Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Apr 30;76(Pt 5):747–751. doi: 10.1107/S2056989020005770

Synthesis and crystal structure of a penta­copper(II) 12-metallacrown-4: cis-di­aqua­tetra­kis­(di­methyl­formamide-κO)manganese(II) tetra­kis­(μ3-N,2-dioxido­benzene-1-carboximidate)penta­copper(II) di­methyl­formamide monosolvate

Gerard P Van Trieste III a, Matthias Zeller b, Curtis M Zaleski a,*
PMCID: PMC7199261  PMID: 32431945

The title compound [Mn(OH2)2(C3H7NO)4][Cu5(C7H4NO3)4]·C3H7NO or cis-[Mn(H2O)2(DMF)4]{Cu[12-MCCu(II)N(shi)-4]}·DMF, where MC is metallacrown, shi3− is salicyl­hydroximate, and DMF is N,N-di­methyl­formamide, consists of a penta­copper(II) 12-metallacrown-4 anion that is charged-balanced with the cis-[Mn(DMF)4(OH2)2]2+ cation. In the {Cu[12-MCCu(II)N(shi)-4]}2− anion, all four CuII ions of the metallacrown ring and the one CuII ion of the central cavity are four-coordinate with a square-planar geometry. The MnII counter-cation is six-coordinate with an octa­hedral geometry.

Keywords: metallacrown, copper complex, salicyl­hydroximate, crystal structure

Abstract

The title compound, [Mn(C3H7NO)4(H2O)2][Cu5(C7H4NO3)4]·C3H7NO or cis-[Mn(H2O)2(DMF)4]{Cu[12-MCCu(II)N(shi)-4]}·DMF, where MC is metallacrown, shi3− is salicyl­hydroximate, and DMF is N,N-di­methyl­formamide, crystallizes in the monoclinic space group P21/n. Two crystallographically independent metallacrown anions are present in the structure, and both anions exhibit minor main mol­ecule disorder by an approximate (non-crystallographic) 180° rotation with occupancy ratios of 0.9010 (9) to 0.0990 (9) for one anion and 0.9497 (8) to 0.0503 (8) for the other. Each penta­copper(II) metallacrown contains four CuII ions in the MC ring and a CuII ion captured in the central cavity. Each CuII ion is four-coordinate with a square-planar geometry. The anionic {Cu[12-MCCu(II)N(shi)-4]}2− is charged-balanced by the presence of a cis-[Mn(H2O)2(DMF)4]2+ cation located in the lattice. In addition, the octa­hedral MnII counter-cation is hydrogen bonded to both MC anions via the coordinated water mol­ecules of the MnII ion. The water mol­ecules form hydrogen bonds with the phenolate and carbonyl oxygen atoms of the shi3− ligands of the MCs.

Chemical context  

Penta­copper(II) 12-metallacrown-4 complexes are ubiquitous in metallacrown (MC) chemistry (Mezei et al., 2007; Tegoni & Remelli, 2012; Ostrowska et al., 2016). A survey of the Cambridge Structural Database (CSD version 5.41, update March 2020; Groom et al., 2016) reveals that there are 35 different structures; however, even more Cu5 12-MC-4 complexes have been studied in solution to understand the thermodynamic properties of their self-assembly (Mezei et al., 2007; Tegoni & Remelli, 2012; Ostrowska et al., 2016). Initially Cu5 12-MC-4 complexes were only produced with ligands that could form fused five- and six-membered chelate rings such as salicyl­hydroxamic acid or β-amino­hydroxamic acids (Orama et al., 1992; Gibney et al., 1994; Halfen et al., 1998); however, it is now recognized that α- and γ-amino­hydroxamic acids can form Cu5 12-MC-4 complexes that have fused five- and five-membered chelate rings or fused five- and seven-membered chelate rings, respectively (Dallavalle et al., 2001; Tegoni et al., 2004, 2007, 2008). Penta­copper(II) 12-MC-4 complexes have applications as templates for the assembly of peptide bundles (Cal et al., 2013), for the sorption of gases and alcohols (Atzeri et al., 2016; Pavlishchuk et al., 2017), and as building blocks for one-, two-, and three-dimensional materials (Bodwin & Pecoraro, 2000; Gumienna-Kontecka et al., 2007; Lago et al., 2011; McDonald et al., 2013; Atzeri et al., 2016). To date only four other structures have been reported with the metallacrown framework ligand salicyl­hydroxamic acid (H3shi): A 2{Cu[12-MCCu(II)N(shi)-4]}, where A is either tetra­methyl­ammonium (Gibney et al., 1994), [Na(15-crown-5)]+ (Gibney et al., 1994), tetra­ethyl­ammonium (Herring et al., 2011), or tri­ethyl­ammonium (Happ & Rentschler, 2014). Herein we report the first use of a 3d metallic counter-cation to the penta­copper(II) metallacrown: cis-[Mn(H2O)2(DMF)4]{Cu[12-MCCu(II)N(shi)-4]}·DMF.graphic file with name e-76-00747-scheme1.jpg

Structural commentary  

Two crystallographically independent metallacrown anions are present in the structure, and both are located on crystallographic inversion centers with the central copper ions situated on the inversion center (Figs. 1 and 2). Both anions exhibit minor main-mol­ecule disorder by an approximate (non-crystallographic) 180° rotation with an occupancy ratio of 0.9010 (9) to 0.0990 (9) for the anion associated with Cu1 and an occupancy ratio 0.9497 (8) to 0.0503 (8) for the anion associated with Cu4. Thus, only the structures of the main moieties will be discussed. The metallacrowns have an overall square shape as a result of the fused five- and six-membered chelate rings of the salicyl­hydroximate (shi3−) ligands, and the MCs are slightly non-planar. In each MC, a copper ion is captured in the central cavity and surrounded by four copper ions of the MC ring. The MC ring has a Cu—N—O pattern that repeats four times to generate the MC central cavity. All five copper ions of each MC are assigned a 2+ oxidation state based on bond-valence-sum (BVS) values (Liu & Thorp, 1993), average bond length distances, and overall charge-balance considerations (Table 1). In addition, all five CuII ions of each MC are four-coordinate, and a SHAPE (SHAPE 2.1; Llunell et al., 2013) analysis of the geometry yields the lowest continuous shape measure (CShM) values for square planar (Table 2), which is typical for a d 9 electron configuration (Llunell et al., 2013; Pinsky & Avnir, 1998; Casanova et al., 2004; Cirera et al., 2005). The coordination environment of the central CuII ions (Cu1 and Cu4) are composed of four oxime oxygens from four different shi3− ligands. The coordination environments of the ring CuII ions (Cu2, Cu3, Cu5, and Cu6) consist of trans five- and six-membered chelate rings: each five-membered chelate ring is formed by the carbonyl oxygen atom and the oxime oxygen atom of a shi3− ligand, and each six-membered chelate ring is formed by the phenolate oxygen atom and oxime nitro­gen atom of a different shi3− ligand.

Figure 1.

Figure 1

The single-crystal X-ray structure of the ionic pair cis-[Mn(H2O)2(DMF)4]{Cu[12-MCCu(II)N(shi)-4]}·DMF associated with Cu1 and with displacement ellipsoids at the 50% probability level [symmetry code: (i) 2 − x, −y, 1 − z]. For clarity, only non-carbon atoms have been labeled, and the MC associated with Cu4, the lattice DMF mol­ecule, H atoms, and disorder have been omitted. Color scheme: yellow – CuII, green – MnII, red – oxygen, blue – nitro­gen, and gray – carbon. All figures were generated with the program Mercury (Macrae et al., 2020).

Figure 2.

Figure 2

The single-crystal X-ray structure of {Cu[12-MCCu(II)N(shi)-4]}2− associated with Cu4 with displacement ellipsoids at the 50% probability level [symmetry code: (ii) 1 − x, −y, 1 − z]. For clarity, only non-carbon atoms have been labeled, and the MC associated with Cu1, the MnII counter-cation, the lattice DMF mol­ecule, H atoms, and disorder have been omitted. See Fig. 1 for additional display details.

Table 1. Average bond-length (Å) and bond-valence-sum (BVS; v.u.) values used to support the assigned oxidation states of the copper and manganese ions.

  Avg. bond length BVS value Assigned oxidation state
Mn1 2.171 2.01 2+
Cu1 1.896 2.05 2+
Cu2 1.914 2.11 2+
Cu3 1.921 2.08 2+
Cu4 1.892 2.08 2+
Cu5 1.922 2.07 2+
Cu6 1.912 2.12 2+

Table 2. Continuous shape measurement (CShM) values (SHAPE 2.1; Llunell et al., 2013) for the four-coordinate copper(II) ions.

  Square Tetra­hedron Seesaw Vacant trigonal bipyramid
Cu1 0.025 33.350 19.048 34.881
Cu2 1.870 22.459 11.479 23.026
Cu3 0.404 30.267 16.579 30.405
Cu4 0.027 33.352 19.058 34.887
Cu5 0.435 30.734 16.919 30.682
Cu6 0.606 28.098 15.366 28.580

The use of the four trianionic shi3− ligands and five divalent CuII ions yields an MC with overall charge of 2−, {Cu[12-MCCu(II)N(shi)-4]}2−. This charge is balanced by the presence of a manganese cation in the lattice: cis-[Mn(H2O)2(DMF)4]2+. The manganese ion is assigned an oxidation state of 2+ based on the average bond length of 2.171 Å, a BVS value of 2.01 valence units (v.u.), and overall charge-balance considerations (Table 1). A SHAPE analysis confirms the octa­hedral geometry of the cation (Table 3). The coordination environment of the MnII ion consists of four DMF mol­ecules and two water mol­ecules in a cis configuration. Lastly, a DMF mol­ecule is located in the lattice.

Table 3. Continuous shape measurement (CShM) values (SHAPE 2.1; Llunell et al., 2013) for the six-coordinate manganese(II) ion.

  Hexagon Penta­gonal pyramid Octa­hedron Trigonal prism Johnson pentagonal pyramid
Mn1 32.455 27.045 0.240 14.096 30.823

Supra­molecular features  

No strong directional inter­molecular inter­actions are observed between the {Cu[12-MCCu(II)N(shi)-4]}2− anions, but a number of hydrogen bonds exist between the MCs and the counter-cation cis-[Mn(H2O)2(DMF)4]2+ and between the counter-cation and the lattice DMF mol­ecule (Table 4, Fig. 3). The water mol­ecule associated with O18 of the MnII cation forms hydrogen bonds to both MC anions. The hydrogen bonds are to phenolate oxygen atoms (O18—H18C⋯O3 and O18—H18D⋯O9) of the neighboring MCs. The water mol­ecule associated with O19 of the MnII cation forms hydrogen bonds to a carbonyl oxygen atom of the MC associated with Cu1 (O19—H19C⋯O5) and to the carbonyl oxygen atom of the lattice DMF mol­ecule (O19—H19D⋯O17). These hydrogen-bonding inter­actions, in addition to pure van der Waals forces, contribute to the overall packing of the mol­ecules.

Table 4. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O18—H18C⋯O3 0.83 (2) 2.07 (3) 2.847 (3) 156 (5)
O18—H18D⋯O9 0.84 (2) 1.95 (2) 2.778 (3) 169 (5)
O19—H19C⋯O5 0.83 (2) 1.93 (2) 2.746 (3) 167 (5)
O19—H19D⋯O17 0.84 (2) 1.88 (2) 2.713 (4) 175 (5)

Figure 3.

Figure 3

The inter­molecular hydrogen bonds present between neighboring mol­ecules of cis-[Mn(H2O)2(DMF)4]{Cu[12-MCCu(II)N(shi)-4]}·DMF with displacement ellipsoids at the 50% probability level [symmetry codes: (i) 2 − x, −y, 1 − z and (ii) 1 − x, −y, 1 − z]. For clarity only the H atoms (white) involved in the hydrogen bonding are displayed. See Fig. 1 for additional display details.

Database survey  

As stated above, the Cambridge Structural Database (CSD version 5.41, update March 2020; Groom et al., 2016) lists 35 different penta­copper(II) 12-metallacrown-4 complexes with four ring CuII ions and one central CuII ion. A variety of different ligands are used to generate the MCs, but only four structures use the ligand salicyl­hydroximate to build the {CuII[12-MCCu(II)-4]}2− framework. The counter-cations in the four other structures are tetra­methyl­ammonium (YELTOY; Gibney et al., 1994), [Na(15-crown-5)]+ (YELTIS; Gibney et al., 1994), tetra­ethyl­ammonium (UNOTUN; Herring et al., 2011), and tri­ethyl­ammonium (COLVAC; Happ & Rentschler, 2014). For the structures with tetra­methyl­ammonium, tetra­ethyl­ammonium, tri­ethyl­ammonium, and cis-[Mn(H2O)2(DMF)4]2+, the cations are located in the lattice, and the {Cu[12-MCCu(II)N(shi)-4]}2− anions can be considered nearly planar with a ‘mol­ecular disk’ configuration or slightly to significantly non-planar with a ‘sofa’ configuration. As originally described by Pecoraro and coworkers (Gibney et al., 1994), in the mol­ecular disk configuration the benzene rings of the shi3− ligands lie approximately in the same plane, and in the sofa configuration two of the benzene rings are tilted upwards relative to the MC central cavity and the two opposite benzene rings are tilted downwards. Lastly, for the structure with [Na(15-crown-5)]+, the two cations are bound to the phenolate and carbonyl oxygen atoms of the {Cu[12-MCCu(II)N(shi)-4]}2− anion. This causes the MC to become domed with the benzene rings pointing downwards relative to the MC central cavity and the [Na(15-crown-5)]+ cations bonded to the convex side of the MC.

Synthesis and crystallization  

Manganese(II) chloride tetra­hydrate (Certified ACS) was purchased from Fisher Scientific. Copper(II) chloride dihydrate was purchased from J. T. Baker Chemical Company. Salicyl­hydroxamic acid (99%) was purchased from Alfa Aesar. Tri­ethano­lamine (98%) was purchased from Sigma–Aldrich. N,N-Di­methyl­formamide (DMF, Certified ACS) was purchased from BDH Chemicals. All reagents were used as received without further purification.

Salicyl­hydroxamic acid (H3shi; 0.1541 g, 1 mmol) and copper(II) chloride dihydrate (0.1705 g, 1 mmol) were dissolved in 10 mL of DMF resulting in a green–brown solution. Tri­ethano­lamine (0.3764 g, 2.5 mmol) was then added to the CuCl2/H3shi solution, resulting in a dark-green color. Separately, manganese(II) chloride tetra­hydrate (0.7891 g, 4 mmol) was dissolved in 20 mL of DMF, resulting in a clear and colorless solution. The MnCl2 solution was then added to the CuCl2/H3shi/tri­ethano­lamine solution and no color change was observed. The solution was stirred overnight and then gravity filtered the next day. A dark-green precipitate was recovered and discarded. The filtrate was a dark-green color. The solution was left for slow evaporation at room temperature, and after 26 days dark-green plate-shaped crystals were collected for X-ray analysis. The remaining crystals were collected, washed with cold DMF, and dried. The percentage yield of the reaction was 57% (0.1576 g, 0.1147 mmol) based on copper(II) chloride dihydrate.

Refinement  

Two crystallographically independent metallacrown anions are present in the structure. Both are located on crystallographic inversion centers with the central of the five copper atoms situated on the inversion center. Both anions exhibit minor main mol­ecule disorder by an approximate (non-crystallographic) 180° rotation. A cis-[Mn(H2O)2(DMF)4]2+ cation and a solvate DMF mol­ecule are located in the lattice and are not disordered. The major and minor disordered moieties of both anions were each restrained to have similar geometries (SHELXL SAME commands). U ij components of ADPs for disordered atoms closer to each other than 2.0 Å were restrained to be similar. Subject to these conditions the occupancy ratio refined to 0.9010 (9) to 0.0990 (9) for the anion associated with Cu1 and 0.9497 (8) to 0.0503 (8) for the anion associated with Cu4. Water hydrogen-atom positions were refined and O—H distances restrained to 0.84 (2) Å. Additional crystallographic data and experimental parameters are provided in Table 5 and the CIF of the compound.

Table 5. Experimental details.

Crystal data
Chemical formula [Mn(C3H7NO)4(H2O)2][Cu5(C7H4NO3)4]·C3H7NO
M r 1374.60
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 19.0669 (9), 14.2943 (6), 19.3450 (8)
β (°) 95.1476 (18)
V3) 5251.2 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.30
Crystal size (mm) 0.45 × 0.41 × 0.25
 
Data collection
Diffractometer Bruker AXS D8 Quest CMOS diffractometer
Absorption correction Multi-scan (SADABS2016/2; Krause et al., 2015)
T min, T max 0.582, 0.748
No. of measured, independent and observed [I > 2σ(I)] reflections 87027, 28700, 18767
R int 0.043
(sin θ/λ)max−1) 0.879
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.065, 0.143, 1.07
No. of reflections 28700
No. of parameters 1153
No. of restraints 1810
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 2.44, −2.18

Computer programs: APEX3 and SAINT(Bruker, 2016), SHELXS97 (Sheldrick, 2008), SHELXL2018/1 (Sheldrick, 2015), SHELXLE Rev859 (Hübschle et al., 2011), Mercury (Macrae et al., 2020) and publCIF (Westrip, 2010).

Hydrogen atoms attached to carbon atoms as well as hydroxyl hydrogen atoms were positioned geometrically and constrained to ride on their parent atoms. Carbon–hydrogen bond distances were constrained to 0.95 Å for aromatic and aldehyde C—H moieties, and to 0.98 Å for CH3 moieties. Oxygen–hydrogen distances of alcohols were constrained to 0.84 Å and were allowed to rotate but not to tip to best fit the experimental electron density. U iso(H) values were set to kU eq(C,O) with k = 1.5 for CH3 and OH, and 1.2 for C—H units.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989020005770/yk2128sup1.cif

e-76-00747-sup1.cif (2.9MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020005770/yk2128Isup2.hkl

e-76-00747-Isup2.hkl (2.2MB, hkl)

CCDC reference: 1999315

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

CMZ would like to thank Logan Zaleski for useful discussions.

supplementary crystallographic information

Crystal data

[Mn(C3H7NO)4(H2O)2][Cu5(C7H4NO3)4]·C3H7NO F(000) = 2792
Mr = 1374.60 Dx = 1.739 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 19.0669 (9) Å Cell parameters from 9700 reflections
b = 14.2943 (6) Å θ = 2.8–38.6°
c = 19.3450 (8) Å µ = 2.30 mm1
β = 95.1476 (18)° T = 100 K
V = 5251.2 (4) Å3 Block, dark green
Z = 4 0.45 × 0.41 × 0.25 mm

Data collection

Bruker AXS D8 Quest CMOS diffractometer 28700 independent reflections
Radiation source: sealed tube X-ray source 18767 reflections with I > 2σ(I)
Triumph curved graphite crystal monochromator Rint = 0.043
ω and phi scans θmax = 38.7°, θmin = 2.7°
Absorption correction: multi-scan (SADABS2016/2; Krause et al., 2015) h = −33→33
Tmin = 0.582, Tmax = 0.748 k = −25→25
87027 measured reflections l = −33→31

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065 Hydrogen site location: mixed
wR(F2) = 0.143 H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0001P)2 + 29.7569P] where P = (Fo2 + 2Fc2)/3
28700 reflections (Δ/σ)max = 0.001
1153 parameters Δρmax = 2.44 e Å3
1810 restraints Δρmin = −2.18 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Two crystallographically independent metallacrown anions are present in the structure. Both are located on crystallographic inversion centers, with the central of the five copper atoms situated on the inversion center. Both anions exhibit minor main molecule disorder, by an approximate (non- crystallographic) 180 degree rotation. Not disordered are the Mn(DMF)4(H2O)2 cation and a solvate DMF molecule. The major and minor disordered moieties of both anions were each restrained to have similar geometries. Uij components of ADPs for disordered atoms closer to each other than 1.7 Angstrom were restrained to be similar. Subject to these conditions the occupancy ratio refined to 0.9010 (9) to 0.0990 (9) for the first molecule and 0.9497 (8) to 0.0503 (8) for the second. Water H atom positions were refined and O-H distances restrained to 0.84 (2) Angstrom.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cu1 1.000000 0.000000 0.500000 0.01188 (8)
Cu2 0.93260 (2) −0.11523 (3) 0.62324 (2) 0.01279 (7) 0.9010 (9)
O1 0.93764 (10) −0.00304 (15) 0.57089 (11) 0.0129 (3) 0.9010 (9)
N1 0.87242 (17) 0.0428 (3) 0.5582 (3) 0.0111 (6) 0.9010 (9)
O2 0.83769 (11) −0.06858 (15) 0.63222 (11) 0.0139 (3) 0.9010 (9)
C1 0.82431 (14) 0.00355 (19) 0.59223 (14) 0.0116 (4) 0.9010 (9)
C2 0.75232 (14) 0.0439 (2) 0.58686 (15) 0.0119 (4) 0.9010 (9)
C3 0.70219 (15) −0.0011 (2) 0.62449 (15) 0.0154 (5) 0.9010 (9)
H3 0.715606 −0.055972 0.649998 0.019* 0.9010 (9)
C4 0.6337 (2) 0.0320 (3) 0.6257 (2) 0.0175 (7) 0.9010 (9)
H4 0.600872 0.000413 0.651515 0.021* 0.9010 (9)
C5 0.61435 (18) 0.1129 (3) 0.5881 (2) 0.0163 (6) 0.9010 (9)
H5 0.568246 0.137661 0.589364 0.020* 0.9010 (9)
C6 0.66184 (15) 0.1572 (2) 0.54889 (15) 0.0142 (4) 0.9010 (9)
H6 0.647143 0.211457 0.523118 0.017* 0.9010 (9)
C7 0.73162 (14) 0.12434 (19) 0.54601 (14) 0.0121 (4) 0.9010 (9)
O3 0.77261 (11) 0.17166 (15) 0.50602 (11) 0.0136 (3) 0.9010 (9)
Cu3 0.86525 (2) 0.13811 (2) 0.48811 (2) 0.01182 (7) 0.9010 (9)
O4 0.96260 (10) 0.11912 (15) 0.47381 (11) 0.0135 (3) 0.9010 (9)
N2 0.98210 (16) 0.1601 (2) 0.41233 (15) 0.0136 (6) 0.9010 (9)
O5 0.87361 (11) 0.22739 (15) 0.41292 (11) 0.0137 (3) 0.9010 (9)
C8 0.93312 (14) 0.21663 (19) 0.38474 (14) 0.0125 (4) 0.9010 (9)
C9 0.94586 (16) 0.2689 (2) 0.32167 (15) 0.0132 (4) 0.9010 (9)
C10 0.89277 (17) 0.3304 (2) 0.29445 (15) 0.0168 (5) 0.9010 (9)
H10 0.850788 0.335727 0.317159 0.020* 0.9010 (9)
C11 0.8998 (2) 0.3832 (3) 0.2359 (2) 0.0210 (7) 0.9010 (9)
H11 0.862623 0.423050 0.217913 0.025* 0.9010 (9)
C12 0.9626 (3) 0.3775 (4) 0.2031 (3) 0.0236 (8) 0.9010 (9)
H12 0.968674 0.414714 0.163392 0.028* 0.9010 (9)
C13 1.01514 (18) 0.3176 (2) 0.22884 (18) 0.0221 (6) 0.9010 (9)
H13 1.057372 0.314608 0.206328 0.027* 0.9010 (9)
C14 1.00866 (16) 0.2603 (2) 0.28744 (15) 0.0161 (5) 0.9010 (9)
O6 1.06184 (12) 0.20319 (17) 0.30490 (12) 0.0185 (4) 0.9010 (9)
Cu4 0.500000 0.000000 0.500000 0.01170 (8)
Cu5 0.36653 (2) 0.14212 (2) 0.49259 (2) 0.01211 (6) 0.9497 (8)
O7 0.46380 (10) 0.12115 (14) 0.47964 (11) 0.0145 (3) 0.9497 (8)
N3 0.48669 (13) 0.1680 (2) 0.42164 (17) 0.0141 (5) 0.9497 (8)
O8 0.37971 (11) 0.23815 (15) 0.42153 (11) 0.0171 (4) 0.9497 (8)
C15 0.44041 (13) 0.22865 (18) 0.39663 (14) 0.0126 (4) 0.9497 (8)
C16 0.45885 (14) 0.28759 (19) 0.33773 (14) 0.0138 (4) 0.9497 (8)
C17 0.40423 (15) 0.3424 (2) 0.30463 (15) 0.0166 (5) 0.9497 (8)
H17 0.359149 0.341905 0.321939 0.020* 0.9497 (8)
C18 0.41498 (19) 0.3970 (2) 0.2474 (2) 0.0217 (7) 0.9497 (8)
H18 0.377609 0.432908 0.225074 0.026* 0.9497 (8)
C19 0.4820 (2) 0.3984 (5) 0.2231 (2) 0.0221 (7) 0.9497 (8)
H19 0.489739 0.434754 0.183429 0.026* 0.9497 (8)
C20 0.53676 (16) 0.3479 (2) 0.25591 (16) 0.0192 (5) 0.9497 (8)
H20 0.582196 0.352367 0.239636 0.023* 0.9497 (8)
C21 0.52693 (15) 0.28992 (19) 0.31299 (15) 0.0154 (4) 0.9497 (8)
O9 0.58291 (11) 0.24093 (15) 0.33919 (11) 0.0167 (4) 0.9497 (8)
Cu6 0.57576 (2) 0.12989 (2) 0.39086 (2) 0.01213 (6) 0.9497 (8)
O10 0.56539 (10) 0.01070 (13) 0.43250 (10) 0.0125 (3) 0.9497 (8)
N4 0.62916 (14) −0.0390 (2) 0.4431 (3) 0.0115 (4) 0.9497 (8)
O11 0.66753 (10) 0.07989 (14) 0.37717 (11) 0.0144 (3) 0.9497 (8)
C22 0.67889 (13) 0.00222 (18) 0.41166 (13) 0.0115 (4) 0.9497 (8)
C23 0.74913 (13) −0.04172 (19) 0.41456 (14) 0.0122 (4) 0.9497 (8)
C24 0.79951 (14) 0.0024 (2) 0.37672 (15) 0.0145 (4) 0.9497 (8)
H24 0.786818 0.058142 0.351927 0.017* 0.9497 (8)
C25 0.86714 (15) −0.0328 (3) 0.37443 (19) 0.0166 (5) 0.9497 (8)
H25 0.900091 −0.002402 0.348016 0.020* 0.9497 (8)
C26 0.88563 (15) −0.1144 (2) 0.41205 (17) 0.0173 (5) 0.9497 (8)
H26 0.931656 −0.139508 0.411162 0.021* 0.9497 (8)
C27 0.83747 (14) −0.1586 (2) 0.45048 (15) 0.0159 (5) 0.9497 (8)
H27 0.851464 −0.213495 0.475762 0.019* 0.9497 (8)
C28 0.76769 (13) −0.12442 (19) 0.45326 (14) 0.0136 (4) 0.9497 (8)
O12 0.72610 (10) −0.17222 (15) 0.49136 (11) 0.0159 (4) 0.9497 (8)
Cu2B 1.11148 (18) 0.0603 (2) 0.38816 (17) 0.0151 (7) 0.0990 (9)
O1B 1.0274 (8) 0.0792 (14) 0.4321 (9) 0.018 (2) 0.0990 (9)
N1B 0.9811 (12) 0.146 (2) 0.4009 (14) 0.014 (2) 0.0990 (9)
O2B 1.0686 (8) 0.1604 (13) 0.3283 (9) 0.016 (2) 0.0990 (9)
C1B 1.0078 (9) 0.1843 (15) 0.3481 (11) 0.0136 (19) 0.0990 (9)
C2B 0.9674 (11) 0.2610 (18) 0.3106 (13) 0.016 (2) 0.0990 (9)
C3B 0.9973 (12) 0.3032 (18) 0.2545 (12) 0.018 (2) 0.0990 (9)
H3B 1.044539 0.289257 0.246045 0.022* 0.0990 (9)
C4B 0.958 (2) 0.366 (4) 0.211 (2) 0.022 (3) 0.0990 (9)
H4B 0.973348 0.382693 0.167463 0.027* 0.0990 (9)
C5B 0.895 (2) 0.403 (3) 0.232 (2) 0.020 (3) 0.0990 (9)
H5B 0.872475 0.453475 0.207068 0.024* 0.0990 (9)
C6B 0.8666 (13) 0.3642 (17) 0.2883 (12) 0.018 (3) 0.0990 (9)
H6B 0.823361 0.388191 0.301576 0.021* 0.0990 (9)
C7B 0.8996 (10) 0.2904 (16) 0.3273 (11) 0.016 (2) 0.0990 (9)
O3B 0.8645 (9) 0.2589 (12) 0.3807 (8) 0.015 (2) 0.0990 (9)
Cu3B 0.89646 (17) 0.1672 (2) 0.44622 (18) 0.0156 (6) 0.0990 (9)
O4B 0.9298 (8) 0.0870 (13) 0.5213 (8) 0.016 (2) 0.0990 (9)
N2B 0.8738 (14) 0.055 (4) 0.558 (3) 0.014 (2) 0.0990 (9)
O5B 0.8101 (7) 0.1663 (12) 0.4959 (8) 0.012 (2) 0.0990 (9)
C8B 0.8145 (9) 0.0988 (15) 0.5408 (11) 0.0126 (18) 0.0990 (9)
C9B 0.7503 (9) 0.0747 (16) 0.5741 (12) 0.0117 (19) 0.0990 (9)
C10B 0.6913 (9) 0.1315 (15) 0.5565 (12) 0.013 (2) 0.0990 (9)
H10B 0.694945 0.184109 0.527031 0.015* 0.0990 (9)
C11B 0.6279 (13) 0.110 (3) 0.582 (2) 0.016 (3) 0.0990 (9)
H11B 0.586440 0.143106 0.565392 0.019* 0.0990 (9)
C12B 0.6243 (16) 0.040 (3) 0.633 (2) 0.017 (3) 0.0990 (9)
H12B 0.582932 0.032875 0.656677 0.020* 0.0990 (9)
C13B 0.6816 (10) −0.0164 (18) 0.6486 (15) 0.020 (3) 0.0990 (9)
H13B 0.676828 −0.068618 0.678149 0.023* 0.0990 (9)
C14B 0.7477 (9) −0.0004 (15) 0.6220 (12) 0.015 (2) 0.0990 (9)
O6B 0.8013 (9) −0.0544 (13) 0.6467 (10) 0.017 (2) 0.0990 (9)
Cu5B 0.5982 (4) −0.1776 (5) 0.5491 (4) 0.0181 (14) 0.0503 (8)
O7B 0.5715 (11) −0.0883 (18) 0.4778 (15) 0.012 (3) 0.0503 (8)
N3B 0.630 (2) −0.050 (5) 0.448 (5) 0.013 (2) 0.0503 (8)
O8B 0.6873 (12) −0.173 (2) 0.5041 (18) 0.017 (3) 0.0503 (8)
C15B 0.6861 (13) −0.100 (2) 0.464 (2) 0.014 (2) 0.0503 (8)
C16B 0.7516 (13) −0.075 (2) 0.433 (2) 0.012 (2) 0.0503 (8)
C17B 0.8066 (16) −0.140 (3) 0.447 (2) 0.014 (2) 0.0503 (8)
H17B 0.798781 −0.195059 0.472320 0.017* 0.0503 (8)
C18B 0.8721 (18) −0.124 (3) 0.423 (3) 0.016 (3) 0.0503 (8)
H18B 0.909963 −0.166878 0.433122 0.019* 0.0503 (8)
C19B 0.8803 (18) −0.043 (4) 0.384 (4) 0.016 (3) 0.0503 (8)
H19B 0.925534 −0.028177 0.370588 0.019* 0.0503 (8)
C20B 0.8249 (14) 0.016 (3) 0.365 (2) 0.014 (3) 0.0503 (8)
H20B 0.832841 0.068786 0.337602 0.017* 0.0503 (8)
C21B 0.7566 (13) 0.000 (2) 0.386 (2) 0.013 (2) 0.0503 (8)
O9B 0.7079 (10) 0.065 (2) 0.3686 (18) 0.015 (2) 0.0503 (8)
Cu6B 0.6171 (3) 0.0670 (4) 0.3977 (3) 0.0140 (11) 0.0503 (8)
O10B 0.5253 (11) 0.0771 (18) 0.4283 (18) 0.014 (2) 0.0503 (8)
N4B 0.499 (2) 0.169 (3) 0.422 (3) 0.013 (2) 0.0503 (8)
O11B 0.5872 (13) 0.1851 (17) 0.3533 (17) 0.014 (3) 0.0503 (8)
C22B 0.5238 (15) 0.206 (2) 0.366 (2) 0.013 (2) 0.0503 (8)
C23B 0.4866 (17) 0.285 (3) 0.330 (2) 0.015 (2) 0.0503 (8)
C24B 0.522 (2) 0.330 (3) 0.279 (2) 0.017 (2) 0.0503 (8)
H24B 0.569923 0.316021 0.275208 0.020* 0.0503 (8)
C25B 0.488 (4) 0.394 (9) 0.234 (5) 0.020 (3) 0.0503 (8)
H25B 0.509485 0.418379 0.195293 0.024* 0.0503 (8)
C26B 0.419 (3) 0.422 (5) 0.247 (3) 0.021 (3) 0.0503 (8)
H26B 0.394347 0.465332 0.216809 0.025* 0.0503 (8)
C27B 0.387 (2) 0.387 (3) 0.303 (2) 0.021 (3) 0.0503 (8)
H27B 0.344128 0.413036 0.314445 0.025* 0.0503 (8)
C28B 0.4181 (17) 0.313 (3) 0.345 (2) 0.017 (2) 0.0503 (8)
O12B 0.3842 (16) 0.286 (3) 0.3987 (17) 0.016 (3) 0.0503 (8)
C29 0.58473 (18) 0.5419 (2) 0.45772 (18) 0.0263 (6)
H29 0.598215 0.556341 0.504979 0.032*
C30 0.5058 (2) 0.5667 (4) 0.3558 (2) 0.0458 (11)
H30A 0.499783 0.626894 0.331718 0.069*
H30B 0.461097 0.532462 0.351376 0.069*
H30C 0.541908 0.529930 0.335133 0.069*
C31 0.4857 (2) 0.6472 (3) 0.4664 (3) 0.0419 (10)
H31A 0.493158 0.711397 0.450845 0.063*
H31B 0.500490 0.642121 0.516080 0.063*
H31C 0.435621 0.631332 0.458142 0.063*
C32 0.74497 (18) 0.3618 (2) 0.58878 (16) 0.0227 (5)
H32 0.777172 0.323690 0.566730 0.027*
C33 0.6892 (3) 0.3988 (6) 0.6927 (2) 0.075 (2)
H33A 0.665826 0.445893 0.661825 0.112*
H33B 0.714479 0.429880 0.732630 0.112*
H33C 0.653897 0.356164 0.708838 0.112*
C34 0.7762 (3) 0.2693 (3) 0.6914 (2) 0.0387 (9)
H34A 0.742553 0.220454 0.701746 0.058*
H34B 0.800563 0.292273 0.734884 0.058*
H34C 0.810620 0.243354 0.662021 0.058*
C35 0.75700 (17) 0.6276 (2) 0.53074 (16) 0.0208 (5)
H35 0.710755 0.650430 0.534728 0.025*
C36 0.8771 (2) 0.6121 (4) 0.5799 (2) 0.0456 (11)
H36A 0.881711 0.579999 0.535730 0.068*
H36B 0.888563 0.568592 0.618356 0.068*
H36C 0.909573 0.665410 0.584156 0.068*
C37 0.78793 (19) 0.6978 (3) 0.64266 (19) 0.0305 (7)
H37A 0.821025 0.749865 0.650914 0.046*
H37B 0.791271 0.656399 0.683221 0.046*
H37C 0.739874 0.722243 0.634735 0.046*
C38 0.7762 (2) 0.5562 (3) 0.30981 (18) 0.0320 (7)
H38 0.818999 0.544599 0.289661 0.038*
C39 0.6864 (2) 0.6694 (3) 0.3355 (3) 0.0426 (10)
H39A 0.652816 0.696108 0.299528 0.064*
H39B 0.697726 0.715999 0.371940 0.064*
H39C 0.665538 0.614152 0.355611 0.064*
C40 0.7863 (3) 0.7156 (3) 0.2692 (2) 0.0411 (10)
H40A 0.830634 0.691374 0.254269 0.062*
H40B 0.796246 0.768504 0.300784 0.062*
H40C 0.756005 0.736452 0.228507 0.062*
C41 0.9701 (2) 0.5292 (3) 0.3821 (2) 0.0357 (8)
H41 0.966755 0.476397 0.352148 0.043*
C42 1.0251 (3) 0.6804 (3) 0.4111 (3) 0.0452 (10)
H42A 1.072249 0.676404 0.435695 0.068*
H42B 0.989763 0.681872 0.444855 0.068*
H42C 1.021508 0.737459 0.382967 0.068*
C43 1.0527 (3) 0.5938 (4) 0.3057 (3) 0.0506 (12)
H43A 1.037418 0.538532 0.278324 0.076*
H43B 1.103051 0.588642 0.320481 0.076*
H43C 1.044206 0.650101 0.277271 0.076*
N5 0.52711 (15) 0.5827 (2) 0.42772 (16) 0.0258 (5)
N6 0.73860 (16) 0.3463 (2) 0.65531 (14) 0.0285 (6)
N7 0.80522 (14) 0.64533 (19) 0.58180 (15) 0.0231 (5)
N8 0.75091 (17) 0.6422 (2) 0.30472 (16) 0.0283 (6)
N9 1.01309 (17) 0.5998 (2) 0.36654 (19) 0.0338 (7)
O13 0.62166 (13) 0.48689 (18) 0.42845 (15) 0.0299 (5)
O14 0.71231 (13) 0.42205 (18) 0.55295 (12) 0.0248 (4)
O15 0.76761 (14) 0.58292 (17) 0.47750 (13) 0.0265 (5)
O16 0.74914 (17) 0.48880 (18) 0.33857 (13) 0.0333 (6)
O17 0.93532 (18) 0.5286 (2) 0.4319 (2) 0.0508 (9)
O18 0.70585 (12) 0.30438 (16) 0.41214 (13) 0.0232 (4)
H18C 0.728 (2) 0.259 (2) 0.428 (2) 0.035*
H18D 0.6671 (15) 0.293 (3) 0.390 (2) 0.035*
O19 0.83912 (12) 0.39926 (16) 0.46351 (13) 0.0218 (4)
H19C 0.849 (2) 0.351 (2) 0.442 (2) 0.033*
H19D 0.8702 (19) 0.439 (3) 0.456 (2) 0.033*
Mn1 0.73098 (2) 0.44759 (3) 0.44234 (2) 0.01756 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.01194 (17) 0.01244 (17) 0.01186 (17) 0.00303 (14) 0.00427 (13) 0.00407 (14)
Cu2 0.01307 (14) 0.01378 (14) 0.01206 (14) 0.00336 (11) 0.00406 (11) 0.00473 (11)
O1 0.0107 (7) 0.0147 (8) 0.0136 (8) 0.0052 (6) 0.0022 (6) 0.0056 (7)
N1 0.0111 (9) 0.0109 (15) 0.0117 (9) 0.0024 (8) 0.0035 (8) 0.0028 (11)
O2 0.0136 (8) 0.0142 (8) 0.0145 (9) 0.0019 (7) 0.0043 (7) 0.0042 (7)
C1 0.0112 (9) 0.0130 (10) 0.0111 (9) 0.0020 (8) 0.0044 (8) 0.0006 (8)
C2 0.0098 (9) 0.0143 (11) 0.0118 (10) 0.0023 (8) 0.0020 (8) 0.0006 (9)
C3 0.0147 (11) 0.0166 (11) 0.0155 (11) 0.0009 (9) 0.0039 (9) 0.0036 (9)
C4 0.0133 (13) 0.0223 (15) 0.0177 (15) 0.0033 (10) 0.0059 (10) 0.0021 (12)
C5 0.0105 (12) 0.0219 (13) 0.0170 (13) 0.0017 (11) 0.0046 (10) −0.0007 (11)
C6 0.0124 (10) 0.0169 (11) 0.0133 (11) 0.0028 (9) 0.0015 (8) 0.0008 (9)
C7 0.0116 (9) 0.0131 (10) 0.0117 (10) 0.0007 (8) 0.0022 (8) −0.0013 (8)
O3 0.0124 (8) 0.0133 (8) 0.0156 (9) 0.0028 (6) 0.0048 (7) 0.0028 (7)
Cu3 0.01186 (13) 0.01167 (13) 0.01247 (14) 0.00279 (11) 0.00411 (11) 0.00333 (11)
O4 0.0131 (8) 0.0153 (8) 0.0132 (8) 0.0042 (6) 0.0065 (6) 0.0065 (7)
N2 0.0132 (9) 0.0143 (12) 0.0138 (12) 0.0026 (8) 0.0045 (8) 0.0041 (9)
O5 0.0136 (8) 0.0125 (8) 0.0156 (9) 0.0033 (6) 0.0042 (7) 0.0042 (7)
C8 0.0128 (10) 0.0123 (10) 0.0127 (10) 0.0026 (8) 0.0024 (8) 0.0019 (8)
C9 0.0154 (11) 0.0124 (10) 0.0120 (10) 0.0012 (9) 0.0024 (8) 0.0034 (8)
C10 0.0214 (12) 0.0158 (11) 0.0134 (11) 0.0037 (10) 0.0024 (9) 0.0019 (9)
C11 0.0271 (15) 0.0201 (18) 0.0156 (13) 0.0083 (13) 0.0018 (11) 0.0068 (12)
C12 0.0304 (16) 0.024 (2) 0.0168 (16) 0.0056 (15) 0.0060 (12) 0.0094 (12)
C13 0.0239 (14) 0.0229 (14) 0.0201 (13) 0.0037 (11) 0.0054 (11) 0.0089 (11)
C14 0.0177 (11) 0.0159 (11) 0.0147 (11) 0.0021 (9) 0.0018 (9) 0.0058 (9)
O6 0.0169 (9) 0.0208 (10) 0.0180 (10) 0.0052 (8) 0.0037 (7) 0.0114 (8)
Cu4 0.01144 (16) 0.01056 (16) 0.01369 (18) 0.00205 (13) 0.00444 (14) 0.00307 (14)
Cu5 0.01072 (12) 0.01202 (13) 0.01408 (14) 0.00163 (10) 0.00377 (10) 0.00281 (11)
O7 0.0128 (7) 0.0136 (8) 0.0182 (9) 0.0037 (6) 0.0063 (6) 0.0064 (7)
N3 0.0106 (10) 0.0137 (9) 0.0190 (10) 0.0021 (8) 0.0063 (9) 0.0061 (8)
O8 0.0137 (8) 0.0176 (9) 0.0208 (9) 0.0029 (7) 0.0065 (7) 0.0077 (8)
C15 0.0121 (9) 0.0124 (9) 0.0135 (10) 0.0011 (7) 0.0024 (8) 0.0024 (8)
C16 0.0142 (10) 0.0146 (10) 0.0129 (10) 0.0010 (8) 0.0031 (8) 0.0027 (8)
C17 0.0140 (10) 0.0193 (11) 0.0167 (11) 0.0034 (9) 0.0018 (9) 0.0051 (9)
C18 0.0217 (13) 0.0238 (15) 0.0195 (12) 0.0049 (12) 0.0012 (10) 0.0100 (12)
C19 0.0242 (14) 0.0262 (15) 0.0166 (18) 0.0055 (12) 0.0062 (13) 0.0101 (13)
C20 0.0201 (12) 0.0199 (12) 0.0183 (12) 0.0059 (9) 0.0061 (10) 0.0098 (10)
C21 0.0176 (11) 0.0131 (10) 0.0158 (11) 0.0009 (8) 0.0027 (9) 0.0031 (8)
O9 0.0144 (8) 0.0153 (8) 0.0205 (9) 0.0027 (7) 0.0029 (7) 0.0077 (7)
Cu6 0.01220 (13) 0.01163 (13) 0.01306 (13) 0.00194 (10) 0.00392 (10) 0.00294 (11)
O10 0.0103 (7) 0.0125 (7) 0.0152 (8) 0.0043 (6) 0.0035 (6) 0.0042 (6)
N4 0.0092 (8) 0.0110 (11) 0.0148 (11) 0.0026 (7) 0.0034 (7) 0.0019 (8)
O11 0.0133 (8) 0.0147 (8) 0.0158 (8) 0.0029 (6) 0.0044 (6) 0.0037 (7)
C22 0.0107 (9) 0.0139 (9) 0.0103 (9) 0.0011 (7) 0.0037 (7) 0.0001 (8)
C23 0.0108 (9) 0.0138 (10) 0.0121 (10) 0.0011 (7) 0.0024 (7) 0.0007 (8)
C24 0.0128 (10) 0.0151 (10) 0.0162 (11) −0.0004 (8) 0.0042 (8) 0.0011 (9)
C25 0.0122 (11) 0.0193 (12) 0.0191 (15) 0.0000 (10) 0.0058 (11) −0.0001 (10)
C26 0.0115 (10) 0.0206 (12) 0.0206 (13) 0.0003 (9) 0.0055 (9) 0.0002 (10)
C27 0.0124 (10) 0.0183 (11) 0.0174 (11) 0.0035 (8) 0.0030 (9) 0.0017 (9)
C28 0.0118 (9) 0.0144 (10) 0.0150 (10) 0.0010 (8) 0.0037 (8) −0.0003 (8)
O12 0.0110 (7) 0.0162 (8) 0.0213 (9) 0.0030 (6) 0.0061 (7) 0.0058 (7)
Cu2B 0.0154 (13) 0.0172 (14) 0.0129 (13) 0.0043 (11) 0.0018 (10) 0.0038 (11)
O1B 0.018 (4) 0.022 (4) 0.016 (4) 0.003 (4) 0.010 (4) 0.008 (4)
N1B 0.015 (4) 0.014 (4) 0.014 (4) 0.002 (4) 0.004 (4) 0.008 (4)
O2B 0.014 (4) 0.020 (4) 0.015 (4) 0.004 (4) 0.003 (4) 0.007 (4)
C1B 0.013 (3) 0.014 (3) 0.014 (3) 0.003 (3) 0.004 (3) 0.006 (3)
C2B 0.018 (4) 0.016 (4) 0.015 (4) 0.004 (4) 0.001 (3) 0.004 (3)
C3B 0.021 (4) 0.019 (4) 0.014 (4) 0.000 (4) 0.006 (4) 0.008 (4)
C4B 0.029 (5) 0.021 (5) 0.016 (5) 0.003 (5) 0.002 (4) 0.008 (4)
C5B 0.025 (5) 0.019 (5) 0.015 (5) 0.005 (5) 0.001 (4) 0.006 (4)
C6B 0.020 (5) 0.018 (5) 0.015 (5) 0.011 (5) −0.002 (5) 0.002 (5)
C7B 0.016 (4) 0.015 (4) 0.016 (4) 0.006 (4) −0.001 (4) 0.001 (4)
O3B 0.015 (4) 0.015 (4) 0.014 (4) 0.003 (4) 0.004 (4) 0.005 (4)
Cu3B 0.0142 (12) 0.0160 (13) 0.0174 (14) 0.0048 (10) 0.0053 (10) 0.0035 (11)
O4B 0.013 (4) 0.017 (4) 0.019 (4) 0.006 (3) 0.002 (3) 0.003 (4)
N2B 0.011 (4) 0.015 (4) 0.015 (4) 0.003 (4) 0.002 (4) 0.001 (4)
O5B 0.012 (4) 0.014 (4) 0.013 (4) 0.006 (4) 0.004 (4) 0.001 (4)
C8B 0.012 (3) 0.015 (3) 0.012 (3) 0.003 (3) 0.004 (3) 0.001 (3)
C9B 0.010 (3) 0.013 (4) 0.012 (3) 0.005 (3) 0.003 (3) 0.002 (3)
C10B 0.008 (4) 0.015 (4) 0.014 (4) 0.000 (4) 0.000 (3) 0.002 (4)
C11B 0.012 (5) 0.021 (4) 0.015 (5) 0.002 (4) 0.004 (4) −0.002 (4)
C12B 0.014 (5) 0.019 (5) 0.018 (5) 0.002 (4) 0.003 (4) 0.000 (5)
C13B 0.018 (5) 0.021 (5) 0.020 (5) −0.001 (5) 0.004 (5) 0.003 (5)
C14B 0.014 (4) 0.017 (4) 0.013 (4) 0.001 (4) 0.004 (4) 0.002 (4)
O6B 0.017 (4) 0.019 (4) 0.015 (4) 0.000 (4) −0.001 (4) 0.007 (4)
Cu5B 0.016 (3) 0.018 (3) 0.021 (3) 0.008 (2) 0.008 (2) 0.000 (2)
O7B 0.008 (5) 0.013 (5) 0.016 (5) 0.004 (5) 0.002 (5) 0.001 (5)
N3B 0.010 (4) 0.015 (4) 0.016 (4) 0.003 (4) 0.003 (4) 0.001 (4)
O8B 0.013 (6) 0.016 (6) 0.021 (6) 0.007 (5) 0.001 (6) 0.003 (6)
C15B 0.011 (4) 0.015 (4) 0.016 (4) 0.001 (4) 0.003 (4) 0.001 (4)
C16B 0.010 (4) 0.013 (4) 0.014 (4) 0.002 (4) 0.004 (4) 0.002 (4)
C17B 0.010 (4) 0.015 (4) 0.017 (4) 0.002 (4) 0.003 (4) 0.003 (4)
C18B 0.011 (5) 0.017 (5) 0.018 (5) 0.003 (5) 0.004 (5) −0.001 (5)
C19B 0.011 (5) 0.018 (5) 0.019 (5) 0.000 (5) 0.004 (5) 0.000 (5)
C20B 0.011 (5) 0.018 (5) 0.015 (5) −0.002 (5) 0.006 (5) −0.001 (5)
C21B 0.012 (4) 0.014 (4) 0.014 (4) −0.002 (4) 0.004 (4) 0.000 (4)
O9B 0.013 (4) 0.016 (4) 0.016 (4) −0.001 (4) 0.001 (4) 0.003 (4)
Cu6B 0.011 (2) 0.015 (2) 0.017 (2) 0.0027 (17) 0.0020 (17) 0.0016 (18)
O10B 0.013 (4) 0.012 (4) 0.017 (4) 0.003 (4) 0.003 (4) 0.003 (4)
N4B 0.013 (4) 0.012 (4) 0.015 (4) 0.002 (4) 0.004 (4) 0.006 (4)
O11B 0.013 (5) 0.011 (5) 0.017 (5) −0.002 (5) 0.005 (5) 0.004 (5)
C22B 0.013 (3) 0.012 (3) 0.014 (3) 0.001 (3) 0.005 (3) 0.005 (3)
C23B 0.015 (4) 0.015 (4) 0.015 (4) 0.001 (4) 0.003 (4) 0.005 (4)
C24B 0.018 (4) 0.019 (4) 0.014 (4) 0.001 (4) 0.007 (4) 0.006 (4)
C25B 0.022 (5) 0.023 (5) 0.017 (5) 0.002 (5) 0.005 (5) 0.009 (5)
C26B 0.019 (5) 0.024 (5) 0.019 (5) 0.003 (5) 0.001 (5) 0.008 (5)
C27B 0.020 (5) 0.023 (5) 0.019 (5) 0.001 (5) −0.001 (5) 0.006 (5)
C28B 0.016 (4) 0.019 (4) 0.016 (4) 0.000 (4) 0.000 (4) 0.004 (4)
O12B 0.015 (5) 0.018 (5) 0.018 (5) 0.000 (5) 0.008 (5) 0.003 (5)
C29 0.0243 (14) 0.0280 (15) 0.0260 (15) −0.0008 (12) −0.0020 (11) 0.0028 (12)
C30 0.039 (2) 0.060 (3) 0.036 (2) 0.018 (2) −0.0092 (17) −0.002 (2)
C31 0.037 (2) 0.0294 (18) 0.061 (3) 0.0047 (15) 0.0089 (19) −0.0162 (19)
C32 0.0326 (15) 0.0191 (12) 0.0171 (12) −0.0015 (11) 0.0066 (11) 0.0000 (10)
C33 0.054 (3) 0.151 (7) 0.0213 (18) 0.050 (4) 0.0117 (19) 0.013 (3)
C34 0.055 (3) 0.0336 (19) 0.0257 (17) −0.0055 (17) −0.0032 (16) 0.0117 (15)
C35 0.0250 (13) 0.0130 (10) 0.0245 (13) −0.0002 (9) 0.0027 (10) 0.0010 (10)
C36 0.0292 (18) 0.066 (3) 0.041 (2) 0.0180 (19) −0.0015 (16) −0.012 (2)
C37 0.0275 (15) 0.0373 (18) 0.0272 (16) −0.0010 (13) 0.0052 (12) −0.0123 (14)
C38 0.047 (2) 0.0276 (16) 0.0217 (14) 0.0048 (15) 0.0063 (14) 0.0006 (12)
C39 0.037 (2) 0.041 (2) 0.052 (3) 0.0086 (17) 0.0178 (18) 0.024 (2)
C40 0.055 (3) 0.0300 (18) 0.042 (2) −0.0052 (17) 0.0205 (19) 0.0083 (16)
C41 0.0292 (17) 0.0345 (19) 0.044 (2) −0.0054 (14) 0.0054 (15) −0.0069 (17)
C42 0.049 (3) 0.0293 (19) 0.057 (3) −0.0010 (18) 0.005 (2) −0.0033 (19)
C43 0.059 (3) 0.047 (3) 0.049 (3) −0.005 (2) 0.019 (2) 0.011 (2)
N5 0.0238 (12) 0.0210 (11) 0.0321 (14) 0.0043 (9) 0.0003 (10) −0.0048 (11)
N6 0.0300 (14) 0.0401 (16) 0.0149 (11) −0.0027 (12) 0.0000 (10) 0.0039 (11)
N7 0.0221 (11) 0.0226 (11) 0.0246 (12) 0.0035 (9) 0.0015 (9) −0.0048 (10)
N8 0.0342 (15) 0.0257 (13) 0.0256 (13) −0.0023 (11) 0.0060 (11) 0.0063 (11)
N9 0.0285 (14) 0.0339 (16) 0.0392 (17) −0.0015 (12) 0.0033 (13) 0.0031 (14)
O13 0.0217 (10) 0.0291 (12) 0.0383 (14) 0.0060 (9) 0.0000 (10) 0.0038 (11)
O14 0.0294 (11) 0.0281 (11) 0.0171 (9) 0.0044 (9) 0.0037 (8) 0.0010 (8)
O15 0.0379 (13) 0.0190 (10) 0.0226 (11) −0.0026 (9) 0.0029 (9) −0.0014 (8)
O16 0.0580 (18) 0.0235 (11) 0.0185 (10) −0.0016 (11) 0.0049 (11) 0.0034 (9)
O17 0.0419 (17) 0.0467 (18) 0.068 (2) −0.0145 (14) 0.0273 (16) −0.0118 (17)
O18 0.0238 (10) 0.0173 (9) 0.0271 (11) −0.0008 (8) −0.0059 (8) 0.0037 (8)
O19 0.0211 (9) 0.0178 (9) 0.0269 (11) 0.0012 (7) 0.0051 (8) −0.0014 (8)
Mn1 0.02177 (19) 0.01436 (16) 0.01645 (18) 0.00213 (14) 0.00120 (14) 0.00085 (14)

Geometric parameters (Å, º)

Cu1—O1B 1.845 (15) O5B—C8B 1.297 (16)
Cu1—O1Bi 1.845 (15) C8B—C9B 1.473 (15)
Cu1—O1i 1.8945 (19) C9B—C10B 1.405 (16)
Cu1—O1 1.8945 (19) C9B—C14B 1.422 (16)
Cu1—O4 1.897 (2) C10B—C11B 1.381 (18)
Cu1—O4i 1.897 (2) C10B—H10B 0.9500
Cu1—O4Bi 1.899 (16) C11B—C12B 1.412 (19)
Cu1—O4B 1.899 (16) C11B—H11B 0.9500
Cu2—O6i 1.870 (2) C12B—C13B 1.372 (18)
Cu2—O1 1.904 (2) C12B—H12B 0.9500
Cu2—N2i 1.932 (3) C13B—C14B 1.423 (17)
Cu2—O2 1.951 (2) C13B—H13B 0.9500
O1—N1 1.408 (4) C14B—O6B 1.334 (16)
N1—C1 1.304 (4) Cu5B—O12Bii 1.86 (3)
N1—Cu3 1.918 (3) Cu5B—O7B 1.914 (16)
O2—C1 1.300 (3) Cu5B—O8B 1.978 (17)
C1—C2 1.484 (4) Cu5B—N4Bii 1.99 (3)
C2—C3 1.407 (4) O7B—N3B 1.418 (18)
C2—C7 1.431 (4) N3B—C15B 1.302 (17)
C3—C4 1.391 (4) N3B—Cu6B 1.935 (15)
C3—H3 0.9500 O8B—C15B 1.297 (17)
C4—C5 1.398 (5) C15B—C16B 1.480 (16)
C4—H4 0.9500 C16B—C17B 1.406 (18)
C5—C6 1.385 (4) C16B—C21B 1.421 (17)
C5—H5 0.9500 C17B—C18B 1.385 (19)
C6—C7 1.417 (4) C17B—H17B 0.9500
C6—H6 0.9500 C18B—C19B 1.399 (19)
C7—O3 1.332 (3) C18B—H18B 0.9500
O3—Cu3 1.892 (2) C19B—C20B 1.373 (19)
Cu3—O4 1.920 (2) C19B—H19B 0.9500
Cu3—O5 1.952 (2) C20B—C21B 1.411 (18)
O4—N2 1.405 (3) C20B—H20B 0.9500
N2—C8 1.312 (4) C21B—O9B 1.335 (17)
O5—C8 1.311 (3) O9B—Cu6B 1.868 (15)
C8—C9 1.469 (4) Cu6B—O10B 1.903 (16)
C9—C10 1.407 (4) Cu6B—O11B 1.955 (15)
C9—C14 1.425 (4) O10B—N4B 1.413 (19)
C10—C11 1.377 (5) N4B—C22B 1.319 (19)
C10—H10 0.9500 O11B—C22B 1.292 (18)
C11—C12 1.408 (5) C22B—C23B 1.465 (16)
C11—H11 0.9500 C23B—C24B 1.400 (18)
C12—C13 1.377 (5) C23B—C28B 1.419 (17)
C12—H12 0.9500 C24B—C25B 1.393 (19)
C13—C14 1.413 (4) C24B—H24B 0.9500
C13—H13 0.9500 C25B—C26B 1.408 (19)
C14—O6 1.322 (4) C25B—H25B 0.9500
Cu4—O10Bii 1.87 (2) C26B—C27B 1.386 (19)
Cu4—O10B 1.87 (2) C26B—H26B 0.9500
Cu4—O10ii 1.8908 (18) C27B—C28B 1.424 (18)
Cu4—O10 1.8908 (18) C27B—H27B 0.9500
Cu4—O7ii 1.8925 (19) C28B—O12B 1.331 (18)
Cu4—O7 1.8926 (19) C29—O13 1.227 (4)
Cu4—O7Bii 1.93 (2) C29—N5 1.330 (4)
Cu4—O7B 1.93 (2) C29—H29 0.9500
Cu5—O12ii 1.8706 (19) C30—N5 1.432 (5)
Cu5—O7 1.9173 (19) C30—H30A 0.9800
Cu5—N4ii 1.926 (2) C30—H30B 0.9800
Cu5—O8 1.975 (2) C30—H30C 0.9800
O7—N3 1.409 (3) C31—N5 1.463 (5)
N3—C15 1.299 (4) C31—H31A 0.9800
N3—Cu6 1.928 (2) C31—H31B 0.9800
O8—C15 1.300 (3) C31—H31C 0.9800
C15—C16 1.484 (4) C32—O14 1.238 (4)
C16—C17 1.411 (4) C32—N6 1.322 (4)
C16—C21 1.424 (4) C32—H32 0.9500
C17—C18 1.384 (4) C33—N6 1.447 (6)
C17—H17 0.9500 C33—H33A 0.9800
C18—C19 1.400 (5) C33—H33B 0.9800
C18—H18 0.9500 C33—H33C 0.9800
C19—C20 1.377 (4) C34—N6 1.457 (5)
C19—H19 0.9500 C34—H34A 0.9800
C20—C21 1.407 (4) C34—H34B 0.9800
C20—H20 0.9500 C34—H34C 0.9800
C21—O9 1.338 (3) C35—O15 1.244 (4)
O9—Cu6 1.887 (2) C35—N7 1.313 (4)
Cu6—O10 1.9024 (19) C35—H35 0.9500
Cu6—O11 1.9301 (19) C36—N7 1.455 (5)
O10—N4 1.408 (3) C36—H36A 0.9800
N4—C22 1.311 (3) C36—H36B 0.9800
O11—C22 1.303 (3) C36—H36C 0.9800
C22—C23 1.476 (3) C37—N7 1.458 (4)
C23—C24 1.408 (4) C37—H37A 0.9800
C23—C28 1.427 (4) C37—H37B 0.9800
C24—C25 1.389 (4) C37—H37C 0.9800
C24—H24 0.9500 C38—O16 1.247 (5)
C25—C26 1.402 (4) C38—N8 1.321 (5)
C25—H25 0.9500 C38—H38 0.9500
C26—C27 1.385 (4) C39—N8 1.466 (5)
C26—H26 0.9500 C39—H39A 0.9800
C27—C28 1.423 (4) C39—H39B 0.9800
C27—H27 0.9500 C39—H39C 0.9800
C28—O12 1.321 (3) C40—N8 1.453 (5)
Cu2B—O6Bi 1.851 (18) C40—H40A 0.9800
Cu2B—O1B 1.900 (12) C40—H40B 0.9800
Cu2B—N2Bi 1.96 (2) C40—H40C 0.9800
Cu2B—O2B 1.972 (14) C41—O17 1.218 (5)
O1B—N1B 1.397 (17) C41—N9 1.351 (5)
N1B—C1B 1.305 (16) C41—H41 0.9500
N1B—Cu3B 1.929 (13) C42—N9 1.445 (6)
O2B—C1B 1.300 (15) C42—H42A 0.9800
C1B—C2B 1.491 (15) C42—H42B 0.9800
C2B—C3B 1.407 (17) C42—H42C 0.9800
C2B—C7B 1.423 (16) C43—N9 1.457 (6)
C3B—C4B 1.401 (19) C43—H43A 0.9800
C3B—H3B 0.9500 C43—H43B 0.9800
C4B—C5B 1.396 (19) C43—H43C 0.9800
C4B—H4B 0.9500 O13—Mn1 2.152 (2)
C5B—C6B 1.381 (18) O14—Mn1 2.231 (2)
C5B—H5B 0.9500 O15—Mn1 2.146 (2)
C6B—C7B 1.410 (16) O16—Mn1 2.150 (2)
C6B—H6B 0.9500 O18—Mn1 2.171 (2)
C7B—O3B 1.357 (15) O18—H18C 0.826 (19)
O3B—Cu3B 1.886 (12) O18—H18D 0.836 (19)
Cu3B—O4B 1.913 (13) O19—Mn1 2.178 (2)
Cu3B—O5B 1.980 (12) O19—H19C 0.834 (19)
O4B—N2B 1.413 (17) O19—H19D 0.839 (19)
N2B—C8B 1.306 (18)
O1i—Cu1—O1 180.0 N2B—O4B—Cu1 119 (2)
O1i—Cu1—O4 91.80 (8) N2B—O4B—Cu3B 111.2 (13)
O1—Cu1—O4 88.20 (8) Cu1—O4B—Cu3B 114.9 (8)
O1i—Cu1—O4i 88.20 (8) C8B—N2B—O4B 113.2 (16)
O1—Cu1—O4i 91.80 (8) C8B—O5B—Cu3B 108.9 (10)
O4—Cu1—O4i 180.0 O5B—C8B—N2B 121.9 (15)
O1i—Cu1—O4Bi 50.0 (4) O5B—C8B—C9B 117.4 (13)
O1—Cu1—O4Bi 130.0 (4) N2B—C8B—C9B 120.6 (15)
O4—Cu1—O4Bi 141.7 (4) C10B—C9B—C14B 121.4 (14)
O4i—Cu1—O4Bi 38.3 (4) C10B—C9B—C8B 115.9 (14)
O1B—Cu1—O4B 90.1 (6) C14B—C9B—C8B 122.7 (14)
O1Bi—Cu1—O4B 89.9 (6) C11B—C10B—C9B 119.6 (17)
O4Bi—Cu1—O4B 180.0 (6) C11B—C10B—H10B 120.2
O6i—Cu2—O1 163.64 (11) C9B—C10B—H10B 120.2
O6i—Cu2—N2i 92.76 (11) C10B—C11B—C12B 120 (2)
O1—Cu2—N2i 90.34 (10) C10B—C11B—H11B 119.8
O6i—Cu2—O2 98.90 (9) C12B—C11B—H11B 119.8
O1—Cu2—O2 81.42 (8) C13B—C12B—C11B 119 (2)
N2i—Cu2—O2 164.29 (11) C13B—C12B—H12B 120.6
N1—O1—Cu1 117.7 (2) C11B—C12B—H12B 120.6
N1—O1—Cu2 113.54 (16) C12B—C13B—C14B 122.8 (19)
Cu1—O1—Cu2 117.99 (10) C12B—C13B—H13B 118.6
C1—N1—O1 111.2 (2) C14B—C13B—H13B 118.6
C1—N1—Cu3 130.9 (2) O6B—C14B—C9B 126.8 (15)
O1—N1—Cu3 117.4 (2) O6B—C14B—C13B 117.0 (15)
C1—O2—Cu2 110.62 (16) C9B—C14B—C13B 116.1 (14)
O2—C1—N1 122.2 (3) O12Bii—Cu5B—O7B 165.6 (17)
O2—C1—C2 118.7 (2) O12Bii—Cu5B—O8B 98.4 (10)
N1—C1—C2 119.1 (3) O7B—Cu5B—O8B 81.0 (8)
C3—C2—C7 119.1 (2) N3B—O7B—Cu5B 112.8 (19)
C3—C2—C1 117.0 (3) N3B—O7B—Cu4 116 (3)
C7—C2—C1 124.0 (2) Cu5B—O7B—Cu4 115.0 (13)
C4—C3—C2 122.4 (3) C15B—N3B—O7B 110.1 (14)
C4—C3—H3 118.8 C15B—N3B—Cu6B 131.7 (19)
C2—C3—H3 118.8 O7B—N3B—Cu6B 118.0 (13)
C3—C4—C5 118.5 (3) C15B—O8B—Cu5B 108.6 (14)
C3—C4—H4 120.7 O8B—C15B—N3B 124.1 (17)
C5—C4—H4 120.7 O8B—C15B—C16B 117.9 (16)
C6—C5—C4 120.5 (3) N3B—C15B—C16B 118.0 (17)
C6—C5—H5 119.7 C17B—C16B—C21B 121.9 (18)
C4—C5—H5 119.7 C17B—C16B—C15B 114.0 (18)
C5—C6—C7 122.1 (3) C21B—C16B—C15B 123.6 (17)
C5—C6—H6 118.9 C18B—C17B—C16B 121 (2)
C7—C6—H6 118.9 C18B—C17B—H17B 119.6
O3—C7—C6 117.1 (2) C16B—C17B—H17B 119.6
O3—C7—C2 125.6 (2) C17B—C18B—C19B 117 (2)
C6—C7—C2 117.3 (2) C17B—C18B—H18B 121.4
C7—O3—Cu3 125.70 (18) C19B—C18B—H18B 121.4
O3—Cu3—N1 93.39 (11) C20B—C19B—C18B 122 (2)
O3—Cu3—O4 172.99 (10) C20B—C19B—H19B 118.9
N1—Cu3—O4 89.59 (11) C18B—C19B—H19B 118.9
O3—Cu3—O5 96.35 (9) C19B—C20B—C21B 122 (2)
N1—Cu3—O5 170.22 (11) C19B—C20B—H20B 118.8
O4—Cu3—O5 80.83 (8) C21B—C20B—H20B 118.8
N2—O4—Cu1 118.59 (16) O9B—C21B—C20B 117.4 (19)
N2—O4—Cu3 113.29 (17) O9B—C21B—C16B 127.0 (19)
Cu1—O4—Cu3 115.68 (10) C20B—C21B—C16B 114.5 (18)
C8—N2—O4 111.6 (2) C21B—O9B—Cu6B 125.3 (16)
C8—N2—Cu2i 130.6 (2) O9B—Cu6B—O10B 176.4 (14)
O4—N2—Cu2i 117.27 (19) O9B—Cu6B—N3B 93.3 (9)
C8—O5—Cu3 111.38 (17) O10B—Cu6B—N3B 89.5 (9)
O5—C8—N2 120.9 (3) O9B—Cu6B—O11B 97.0 (9)
O5—C8—C9 119.9 (2) O10B—Cu6B—O11B 80.3 (8)
N2—C8—C9 119.1 (2) N3B—Cu6B—O11B 169.7 (10)
C10—C9—C14 119.1 (3) N4B—O10B—Cu4 120.5 (18)
C10—C9—C8 117.5 (3) N4B—O10B—Cu6B 111.6 (16)
C14—C9—C8 123.4 (3) Cu4—O10B—Cu6B 119.5 (11)
C11—C10—C9 122.1 (3) C22B—N4B—O10B 108 (2)
C11—C10—H10 119.0 C22B—O11B—Cu6B 111.1 (14)
C9—C10—H10 119.0 O11B—C22B—N4B 118 (2)
C10—C11—C12 119.2 (3) O11B—C22B—C23B 120.7 (18)
C10—C11—H11 120.4 N4B—C22B—C23B 119.9 (19)
C12—C11—H11 120.4 C24B—C23B—C28B 121.2 (18)
C13—C12—C11 119.6 (3) C24B—C23B—C22B 116.4 (19)
C13—C12—H12 120.2 C28B—C23B—C22B 122.4 (18)
C11—C12—H12 120.2 C25B—C24B—C23B 122 (2)
C12—C13—C14 122.5 (3) C25B—C24B—H24B 119.2
C12—C13—H13 118.8 C23B—C24B—H24B 119.2
C14—C13—H13 118.8 C24B—C25B—C26B 117 (2)
O6—C14—C13 116.3 (3) C24B—C25B—H25B 121.3
O6—C14—C9 126.3 (3) C26B—C25B—H25B 121.3
C13—C14—C9 117.4 (3) C27B—C26B—C25B 121 (2)
C14—O6—Cu2i 126.59 (19) C27B—C26B—H26B 119.4
O10Bii—Cu4—O10B 180.0 C25B—C26B—H26B 119.4
O10ii—Cu4—O10 180.0 C26B—C27B—C28B 122 (2)
O10ii—Cu4—O7ii 91.89 (8) C26B—C27B—H27B 119.1
O10—Cu4—O7ii 88.11 (8) C28B—C27B—H27B 119.1
O10ii—Cu4—O7 88.11 (8) O12B—C28B—C23B 126 (2)
O10—Cu4—O7 91.89 (8) O12B—C28B—C27B 117 (2)
O7ii—Cu4—O7 180.0 C23B—C28B—C27B 115.8 (19)
O10ii—Cu4—O7Bii 51.5 (5) O13—C29—N5 124.4 (3)
O10—Cu4—O7Bii 128.5 (5) O13—C29—H29 117.8
O7ii—Cu4—O7Bii 143.3 (5) N5—C29—H29 117.8
O7—Cu4—O7Bii 36.7 (5) N5—C30—H30A 109.5
O10Bii—Cu4—O7B 90.8 (8) N5—C30—H30B 109.5
O10B—Cu4—O7B 89.2 (8) H30A—C30—H30B 109.5
O7Bii—Cu4—O7B 180.0 (12) N5—C30—H30C 109.5
O12ii—Cu5—O7 175.18 (10) H30A—C30—H30C 109.5
O12ii—Cu5—N4ii 93.15 (9) H30B—C30—H30C 109.5
O7—Cu5—N4ii 88.80 (9) N5—C31—H31A 109.5
O12ii—Cu5—O8 97.86 (9) N5—C31—H31B 109.5
O7—Cu5—O8 80.37 (8) H31A—C31—H31B 109.5
N4ii—Cu5—O8 168.84 (10) N5—C31—H31C 109.5
N3—O7—Cu4 117.88 (16) H31A—C31—H31C 109.5
N3—O7—Cu5 113.70 (15) H31B—C31—H31C 109.5
Cu4—O7—Cu5 117.06 (10) O14—C32—N6 125.2 (3)
C15—N3—O7 111.4 (2) O14—C32—H32 117.4
C15—N3—Cu6 131.4 (2) N6—C32—H32 117.4
O7—N3—Cu6 117.10 (17) N6—C33—H33A 109.5
C15—O8—Cu5 111.01 (17) N6—C33—H33B 109.5
N3—C15—O8 122.0 (2) H33A—C33—H33B 109.5
N3—C15—C16 117.7 (2) N6—C33—H33C 109.5
O8—C15—C16 120.3 (2) H33A—C33—H33C 109.5
C17—C16—C21 119.5 (2) H33B—C33—H33C 109.5
C17—C16—C15 116.6 (2) N6—C34—H34A 109.5
C21—C16—C15 123.9 (2) N6—C34—H34B 109.5
C18—C17—C16 121.3 (3) H34A—C34—H34B 109.5
C18—C17—H17 119.3 N6—C34—H34C 109.5
C16—C17—H17 119.3 H34A—C34—H34C 109.5
C17—C18—C19 118.8 (3) H34B—C34—H34C 109.5
C17—C18—H18 120.6 O15—C35—N7 124.6 (3)
C19—C18—H18 120.6 O15—C35—H35 117.7
C20—C19—C18 121.0 (3) N7—C35—H35 117.7
C20—C19—H19 119.5 N7—C36—H36A 109.5
C18—C19—H19 119.5 N7—C36—H36B 109.5
C19—C20—C21 121.4 (3) H36A—C36—H36B 109.5
C19—C20—H20 119.3 N7—C36—H36C 109.5
C21—C20—H20 119.3 H36A—C36—H36C 109.5
O9—C21—C20 116.6 (2) H36B—C36—H36C 109.5
O9—C21—C16 125.5 (2) N7—C37—H37A 109.5
C20—C21—C16 117.9 (3) N7—C37—H37B 109.5
C21—O9—Cu6 123.22 (18) H37A—C37—H37B 109.5
O9—Cu6—O10 173.05 (10) N7—C37—H37C 109.5
O9—Cu6—N3 91.90 (10) H37A—C37—H37C 109.5
O10—Cu6—N3 89.69 (9) H37B—C37—H37C 109.5
O9—Cu6—O11 97.43 (9) O16—C38—N8 126.1 (4)
O10—Cu6—O11 81.75 (8) O16—C38—H38 116.9
N3—Cu6—O11 168.97 (10) N8—C38—H38 116.9
N4—O10—Cu4 118.25 (18) N8—C39—H39A 109.5
N4—O10—Cu6 113.11 (15) N8—C39—H39B 109.5
Cu4—O10—Cu6 117.70 (10) H39A—C39—H39B 109.5
C22—N4—O10 110.9 (2) N8—C39—H39C 109.5
C22—N4—Cu5ii 130.8 (2) H39A—C39—H39C 109.5
O10—N4—Cu5ii 117.82 (16) H39B—C39—H39C 109.5
C22—O11—Cu6 110.87 (16) N8—C40—H40A 109.5
O11—C22—N4 121.8 (2) N8—C40—H40B 109.5
O11—C22—C23 119.4 (2) H40A—C40—H40B 109.5
N4—C22—C23 118.9 (2) N8—C40—H40C 109.5
C24—C23—C28 119.7 (2) H40A—C40—H40C 109.5
C24—C23—C22 116.7 (2) H40B—C40—H40C 109.5
C28—C23—C22 123.6 (2) O17—C41—N9 124.4 (4)
C25—C24—C23 122.2 (3) O17—C41—H41 117.8
C25—C24—H24 118.9 N9—C41—H41 117.8
C23—C24—H24 118.9 N9—C42—H42A 109.5
C24—C25—C26 118.4 (3) N9—C42—H42B 109.5
C24—C25—H25 120.8 H42A—C42—H42B 109.5
C26—C25—H25 120.8 N9—C42—H42C 109.5
C27—C26—C25 120.7 (3) H42A—C42—H42C 109.5
C27—C26—H26 119.7 H42B—C42—H42C 109.5
C25—C26—H26 119.7 N9—C43—H43A 109.5
C26—C27—C28 122.0 (3) N9—C43—H43B 109.5
C26—C27—H27 119.0 H43A—C43—H43B 109.5
C28—C27—H27 119.0 N9—C43—H43C 109.5
O12—C28—C27 117.0 (2) H43A—C43—H43C 109.5
O12—C28—C23 126.1 (2) H43B—C43—H43C 109.5
C27—C28—C23 117.0 (2) C29—N5—C30 120.4 (3)
C28—O12—Cu5ii 126.64 (18) C29—N5—C31 121.1 (3)
O6Bi—Cu2B—O1B 172.2 (10) C30—N5—C31 118.5 (3)
O6Bi—Cu2B—O2B 99.0 (7) C32—N6—C33 121.3 (3)
O1B—Cu2B—O2B 80.7 (6) C32—N6—C34 120.6 (3)
N2Bi—Cu2B—O2B 162.9 (14) C33—N6—C34 117.8 (3)
N1B—O1B—Cu1 121.1 (11) C35—N7—C36 121.0 (3)
N1B—O1B—Cu2B 115.4 (10) C35—N7—C37 120.9 (3)
Cu1—O1B—Cu2B 122.4 (8) C36—N7—C37 118.1 (3)
C1B—N1B—O1B 110.5 (12) C38—N8—C40 121.7 (3)
C1B—N1B—Cu3B 133.6 (13) C38—N8—C39 122.0 (3)
O1B—N1B—Cu3B 115.7 (11) C40—N8—C39 116.3 (3)
C1B—O2B—Cu2B 110.5 (11) C41—N9—C42 122.0 (4)
O2B—C1B—N1B 122.8 (14) C41—N9—C43 120.3 (4)
O2B—C1B—C2B 119.1 (13) C42—N9—C43 117.6 (4)
N1B—C1B—C2B 118.1 (14) C29—O13—Mn1 134.3 (2)
C3B—C2B—C7B 119.2 (14) C32—O14—Mn1 122.4 (2)
C3B—C2B—C1B 117.5 (14) C35—O15—Mn1 130.7 (2)
C7B—C2B—C1B 123.2 (14) C38—O16—Mn1 137.4 (2)
C4B—C3B—C2B 120.1 (18) Mn1—O18—H18C 123 (3)
C4B—C3B—H3B 119.9 Mn1—O18—H18D 119 (3)
C2B—C3B—H3B 119.9 H18C—O18—H18D 117 (5)
C5B—C4B—C3B 120 (2) Mn1—O19—H19C 115 (3)
C5B—C4B—H4B 120.0 Mn1—O19—H19D 115 (3)
C3B—C4B—H4B 120.0 H19C—O19—H19D 106 (4)
C6B—C5B—C4B 119 (2) O15—Mn1—O16 88.50 (10)
C6B—C5B—H5B 120.6 O15—Mn1—O13 95.06 (10)
C4B—C5B—H5B 120.6 O16—Mn1—O13 92.71 (11)
C5B—C6B—C7B 122.3 (18) O15—Mn1—O18 173.20 (10)
C5B—C6B—H6B 118.9 O16—Mn1—O18 93.28 (10)
C7B—C6B—H6B 118.9 O13—Mn1—O18 91.41 (10)
O3B—C7B—C6B 115.3 (15) O15—Mn1—O19 87.17 (9)
O3B—C7B—C2B 126.5 (14) O16—Mn1—O19 91.91 (11)
C6B—C7B—C2B 118.0 (14) O13—Mn1—O19 174.92 (10)
C7B—O3B—Cu3B 126.2 (12) O18—Mn1—O19 86.21 (9)
O3B—Cu3B—O4B 172.6 (9) O15—Mn1—O14 85.35 (9)
O3B—Cu3B—N1B 92.2 (7) O16—Mn1—O14 173.51 (10)
O4B—Cu3B—N1B 90.8 (7) O13—Mn1—O14 85.78 (10)
O3B—Cu3B—O5B 95.7 (6) O18—Mn1—O14 93.07 (9)
O4B—Cu3B—O5B 82.0 (6) O19—Mn1—O14 89.86 (9)
N1B—Cu3B—O5B 170.3 (9)
O4—Cu1—O1—N1 31.5 (3) Cu2B—O1B—N1B—C1B −3 (4)
O4i—Cu1—O1—N1 −148.5 (3) Cu1—O1B—N1B—Cu3B 13 (4)
O4—Cu1—O1—Cu2 173.61 (13) Cu2B—O1B—N1B—Cu3B −178.8 (16)
O4i—Cu1—O1—Cu2 −6.39 (13) Cu2B—O2B—C1B—N1B 0 (4)
Cu1—O1—N1—C1 151.2 (3) Cu2B—O2B—C1B—C2B 178 (2)
Cu2—O1—N1—C1 7.5 (5) O1B—N1B—C1B—O2B 1 (5)
Cu1—O1—N1—Cu3 −21.4 (5) Cu3B—N1B—C1B—O2B 177 (3)
Cu2—O1—N1—Cu3 −165.1 (2) O1B—N1B—C1B—C2B −177 (3)
Cu2—O2—C1—N1 −7.2 (4) Cu3B—N1B—C1B—C2B −1 (5)
Cu2—O2—C1—C2 174.5 (2) O2B—C1B—C2B—C3B 1 (4)
O1—N1—C1—O2 0.0 (6) N1B—C1B—C2B—C3B 179 (3)
Cu3—N1—C1—O2 171.4 (3) O2B—C1B—C2B—C7B 178 (3)
O1—N1—C1—C2 178.3 (3) N1B—C1B—C2B—C7B −4 (5)
Cu3—N1—C1—C2 −10.3 (7) C7B—C2B—C3B—C4B −7 (6)
O2—C1—C2—C3 −1.7 (4) C1B—C2B—C3B—C4B 171 (4)
N1—C1—C2—C3 179.9 (4) C2B—C3B—C4B—C5B 15 (8)
O2—C1—C2—C7 178.4 (3) C3B—C4B—C5B—C6B −12 (9)
N1—C1—C2—C7 0.1 (5) C4B—C5B—C6B—C7B 2 (7)
C7—C2—C3—C4 −2.6 (5) C5B—C6B—C7B—O3B −179 (4)
C1—C2—C3—C4 177.6 (3) C5B—C6B—C7B—C2B 6 (5)
C2—C3—C4—C5 0.0 (7) C3B—C2B—C7B—O3B −178 (3)
C3—C4—C5—C6 1.9 (7) C1B—C2B—C7B—O3B 5 (5)
C4—C5—C6—C7 −1.1 (6) C3B—C2B—C7B—C6B −3 (4)
C5—C6—C7—O3 179.2 (3) C1B—C2B—C7B—C6B 180 (3)
C5—C6—C7—C2 −1.5 (5) C6B—C7B—O3B—Cu3B −175.7 (19)
C3—C2—C7—O3 −177.5 (3) C2B—C7B—O3B—Cu3B −1 (4)
C1—C2—C7—O3 2.3 (4) C7B—O3B—Cu3B—N1B −3 (2)
C3—C2—C7—C6 3.2 (4) C7B—O3B—Cu3B—O5B −177 (2)
C1—C2—C7—C6 −176.9 (3) O1B—Cu1—O4B—N2B 161 (3)
C6—C7—O3—Cu3 −175.5 (2) O1Bi—Cu1—O4B—N2B −19 (3)
C2—C7—O3—Cu3 5.2 (4) O1B—Cu1—O4B—Cu3B 26.3 (12)
C7—O3—Cu3—N1 −10.5 (3) O1Bi—Cu1—O4B—Cu3B −153.7 (12)
C7—O3—Cu3—O5 168.6 (2) Cu1—O4B—N2B—C8B −147 (4)
O1i—Cu1—O4—N2 8.5 (2) Cu3B—O4B—N2B—C8B −10 (6)
O1—Cu1—O4—N2 −171.5 (2) Cu1—O4B—N2B—Cu2Bi 20 (5)
O1i—Cu1—O4—Cu3 148.13 (12) Cu3B—O4B—N2B—Cu2Bi 157 (3)
O1—Cu1—O4—Cu3 −31.87 (12) Cu3B—O5B—C8B—N2B 14 (5)
Cu1—O4—N2—C8 152.2 (2) Cu3B—O5B—C8B—C9B −168.8 (19)
Cu3—O4—N2—C8 11.7 (3) O4B—N2B—C8B—O5B −3 (7)
Cu1—O4—N2—Cu2i −20.6 (3) Cu2Bi—N2B—C8B—O5B −169 (3)
Cu3—O4—N2—Cu2i −161.17 (14) O4B—N2B—C8B—C9B 180 (3)
Cu3—O5—C8—N2 −8.1 (4) Cu2Bi—N2B—C8B—C9B 14 (7)
Cu3—O5—C8—C9 172.4 (2) O5B—C8B—C9B—C10B −3 (4)
O4—N2—C8—O5 −2.1 (4) N2B—C8B—C9B—C10B 174 (4)
Cu2i—N2—C8—O5 169.5 (2) O5B—C8B—C9B—C14B 177 (3)
O4—N2—C8—C9 177.4 (3) N2B—C8B—C9B—C14B −5 (5)
Cu2i—N2—C8—C9 −11.0 (5) C14B—C9B—C10B—C11B −5 (5)
O5—C8—C9—C10 0.9 (4) C8B—C9B—C10B—C11B 176 (3)
N2—C8—C9—C10 −178.6 (3) C9B—C10B—C11B—C12B 9 (6)
O5—C8—C9—C14 −179.2 (3) C10B—C11B—C12B—C13B −11 (8)
N2—C8—C9—C14 1.3 (5) C11B—C12B—C13B—C14B 9 (7)
C14—C9—C10—C11 −0.5 (5) C10B—C9B—C14B—O6B −175 (3)
C8—C9—C10—C11 179.5 (4) C8B—C9B—C14B—O6B 4 (5)
C9—C10—C11—C12 −1.6 (7) C10B—C9B—C14B—C13B 2 (4)
C10—C11—C12—C13 1.7 (9) C8B—C9B—C14B—C13B −179 (3)
C11—C12—C13—C14 0.3 (9) C12B—C13B—C14B—O6B 173 (4)
C12—C13—C14—O6 177.2 (5) C12B—C13B—C14B—C9B −4 (5)
C12—C13—C14—C9 −2.4 (6) C9B—C14B—O6B—Cu2Bi −13 (4)
C10—C9—C14—O6 −177.2 (3) C13B—C14B—O6B—Cu2Bi 170 (2)
C8—C9—C14—O6 2.9 (5) Cu5B—O7B—N3B—C15B 15 (10)
C10—C9—C14—C13 2.4 (5) Cu4—O7B—N3B—C15B 150 (6)
C8—C9—C14—C13 −177.5 (3) Cu5B—O7B—N3B—Cu6B −161 (5)
C13—C14—O6—Cu2i −176.9 (2) Cu4—O7B—N3B—Cu6B −25 (9)
C9—C14—O6—Cu2i 2.6 (5) Cu5B—O8B—C15B—N3B −11 (9)
O10ii—Cu4—O7—N3 −171.7 (2) Cu5B—O8B—C15B—C16B 172 (4)
O10—Cu4—O7—N3 8.3 (2) O7B—N3B—C15B—O8B −2 (12)
O10ii—Cu4—O7—Cu5 −30.35 (12) Cu6B—N3B—C15B—O8B 173 (7)
O10—Cu4—O7—Cu5 149.65 (12) O7B—N3B—C15B—C16B 175 (6)
Cu4—O7—N3—C15 154.1 (2) Cu6B—N3B—C15B—C16B −10 (14)
Cu5—O7—N3—C15 11.5 (3) O8B—C15B—C16B—C17B 5 (7)
Cu4—O7—N3—Cu6 −23.4 (3) N3B—C15B—C16B—C17B −172 (7)
Cu5—O7—N3—Cu6 −165.93 (15) O8B—C15B—C16B—C21B 177 (5)
O7—N3—C15—O8 −3.6 (4) N3B—C15B—C16B—C21B 0 (10)
Cu6—N3—C15—O8 173.3 (2) C21B—C16B—C17B—C18B 10 (8)
O7—N3—C15—C16 176.5 (2) C15B—C16B—C17B—C18B −177 (5)
Cu6—N3—C15—C16 −6.5 (5) C16B—C17B—C18B—C19B −1 (10)
Cu5—O8—C15—N3 −5.6 (4) C17B—C18B—C19B—C20B −5 (12)
Cu5—O8—C15—C16 174.2 (2) C18B—C19B—C20B—C21B 2 (12)
N3—C15—C16—C17 170.6 (3) C19B—C20B—C21B—O9B 175 (6)
O8—C15—C16—C17 −9.2 (4) C19B—C20B—C21B—C16B 6 (8)
N3—C15—C16—C21 −8.2 (4) C17B—C16B—C21B—O9B −180 (5)
O8—C15—C16—C21 172.0 (3) C15B—C16B—C21B—O9B 9 (8)
C21—C16—C17—C18 1.5 (5) C17B—C16B—C21B—C20B −13 (7)
C15—C16—C17—C18 −177.4 (3) C15B—C16B—C21B—C20B 176 (5)
C16—C17—C18—C19 −1.0 (6) C20B—C21B—O9B—Cu6B −173 (4)
C17—C18—C19—C20 −1.1 (8) C16B—C21B—O9B—Cu6B −6 (7)
C18—C19—C20—C21 2.9 (8) C21B—O9B—Cu6B—N3B −2 (5)
C19—C20—C21—O9 177.3 (4) C21B—O9B—Cu6B—O11B 178 (4)
C19—C20—C21—C16 −2.3 (6) O7Bii—Cu4—O10B—N4B 11 (4)
C17—C16—C21—O9 −179.4 (3) O7B—Cu4—O10B—N4B −169 (4)
C15—C16—C21—O9 −0.6 (5) O7Bii—Cu4—O10B—Cu6B 156 (2)
C17—C16—C21—C20 0.2 (4) O7B—Cu4—O10B—Cu6B −24 (2)
C15—C16—C21—C20 179.0 (3) Cu4—O10B—N4B—C22B −178 (4)
C20—C21—O9—Cu6 −156.7 (2) Cu6B—O10B—N4B—C22B 34 (5)
C16—C21—O9—Cu6 22.9 (4) Cu4—O10B—N4B—Cu5Bii −34 (5)
C21—O9—Cu6—N3 −27.1 (2) Cu6B—O10B—N4B—Cu5Bii 178 (2)
C21—O9—Cu6—O11 158.8 (2) Cu6B—O11B—C22B—N4B 23 (6)
O7ii—Cu4—O10—N4 −28.9 (3) Cu6B—O11B—C22B—C23B −171 (4)
O7—Cu4—O10—N4 151.1 (3) O10B—N4B—C22B—O11B −37 (7)
O7ii—Cu4—O10—Cu6 −170.64 (12) Cu5Bii—N4B—C22B—O11B −173 (4)
O7—Cu4—O10—Cu6 9.36 (12) O10B—N4B—C22B—C23B 156 (5)
Cu4—O10—N4—C22 −153.5 (3) Cu5Bii—N4B—C22B—C23B 20 (8)
Cu6—O10—N4—C22 −10.1 (5) O11B—C22B—C23B—C24B 4 (8)
Cu4—O10—N4—Cu5ii 19.0 (5) N4B—C22B—C23B—C24B 170 (6)
Cu6—O10—N4—Cu5ii 162.5 (2) O11B—C22B—C23B—C28B −177 (5)
Cu6—O11—C22—N4 8.0 (4) N4B—C22B—C23B—C28B −11 (8)
Cu6—O11—C22—C23 −173.11 (19) C28B—C23B—C24B—C25B −10 (11)
O10—N4—C22—O11 1.2 (6) C22B—C23B—C24B—C25B 169 (9)
Cu5ii—N4—C22—O11 −170.1 (3) C23B—C24B—C25B—C26B 8 (17)
O10—N4—C22—C23 −177.7 (3) C24B—C25B—C26B—C27B 0 (18)
Cu5ii—N4—C22—C23 11.0 (6) C25B—C26B—C27B—C28B −8 (14)
O11—C22—C23—C24 −2.4 (4) C24B—C23B—C28B—O12B −169 (5)
N4—C22—C23—C24 176.5 (4) C22B—C23B—C28B—O12B 13 (9)
O11—C22—C23—C28 177.3 (2) C24B—C23B—C28B—C27B 2 (8)
N4—C22—C23—C28 −3.8 (5) C22B—C23B—C28B—C27B −177 (5)
C28—C23—C24—C25 1.3 (4) C26B—C27B—C28B—O12B 178 (6)
C22—C23—C24—C25 −179.0 (3) C26B—C27B—C28B—C23B 7 (9)
C23—C24—C25—C26 −0.9 (5) C23B—C28B—O12B—Cu5Bii −23 (8)
C24—C25—C26—C27 0.1 (5) C27B—C28B—O12B—Cu5Bii 167 (4)
C25—C26—C27—C28 0.5 (5) O13—C29—N5—C30 −2.6 (6)
C26—C27—C28—O12 179.8 (3) O13—C29—N5—C31 179.7 (4)
C26—C27—C28—C23 −0.1 (4) O14—C32—N6—C33 2.0 (6)
C24—C23—C28—O12 179.3 (3) O14—C32—N6—C34 175.9 (3)
C22—C23—C28—O12 −0.3 (4) O15—C35—N7—C36 −0.5 (5)
C24—C23—C28—C27 −0.7 (4) O15—C35—N7—C37 −179.5 (3)
C22—C23—C28—C27 179.6 (3) O16—C38—N8—C40 −179.2 (4)
C27—C28—O12—Cu5ii 177.6 (2) O16—C38—N8—C39 1.8 (6)
C23—C28—O12—Cu5ii −2.5 (4) O17—C41—N9—C42 3.9 (7)
O4Bi—Cu1—O1B—N1B 156 (3) O17—C41—N9—C43 179.9 (5)
O4B—Cu1—O1B—N1B −24 (3) N5—C29—O13—Mn1 153.2 (3)
O4Bi—Cu1—O1B—Cu2B −11.3 (14) N6—C32—O14—Mn1 176.8 (3)
O4B—Cu1—O1B—Cu2B 168.7 (14) N7—C35—O15—Mn1 111.5 (3)
Cu1—O1B—N1B—C1B −171 (2) N8—C38—O16—Mn1 −68.8 (6)

Symmetry codes: (i) −x+2, −y, −z+1; (ii) −x+1, −y, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O18—H18C···O3 0.83 (2) 2.07 (3) 2.847 (3) 156 (5)
O18—H18D···O9 0.84 (2) 1.95 (2) 2.778 (3) 169 (5)
O19—H19C···O5 0.83 (2) 1.93 (2) 2.746 (3) 167 (5)
O19—H19D···O17 0.84 (2) 1.88 (2) 2.713 (4) 175 (5)

Funding Statement

This work was funded by Shippensburg Universty Foundation Undergraduate Research Fund grant . National Science Foundation grant CHE 1625543 to M. Zeller.

References

  1. Atzeri, C., Marchiò, L., Chow, C. Y., Kampf, J. W., Pecoraro, V. L. & Tegoni, M. (2016). Chem. Eur. J. 22, 6482–6486. [DOI] [PubMed]
  2. Bodwin, J. J. & Pecoraro, V. L. (2000). Inorg. Chem. 39, 3434–3435. [DOI] [PubMed]
  3. Bruker (2016). Apex3 v2016.9-0, SAINT V8.37A, Bruker AXS Inc.: Madison (WI), USA, 2013/2014.
  4. Cal, M., Jaremko, Ł., Jaremko, M. & Stefanowicz, P. (2013). New J. Chem. 37, 3770–3777.
  5. Casanova, D., Cirera, J., Llunell, M., Alemany, P., Avnir, D. & Alvarez, S. (2004). J. Am. Chem. Soc. 126, 1755–1763. [DOI] [PubMed]
  6. Cirera, J., Ruiz, E. & Alvarez, S. (2005). Organometallics, 24, 1556–1562.
  7. Dallavalle, F. & Tegoni, M. (2001). Polyhedron, 20, 2697–2704.
  8. Gibney, B. R., Kessissoglou, D. P., Kampf, J. W. & Pecoraro, V. L. (1994). Inorg. Chem. 33, 4840–4849.
  9. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  10. Gumienna-Kontecka, E., Golenya, I. A., Dudarenko, N. M., Dobosz, A., Haukka, M., Fritsky, I. O. & Swiatek-Kozlowska, J. (2007). New J. Chem. 31, 1798–1805.
  11. Halfen, J. A., Bodwin, J. J. & Pecoraro, V. L. (1998). Inorg. Chem. 37, 5416–5417. [DOI] [PubMed]
  12. Happ, P. & Rentschler, E. (2014). Dalton Trans. 43, 15308–15312. [DOI] [PubMed]
  13. Herring, J., Zeller, M. & Zaleski, C. M. (2011). Acta Cryst. E67, m419–m420. [DOI] [PMC free article] [PubMed]
  14. Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. [DOI] [PMC free article] [PubMed]
  15. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  16. Lago, A. B., Pasán, J., Cañadillas-Delgado, L., Fabelo, O., Casado, F. J. M., Julve, M., Lloret, F. & Ruiz-Pérez, C. (2011). New J. Chem. 35, 1817–1822.
  17. Liu, W. & Thorp, H. H. (1993). Inorg. Chem. 32, 4102–4105.
  18. Llunell, M., Casanova, D., Cirera, J., Alemany, P. & Alvarez, S. (2013). SHAPE. Shape Software, Barcelona, Spain.
  19. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  20. McDonald, C., Whyte, T., Taylor, S. M., Sanz, S., Brechin, E. K., Gaynor, D. & Jones, L. F. (2013). CrystEngComm, 15, 6672–6681.
  21. Mezei, G., Zaleski, C. M. & Pecoraro, V. L. (2007). Chem. Rev. 107, 4933–5003. [DOI] [PubMed]
  22. Orama, M., Saarinen, H., Korvenranta, J. & Raikas, T. (1992). Acta Chem. Scand. 46, 1083–1086.
  23. Ostrowska, M., Fritsky, I. O., Gumienna-Kontecka, E. & Pavlishchuk, A. V. (2016). Coord. Chem. Rev. 327–328, 304–332.
  24. Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Lofland, S. E., Kiskin, M. A., Efimov, N. N., Ugolkova, E. A., Minin, V. V., Novotortsev, V. M. & Addison, A. W. (2017). Eur. J. Inorg. Chem. pp. 4866–4878.
  25. Pinsky, M. & Avnir, D. (1998). Inorg. Chem. 37, 5575–5582. [DOI] [PubMed]
  26. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  27. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  28. Tegoni, M., Dallavalle, F., Belosi, B. & Remelli, M. (2004). Dalton Trans. pp. 1329–1333. [DOI] [PubMed]
  29. Tegoni, M., Ferretti, L., Sansone, F., Remelli, M., Bertolasi, V. & Dallavalle, F. (2007). Chem. Eur. J. 13, 1300–1308. [DOI] [PubMed]
  30. Tegoni, M. & Remelli, M. (2012). Coord. Chem. Rev. 256, 289–315.
  31. Tegoni, M., Remelli, M., Bacco, D., Marchiò, L. & Dallavalle, F. (2008). Dalton Trans. pp. 2693–2701. [DOI] [PubMed]
  32. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989020005770/yk2128sup1.cif

e-76-00747-sup1.cif (2.9MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020005770/yk2128Isup2.hkl

e-76-00747-Isup2.hkl (2.2MB, hkl)

CCDC reference: 1999315

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES