3 (3) C2—C3—C4 119.4 (4)
C25—C26—H26 126.9 C4—C3—H3 120.3
C1—C6—H6 118.9 C7—C8—H8 119.1
C5—C6—H6 118.9 C7—C8—C9 121.8 (4)
C5—C6—C1 122.2 (3) C9—C8—H8 119.1
C33—C28—N4 118.0 (3) C12—C11—H11 120.1
C29—C28—N4 119.0 (3) C10—C11—C12 119.8 (4)
C29—C28—C33 122.9 (3) C10—C11—H11 120.1
N3—C25—H25 125.5 C11—C10—H10 120.1
C26—C25—N3 109.1 (3) C9—C10—C11 119.8 (4)
C26—C25—H25 125.5 C9—C10—H10 120.1
C29—C30—H30 118.7 C17—C22—H22A 109.5
C31—C30—H30 118.7 C17—C22—H22B 109.5
C31—C30—C29 122.5 (4) C17—C22—H22C 109.5
N1—C15—N2 109.4 (3) H22A—C22—H22B 109.5
N1—C15—H15 125.3 H22A—C22—H22C 109.5
N2—C15—H15 125.3 H22B—C22—H22C 109.5
C28—C33—C36 122.0 (3) C17—C18—H18 119.0
C32—C33—C28 117.1 (3) C19—C18—C17 122.0 (4)
C32—C33—C36 120.8 (3) C19—C18—H18 119.0
C28—C29—C34 122.4 (3) C5—C4—C3 120.1 (4)
C30—C29—C28 117.1 (3) C5—C4—H4 120.0
C30—C29—C34 120.6 (4) C3—C4—H4 120.0
C6—C1—B1 120.1 (3) F3—C37—S1 112.3 (3)
C2—C1—C6 115.8 (3) F3—C37—F2 106.4 (4)
C2—C1—B1 124.1 (3) F2—C37—S1 111.7 (3)
C21—C16—N2 118.1 (3) F1—C37—S1 112.3 (3)
C17—C16—N2 119.0 (3) F1—C37—F3 107.1 (4)
C17—C16—C21 122.9 (3) F1—C37—F2 106.7 (3)
C1—C2—H2 118.7 C8—C9—H9 119.9
C3—C2—C1 122.6 (4) C10—C9—C8 120.1 (4)
C3—C2—H2 118.7 C10—C9—H9 119.9
C33—C32—H32 118.8 C19—C23—H23A 109.5
C33—C32—C31 122.3 (3) C19—C23—H23B 109.5
C31—C32—H32 118.8 C19—C23—H23C 109.5
C16—C21—C24 122.3 (3) H23A—C23—H23B 109.5
C20—C21—C16 116.8 (3) H23A—C23—H23C 109.5
C20—C21—C24 120.9 (3) H23B—C23—H23C 109.5
C33—C36—H36A 109.5 C31—C35—H35A 109.5
C33—C36—H36B 109.5 C31—C35—H35B 109.5
C33—C36—H36C 109.5 C31—C35—H35C 109.5
H36A—C36—H36B 109.5 H35A—C35—H35B 109.5
H36A—C36—H36C 109.5 H35A—C35—H35C 109.5
H36B—C36—H36C 109.5 H35B—C35—H35C 109.5
C6—C5—H5 120.0 C21—C24—H24A 109.5
C4—C5—C6 120.0 (4) C21—C24—H24B 109.5
C4—C5—H5 120.0 C21—C24—H24C 109.5
C12—C7—B1 119.0 (3) H24A—C24—H24B 109.5
C8—C7—C12 115.7 (4) H24A—C24—H24C 109.5
C8—C7—B1 125.3 (3) H24B—C24—H24C 109.5
C30—C31—C32 118.1 (3) N3—B1—C1 109.3 (3)
C30—C31—C35 121.6 (4) N3—B1—C7 107.0 (3)
C32—C31—C35 120.3 (3) N1—B1—N3 105.8 (3)
C16—C17—C22 122.2 (3) N1—B1—C1 107.4 (3)
C16—C17—C18 117.4 (3) N1—B1—C7 110.1 (3)
C18—C17—C22 120.4 (3) C7—B1—C1 116.7 (3)
O2—S1—C37—F3 −64.4 (3) C29—C30—C31—C32 −0.3 (5)
O2—S1—C37—F2 176.1 (3) C29—C30—C31—C35 −178.6 (3)
O2—S1—C37—F1 56.3 (3) C1—C6—C5—C4 1.7 (6)
O3—S1—C37—F3 54.8 (3) C1—C2—C3—C4 −0.3 (6)
O3—S1—C37—F2 −64.6 (4) C16—N2—C15—N1 178.4 (3)
O3—S1—C37—F1 175.5 (3) C16—N2—C14—C13 −179.0 (3)
N4—C26—C25—N3 −0.4 (4) C16—C21—C20—C19 0.8 (6)
N4—C28—C33—C32 −178.1 (3) C16—C17—C18—C19 0.5 (6)
N4—C28—C33—C36 −2.0 (5) C2—C1—B1—N3 111.7 (4)
N4—C28—C29—C30 177.9 (3) C2—C1—B1—N1 −134.0 (3)
N4—C28—C29—C34 −1.9 (5) C2—C1—B1—C7 −9.8 (5)
N1—C13—C14—N2 0.5 (4) C2—C3—C4—C5 −0.5 (6)
N2—C16—C21—C20 177.6 (3) C21—C16—C17—C22 179.0 (4)
N2—C16—C21—C24 −1.5 (5) C21—C16—C17—C18 −1.0 (6)
N2—C16—C17—C22 1.8 (5) C36—C33—C32—C31 −175.8 (3)
N2—C16—C17—C18 −178.2 (3) C5—C6—C1—C2 −2.4 (5)
O1—S1—C37—F3 175.2 (3) C5—C6—C1—B1 176.7 (3)
O1—S1—C37—F2 55.8 (4) C7—C12—C11—C10 −1.3 (6)
O1—S1—C37—F1 −64.1 (3) C7—C8—C9—C10 0.2 (6)
C27—N4—C26—C25 0.5 (4) C31—C30—C29—C28 0.0 (5)
C27—N4—C28—C33 −64.4 (5) C31—C30—C29—C34 179.8 (3)
C27—N4—C28—C29 118.2 (4) C17—C16—C21—C20 0.4 (6)
C27—N3—C25—C26 0.2 (4) C17—C16—C21—C24 −178.8 (4)
C27—N3—B1—N1 −115.8 (4) C12—C7—C8—C9 −2.0 (6)
C27—N3—B1—C1 −0.5 (5) C12—C7—B1—N3 −57.2 (4)
C27—N3—B1—C7 126.8 (3) C12—C7—B1—N1 −171.7 (3)
C26—N4—C27—N3 −0.3 (4) C12—C7—B1—C1 65.5 (5)
C26—N4—C28—C33 107.0 (4) C12—C11—C10—C9 −0.7 (6)
C26—N4—C28—C29 −70.4 (4) C20—C19—C18—C17 0.6 (6)
C6—C1—C2—C3 1.7 (5) C13—N1—C15—N2 1.1 (4)
C6—C1—B1—N3 −67.4 (4) C13—N1—B1—N3 −179.6 (3)
C6—C1—B1—N1 47.0 (4) C13—N1—B1—C1 63.8 (4)
C6—C1—B1—C7 171.1 (3) C13—N1—B1—C7 −64.3 (4)
C6—C5—C4—C3 −0.2 (6) C14—N2—C15—N1 −0.8 (4)
C28—N4—C27—N3 172.3 (3) C14—N2—C16—C21 −62.5 (5)
C28—N4—C26—C25 −172.3 (3) C14—N2—C16—C17 114.8 (4)
C28—C33—C32—C31 0.4 (5) C8—C7—C12—C11 2.6 (6)
C25—N3—C27—N4 0.1 (4) C8—C7—B1—N3 120.2 (4)
C25—N3—B1—N1 74.4 (4) C8—C7—B1—N1 5.6 (5)
C25—N3—B1—C1 −170.2 (3) C8—C7—B1—C1 −117.1 (4)
C25—N3—B1—C7 −43.0 (4) C11—C10—C9—C8 1.2 (6)
C15—N1—C13—C14 −1.0 (4) C22—C17—C18—C19 −179.6 (4)
C15—N1—B1—N3 −1.0 (5) C18—C19—C20—C21 −1.3 (6)
C15—N1—B1—C1 −117.6 (4) C23—C19—C20—C21 −179.7 (4)
C15—N1—B1—C7 114.3 (4) C23—C19—C18—C17 179.1 (4)
C15—N2—C16—C21 118.4 (4) C24—C21—C20—C19 180.0 (4)
C15—N2—C16—C17 −64.2 (5) B1—N3—C27—N4 −171.2 (3)
C15—N2—C14—C13 0.2 (4) B1—N3—C25—C26 171.9 (3)
C33—C28—C29—C30 0.6 (5) B1—N1—C15—N2 −177.7 (3)
C33—C28—C29—C34 −179.2 (3) B1—N1—C13—C14 177.9 (3)
C33—C32—C31—C30 0.1 (5) B1—C1—C2—C3 −177.4 (3)
C33—C32—C31—C35 178.4 (3) B1—C7—C12—C11 −179.8 (4)
C29—C28—C33—C32 −0.8 (5) B1—C7—C8—C9 −179.5 (4)
C29—C28—C33—C36 175.3 (3)

Bond angles around the boron center in Ph2B(MesIm)2OTf.

N1 B1 N3 N1 B1 C1 N3 B1 C1 C1 B1 C7
Angle Measurements (°) 105.79 107.37 109.29 116.76

Funding Statement

This work was funded by Department of Energy grant DE-SC0019466 to Jeremy M. Smith. Major Scientific Research Equipment Fund from the President of Indiana University and the Office of the Vice President for Research grant .

References

  1. Arrowsmith, M., Heath, A., Hill, M. S., Hitchcock, P. B. & Kociok-Köhna, G. (2009). Organometallics, 28, 4550–4559.
  2. Bruker (2016). APEX3, SAINTand SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  4. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst B72, 171–179. [DOI] [PMC free article] [PubMed]
  5. Kiviniemi, S., Nissinen, M., Alaviuhkola, T., Rissanen, K. & Pursiainen, J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 2364–2369.
  6. Scepaniak, J. J., Young, J. A., Bontchev, R. P. & Smith, J. M. (2009). Angew. Chem. Int. Ed. 48, 3158–3160. [DOI] [PubMed]
  7. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  8. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  9. Smith, J. M. & Subedi, D. (2012). Dalton Trans. 41, 1423–1429. [DOI] [PubMed]
  10. Stenzel, O., Raubenheimer, H. G. & Esterhuysen, C. (2002). Dalton Trans. 1132–1138.
  11. Su, Y., Huan Do, D. C., Li, Y. & Kinjo, R. (2019). J. Am. Chem. Soc. 141, 13729–13733. [DOI] [PubMed]
  12. Xiong, Y., Yao, S., Szilvási, M., Ballestero–Martínez, E., Grützmacher, H. & Driess, M. (2017). Angew. Chem. Int. Ed. 56, 4333–4336. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989020005058/jj2222sup1.cif

e-76-00673-sup1.cif (1.7MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020005058/jj2222Isup3.hkl

e-76-00673-Isup3.hkl (641.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020005058/jj2222Isup4.cdx

CCDC reference: 1983246

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES