The title compound consists of perimidin and methoxyphenol units. In the crystal, O—HPhnl⋯NPrmdn and N—HPrmdn⋯OPhnl (Phnl = phenol and Prmdn = perimidine) hydrogen bonds link the molecules into infinite chains along the b-axis direction. C—H⋯π interactions may further stabilize the crystal structure.
Keywords: crystal structure, perimidin, methoxyphenol, Hirshfeld surface
Abstract
The title compound, C18H16N2O2, consists of perimidine and methoxyphenol units, where the tricyclic perimidine unit contains a naphthalene ring system and a non-planar C4N2 ring adopting an envelope conformation with the NCN group hinged by 47.44 (7)° with respect to the best plane of the other five atoms. In the crystal, O—HPhnl⋯NPrmdn and N—HPrmdn⋯OPhnl (Phnl = phenol and Prmdn = perimidine) hydrogen bonds link the molecules into infinite chains along the b-axis direction. Weak C—H⋯π interactions may further stabilize the crystal structure. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (49.0%), H⋯C/C⋯H (35.8%) and H⋯O/O⋯H (12.0%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing. Computational chemistry indicates that in the crystal, the O—HPhnl⋯NPrmdn and N—HPrmdn⋯OPhnl hydrogen-bond energies are 58.4 and 38.0 kJ mol−1, respectively. Density functional theory (DFT) optimized structures at the B3LYP/ 6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.
Chemical context
Six-membered heterocyclic compounds carrying two nitrogen atoms have been widely studied (Aly & El-Shaieb, 2004 ▸; Koca et al., 2012 ▸; Zhao et al., 2012 ▸; Baranov & Fadeev, 2016 ▸; Lahmidi et al., 2018 ▸). Perimidine derivatives (perinaphtho-fused perimidine ring systems) in particular have aroused a lot of interest because of their applications in photophysics (Del Valle et al., 1997 ▸) and their use as colouring matters for polyester fibers (Claramunt et al., 1995 ▸) and as fluorescent materials (Varsha et al., 2010 ▸). These molecules have a wide range of biological applications (Dzieduszycka et al., 2002 ▸), indicating that the perimidine group is a potentially useful model in medicinal chemistry research and therapeutic applications. In coordination chemistry, perimidine derivatives have been studied for their interesting catalytic activities (Cucciolito et al., 2013a
▸; Akıncı et al., 2014 ▸) as well as in the field of corrosion inhibition (He et al., 2018 ▸). As a continuation of our research on the development of new perimidine derivatives with potential pharmacological applications, we studied the condensation reaction of ortho-vanillin and 1,8-diaminonaphthalene in ether under agitation at room temperature, which gave the title compound, 2-(2,3-dihydro-1H-perimidin-2-yl)-6-methoxyphenol, in good yield. We report herein the synthesis, the molecular and crystal structures along with Hirshfeld surface analysis and computational calculations of the title compound, (I).
Structural commentary
The title compound, (I), consists of perimidine and methoxyphenol units, where the tricyclic perimidine unit contains a naphthalene ring system and a non-planar C4N2 ring (Fig. 1 ▸). A puckering analysis of the non-planar six-membered C4N2, B (N1/N2/C1/C9–C11), ring gave the parameters q 2 = 0.3879 (12) Å, q 3 = −0.2565 (12) Å, Q T = 0.4650 (13) Å, θ2 = 123.47 (15)° and φ2 = 235.98 (18)°]. The ring adopts an envelope conformation, where atom C1 is at the flap position and at a distance of 0.6454 (12) Å from the best plane through the other five atoms. The C4N2 ring is hinged about the N⋯N vector with the N1—C1—N2 plane being inclined by 47.44 (7)° to the best plane of the other five atoms (N1/N2/C9–C11). In the methoxyphenol moiety, the C8—O2—C4—C5 and C8—O2—C4—C3 torsion angles are −2.9 (2)° and 176.72 (12)°, respectively. Rings A (C2–C7), C (C10–C15) and D (C9/C10/C15–C18) are oriented at dihedral angles of A/C = 65.39 (4)°, A/D = 69.63 (4)° and C/D = 4.31 (3)°.
Figure 1.
The asymmetric unit of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Supramolecular features
In the crystal, O—HPhnl⋯NPrmdn and N—HPrmdn⋯OPhnl (Phnl = phenol and Prmdn = perimidine) hydrogen bonds (Table 1 ▸) link the molecules into infinite chains along the b-axis direction (Fig. 2 ▸). The C—H⋯π interactions (Table 1 ▸) may further stabilize the crystal structure.
Table 1. Hydrogen-bond geometry (Å, °).
Cg1 and Cg4 are the centroids of rings A (C2–C7) and D (C9/C10/C15–C18), respectively.
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O1—H1O⋯N2 | 0.82 | 1.96 | 2.6667 (14) | 144 |
| N2—H2N⋯O1i | 0.864 (15) | 2.196 (15) | 2.9870 (14) | 152.2 (13) |
| C8—H8A⋯Cg1iv | 0.96 | 2.82 | 3.6580 (17) | 146 |
| C13—H13⋯Cg4i | 0.93 | 2.87 | 3.7336 (16) | 155 |
| C16—H16⋯Cg1v | 0.93 | 2.87 | 3.4880 (15) | 125 |
Symmetry codes: (i)
; (iv)
; (v)
.
Figure 2.
A partial packing diagram viewed along the a-axis direction with O—HPhnl⋯NPrmdn and N—HPrmdn⋯OPhnl (Phnl = phenol and Prmdn = perimidine) hydrogen bonds shown as dashed lines. H-atoms not included in hydrogen bonding have been omitted for clarity.
Hirshfeld surface analysis
In order to visualize the intermolecular interactions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977 ▸; Spackman & Jayatilaka, 2009 ▸) was carried out by using Crystal Explorer 17.5 (Turner et al., 2017 ▸). In the HS plotted over d norm (Fig. 3 ▸), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016 ▸). The bright-red spot appearing near O1 indicates its role as the respective donor and/or acceptor; it also appears as blue and red regions corresponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008 ▸; Jayatilaka et al., 2005 ▸) as shown in Fig. 4 ▸. The blue regions indicate the positive electrostatic potential (hydrogen-bond donors), while the red regions indicate the negative electrostatic potential (hydrogen-bond acceptors). The shape-index of the HS is a tool to visualize the π–π stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no π–π interactions. Fig. 5 ▸ clearly suggests that there are no π–π interactions in (I).
Figure 3.
View of the three-dimensional Hirshfeld surface of the title compound plotted over d norm in the range −0.4133 to 1.3883 a.u.
Figure 4.
View of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range −0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory. Hydrogen-bond donors and acceptors are shown as blue and red regions around the atoms corresponding to positive and negative potentials, respectively.
Figure 5.
Hirshfeld surface of the title compound plotted over shape-index.
The overall two-dimensional fingerprint plot, Fig. 6 ▸ a, and those delineated into H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, H⋯N/N⋯H, C⋯C and O⋯C/C⋯O contacts (McKinnon et al., 2007 ▸) are illustrated in Fig. 6 ▸ b-g, respectively, together with their relative contributions to the Hirshfeld surface. The most important interaction is H⋯H contributing 49.0% to the overall crystal packing, which is reflected in Fig. 6 ▸ b as widely scattered points of high density due to the large hydrogen-atom content of the molecule with the tip at d e = d i = 1.20 Å. In the presence of C—H⋯π interactions, the pair of characteristic wings in the fingerprint plot, Fig. 6 ▸ c, delineated into H⋯C/C⋯H contacts (Table 2 ▸; 35.8% contribution to the HS) have the tips at d e + d i = 2.68 Å. The pair of spikes in the fingerprint plot delineated into H⋯O/O⋯H contacts (12.0% contribution, Fig. 6 ▸ d) have a symmetrical distribution of points with the tips at d e + d i = 3.03 Å. The H⋯N/N⋯H contacts (Fig. 6 ▸ e, 1.8% contribution) have a distribution of points with the tips at d e + d i = 2.72 Å. The C⋯C contacts (0.8%, Fig. 6 ▸ f) have the tip at d e = d i = 3.37 Å. Finally, the O⋯C/C⋯O interactions make only a 0.5% contribution to the overall crystal packing.
Figure 6.
The full two-dimensional fingerprint plots for the title compound, showing (a) all interactions, and delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯O/O⋯H, (e) H⋯N/N⋯H and (f) O⋯C/C⋯O interactions. The d i and d e values are the closest internal and external distances (in Å) from given points on the Hirshfeld surface contacts.
Table 2. Selected interatomic distances (Å).
| O1⋯O2 | 2.5772 (14) | C5⋯H8A i | 2.94 |
| O1⋯N2 | 2.6668 (14) | C5⋯H8B | 2.72 |
| C12⋯O1i | 3.1736 (17) | C5⋯H8C | 2.80 |
| C17⋯O1ii | 3.3145 (17) | C8⋯H5 | 2.55 |
| C11⋯O1i | 3.3650 (15) | H13⋯C9i | 2.93 |
| N2⋯O1i | 2.9867 (14) | H13⋯C10i | 2.97 |
| H2N⋯O1i | 2.196 (15) | C10⋯H1 | 2.95 |
| H18⋯O1ii | 2.88 | C12⋯H1O i | 2.88 |
| H12⋯O1i | 2.66 | H1⋯H7 | 2.39 |
| H17⋯O1ii | 2.63 | H1N⋯H18 | 2.44 |
| O2⋯H6iii | 2.87 | H1O⋯H2N | 2.31 |
| N1⋯H1O | 2.86 | H17⋯H1O ii | 2.57 |
| H12⋯N1i | 2.86 | H18⋯H1O ii | 2.47 |
| N2⋯H1O | 1.96 | H2N⋯H12 | 2.43 |
| C18⋯C12ii | 3.567 (2) | H5⋯H8B | 2.28 |
| C1⋯H1O | 2.46 | H5⋯H8C | 2.40 |
| C4⋯H8A i | 2.92 | H14⋯H16 | 2.53 |
Symmetry codes: (i)
; (ii)
; (iii)
.
The Hirshfeld surface representations with the function d norm plotted onto the surface are shown for the H⋯H, H⋯C/C⋯H and H⋯O/O⋯H interactions in Fig. 7 ▸ a–c, respectively.
Figure 7.
The Hirshfeld surface representations with the function d norm plotted onto the surface for (a) H⋯H, (b) H⋯C/C⋯H and (c) H⋯O/O⋯H interactions.
The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯C/C⋯H and H⋯O/O⋯H interactions suggest that van der Waals interactions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015 ▸).
Interaction energy calculations
The intermolecular interaction energies were calculated using the CE–B3LYP/6–31G(d,p) energy model available in Crystal Explorer 17.5 (Turner et al., 2017 ▸), where a cluster of molecules is generated by applying crystallographic symmetry operations with respect to a selected central molecule within a default radius of 3.8 Å (Turner et al., 2014 ▸). The total intermolecular energy (E tot) is the sum of electrostatic (E ele), polarization (E pol), dispersion (E dis) and exchange-repulsion (E rep) energies (Turner et al., 2015 ▸) with scale factors of 1.057, 0.740, 0.871 and 0.618, respectively (Mackenzie et al., 2017 ▸). Hydrogen-bonding interaction energies (in kJ mol−1) were calculated as −37.5 (E ele), −7.8 (E pol), −52.0 (E dis), 52.4 (E rep) and −58.4 (E tot) [or O1—H1O⋯N2 and −11.3 (E ele), −3.4 (E pol), −48.4 (E dis), 30.0 (E rep) and −38.0 (E tot) for N2—H2N⋯O1.
DFT calculations
The optimized structure of the title compound, (I), in the gas phase was generated theoretically via density functional theory (DFT) using standard B3LYP functional and 6–311 G(d,p) basis-set calculations (Becke, 1993 ▸) as implemented in GAUSSIAN 09 (Frisch et al., 2009 ▸). The theoretical and experimental results were in good agreement (Table 3 ▸). The highest-occupied molecular orbital (HOMO), acting as an electron donor, and the lowest-unoccupied molecular orbital (LUMO), acting as an electron acceptor, are very important parameters for quantum chemistry. When the energy gap is small, the molecule is highly polarizable and has high chemical reactivity. The DFT calculations provide some important information on the reactivity and site selectivity of the molecular framework. E HOMO and E LUMO clarify the inevitable charge-exchange collaboration inside the studied material, electronegativity (χ), hardness (η), potential (μ), electrophilicity (ω) and softness (σ) are recorded in Table 4 ▸. The significance of η and σ is for the evaluation of both the reactivity and stability. The electron transition from the HOMO to the LUMO energy level is shown in Fig. 8 ▸. The HOMO and LUMO are localized in the plane extending from the whole 2-(2,3-dihydro-1H-perimidin-2-yl)-6-methoxyphenol ring. The energy band gap [ΔE = E LUMO − E HOMO] of the molecule is about 2.6162 eV, and the frontier molecular orbital energies, E HOMO and E LUMO are −3.1985 and −0.5823 eV, respectively.
Table 3. Comparison of selected (X-ray and DFT) geometric data (Å, °).
| Bonds/angles | X-ray | B3LYP/6–311G(d,p) |
|---|---|---|
| O1—C3 | 1.3587 (14) | 1.38948 |
| O1—H1O a | 0.82 | 0.97611 |
| N1—C9 | 1.3865 (16) | 1.39921 |
| N1—C1 | 1.4529 (17) | 1.47118 |
| N1—H1N | 0.870 (15) | 0.90721 |
| C1—N2 | 1.4745 (16) | 1.47531 |
| C1—C2 | 1.5074 (17) | 1.51309 |
| O2—C4 | 1.3677 (15) | 1.40231 |
| O2—C8 | 1.4088 (17) | 1.45201 |
| N2—C11 | 1.4124 (16) | 1.39016 |
| N2—H2N | 0.864 (15) | 0.90717 |
| C3—O1—H1O a | 109.5 | 109.04 |
| C9—N1—C1 | 116.86 (10) | 117.19 |
| C9—N1—H1N | 115.4 (10) | 116.29 |
| C1—N1—H1N | 113.3 (10) | 114.01 |
| N1—C1—N2 | 106.56 (10) | 106.87 |
| N1—C1—C2 | 109.17 (10) | 110.78 |
| N2—C1—C2 | 111.38 (10) | 110.82 |
| N1—C1—H1a | 109.9 | 110.12 |
| N2—C1—H1a | 109.9 | 109.09 |
Note: (a) These four entries were not refined, as they each include a constrained H atom.
Table 4. Calculated energies.
| Molecular Energy (a.u.) (eV) | Compound (I) |
|---|---|
| Total Energy TE (eV) | −26013 |
| E HOMO (eV) | −3.1985 |
| E LUMO (eV) | −0.5823 |
| Gap, ΔE (eV) | 2.6162 |
| Dipole moment, μ (Debye) | 7.0880 |
| Ionization potential, I (eV) | 3.1985 |
| Electron affinity, A | 0.5823 |
| Electronegativity, χ | 1.8904 |
| Hardness, η | 1.3081 |
| Electrophilicity index, ω | 1.3660 |
| Softness, σ | 0.7645 |
| Fraction of electrons transferred, ΔN | 1.9530 |
Figure 8.
The energy band gap of the title compound, (I).
Database survey
Similar compounds of the perimidine derivative have also been reported (Ghorbani, 2012 ▸; Fun et al., 2011 ▸; Maloney et al., 2013 ▸; Cucciolito et al., 2013b
▸; Manimekalai et al., 2014 ▸), in which the groups at position 2 are almost coplanar with the perimidic nucleus (Ghorbani, 2012 ▸; Fun et al., 2011 ▸; Cucciolito et al., 2013b
▸). The closest examples to the title compound, (I), are (II) (Cucciolito et al., 2013b
▸) and (III) (Fun et al., 2011 ▸), while (IV) (Ghorbani, 2012 ▸), (V) (Maloney et al., 2013 ▸) and (VI) (Manimekalai et al., 2014 ▸) are more distant relatives.
Synthesis and crystallization
The title compound, (I), was synthesized from the condensation of ortho-vanillin (3 mmol) and 1,8- diaminonaphthalene (4 mmol) in ether (30 ml) under agitation at room temperature. Brown single crystals were obtained by the slow evaporation of the acetone solvent after 15 days (yield: 75%).
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 5 ▸. The C-bound H atoms were positioned geometrically, with C—H = 0.93 Å (for aromatic H atoms and H14C, H15A and H15B of the allyl moiety), 0.98 Å (for methine H atom) and 0.97 Å (for methylene H atoms), and constrained to ride on their parent atoms, with U iso(H) = 1.2U eq(C). The hydroxyl H atom was placed in a calculated position with O—H = 0.82 Å and U iso(H) = 1.5U eq(O) while H atoms bonded to N atoms were refined independently with U iso(H) = 1.2U eq(N)
Table 5. Experimental details.
| Crystal data | |
| Chemical formula | C18H16N2O2 |
| M r | 292.33 |
| Crystal system, space group | Orthorhombic, P b c a |
| Temperature (K) | 293 |
| a, b, c (Å) | 12.7245 (7), 9.5887 (6), 23.7276 (14) |
| V (Å3) | 2895.0 (3) |
| Z | 8 |
| Radiation type | Mo Kα |
| μ (mm−1) | 0.09 |
| Crystal size (mm) | 0.52 × 0.10 × 0.04 |
| Data collection | |
| Diffractometer | Rigaku XtaLAB PRO |
| Absorption correction | Multi-scan (CrysAlis PRO; Rigaku OD, 2018 ▸) |
| T min, T max | 0.390, 1.000 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 16885, 3499, 2640 |
| R int | 0.036 |
| (sin θ/λ)max (Å−1) | 0.682 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.045, 0.118, 1.04 |
| No. of reflections | 3496 |
| No. of parameters | 207 |
| H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
| Δρmax, Δρmin (e Å−3) | 0.20, −0.21 |
Supplementary Material
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989020004284/lh5952sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020004284/lh5952Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989020004284/lh5952Isup3.cdx
Supporting information file. DOI: 10.1107/S2056989020004284/lh5952Isup4.cml
CCDC reference: 1976883
Additional supporting information: crystallographic information; 3D view; checkCIF report
supplementary crystallographic information
Crystal data
| C18H16N2O2 | Dx = 1.341 Mg m−3 |
| Mr = 292.33 | Mo Kα radiation, λ = 0.71073 Å |
| Orthorhombic, Pbca | Cell parameters from 6789 reflections |
| a = 12.7245 (7) Å | θ = 3.2–28.1° |
| b = 9.5887 (6) Å | µ = 0.09 mm−1 |
| c = 23.7276 (14) Å | T = 293 K |
| V = 2895.0 (3) Å3 | Elongated platelet, brown |
| Z = 8 | 0.52 × 0.10 × 0.04 mm |
| F(000) = 1232 |
Data collection
| Rigaku XtaLAB PRO diffractometer | 3499 independent reflections |
| Radiation source: micro-focus sealed X-ray tube, Rigaku micromax 003 | 2640 reflections with I > 2σ(I) |
| Rigaku Integrated Confocal MaxFlux double bounce multi-layer mirror optics monochromator | Rint = 0.036 |
| Detector resolution: 5.811 pixels mm-1 | θmax = 29.0°, θmin = 2.4° |
| ω scans | h = −16→14 |
| Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2018) | k = −12→13 |
| Tmin = 0.390, Tmax = 1.000 | l = −30→30 |
| 16885 measured reflections |
Refinement
| Refinement on F2 | Primary atom site location: other |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: mixed |
| wR(F2) = 0.118 | H atoms treated by a mixture of independent and constrained refinement |
| S = 1.04 | w = 1/[σ2(Fo2) + (0.0609P)2 + 0.4131P] where P = (Fo2 + 2Fc2)/3 |
| 3496 reflections | (Δ/σ)max = 0.001 |
| 207 parameters | Δρmax = 0.20 e Å−3 |
| 0 restraints | Δρmin = −0.21 e Å−3 |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| O1 | 0.73352 (7) | 0.23966 (10) | 0.63178 (4) | 0.0437 (2) | |
| H1O | 0.731483 | 0.294081 | 0.658419 | 0.066* | |
| N1 | 0.52935 (9) | 0.35194 (11) | 0.70590 (5) | 0.0395 (3) | |
| H1N | 0.4730 (12) | 0.3089 (15) | 0.6946 (6) | 0.047* | |
| C1 | 0.57436 (10) | 0.44289 (13) | 0.66329 (5) | 0.0373 (3) | |
| H1 | 0.532216 | 0.528041 | 0.659972 | 0.045* | |
| O2 | 0.72915 (8) | 0.09678 (11) | 0.53981 (4) | 0.0519 (3) | |
| N2 | 0.68133 (8) | 0.47793 (11) | 0.68254 (4) | 0.0379 (3) | |
| H2N | 0.7113 (11) | 0.5331 (16) | 0.6587 (6) | 0.045* | |
| C2 | 0.57650 (10) | 0.36729 (13) | 0.60760 (5) | 0.0363 (3) | |
| C3 | 0.65312 (9) | 0.26779 (12) | 0.59586 (5) | 0.0346 (3) | |
| C4 | 0.64940 (10) | 0.19120 (13) | 0.54596 (5) | 0.0383 (3) | |
| C5 | 0.56894 (11) | 0.21405 (14) | 0.50790 (6) | 0.0449 (3) | |
| H5 | 0.566134 | 0.163263 | 0.474546 | 0.054* | |
| C6 | 0.49246 (11) | 0.31282 (15) | 0.51959 (6) | 0.0500 (4) | |
| H6 | 0.438253 | 0.327981 | 0.494027 | 0.060* | |
| C9 | 0.52580 (9) | 0.40296 (12) | 0.76054 (5) | 0.0346 (3) | |
| C7 | 0.49623 (11) | 0.38823 (14) | 0.56858 (6) | 0.0458 (3) | |
| H7 | 0.444503 | 0.454306 | 0.575894 | 0.055* | |
| C8 | 0.72720 (13) | 0.01056 (17) | 0.49174 (7) | 0.0603 (4) | |
| H8A | 0.788077 | −0.048578 | 0.491698 | 0.090* | |
| H8B | 0.727304 | 0.067394 | 0.458433 | 0.090* | |
| H8C | 0.664899 | −0.045880 | 0.492341 | 0.090* | |
| C10 | 0.60767 (9) | 0.49588 (12) | 0.77664 (5) | 0.0335 (3) | |
| C11 | 0.68804 (9) | 0.53139 (12) | 0.73789 (5) | 0.0347 (3) | |
| C12 | 0.77148 (11) | 0.61181 (14) | 0.75512 (6) | 0.0441 (3) | |
| H12 | 0.825905 | 0.631841 | 0.730241 | 0.053* | |
| C13 | 0.77415 (12) | 0.66349 (15) | 0.81036 (6) | 0.0506 (4) | |
| H13 | 0.830410 | 0.718819 | 0.821577 | 0.061* | |
| C14 | 0.69668 (12) | 0.63475 (14) | 0.84781 (6) | 0.0479 (3) | |
| H14 | 0.699244 | 0.673103 | 0.883784 | 0.057* | |
| C15 | 0.61190 (10) | 0.54681 (13) | 0.83261 (5) | 0.0384 (3) | |
| C16 | 0.53296 (10) | 0.50546 (15) | 0.87065 (6) | 0.0451 (3) | |
| H16 | 0.532878 | 0.540825 | 0.907150 | 0.054* | |
| C17 | 0.45685 (11) | 0.41435 (16) | 0.85456 (6) | 0.0498 (4) | |
| H17 | 0.406633 | 0.386074 | 0.880644 | 0.060* | |
| C18 | 0.45257 (10) | 0.36232 (15) | 0.79961 (6) | 0.0445 (3) | |
| H18 | 0.399877 | 0.299926 | 0.789503 | 0.053* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| O1 | 0.0417 (5) | 0.0466 (5) | 0.0427 (5) | 0.0082 (4) | −0.0125 (4) | −0.0068 (4) |
| N1 | 0.0352 (6) | 0.0420 (6) | 0.0412 (6) | −0.0088 (5) | 0.0001 (4) | −0.0046 (5) |
| C1 | 0.0358 (7) | 0.0346 (6) | 0.0416 (7) | 0.0020 (5) | −0.0025 (5) | 0.0001 (5) |
| O2 | 0.0499 (6) | 0.0560 (6) | 0.0499 (6) | 0.0108 (5) | −0.0044 (4) | −0.0146 (5) |
| N2 | 0.0378 (6) | 0.0389 (6) | 0.0370 (6) | −0.0084 (5) | 0.0024 (4) | 0.0003 (4) |
| C2 | 0.0382 (6) | 0.0346 (6) | 0.0361 (6) | −0.0014 (5) | −0.0029 (5) | 0.0039 (5) |
| C3 | 0.0336 (6) | 0.0356 (6) | 0.0347 (6) | −0.0029 (5) | −0.0035 (5) | 0.0048 (5) |
| C4 | 0.0380 (7) | 0.0381 (6) | 0.0387 (7) | −0.0015 (5) | 0.0007 (5) | 0.0012 (5) |
| C5 | 0.0510 (8) | 0.0482 (8) | 0.0354 (7) | −0.0046 (6) | −0.0051 (6) | −0.0013 (6) |
| C6 | 0.0500 (8) | 0.0550 (8) | 0.0451 (8) | 0.0023 (7) | −0.0163 (6) | 0.0049 (7) |
| C9 | 0.0309 (6) | 0.0339 (6) | 0.0389 (7) | 0.0033 (5) | −0.0009 (5) | 0.0000 (5) |
| C7 | 0.0439 (7) | 0.0458 (7) | 0.0476 (8) | 0.0072 (6) | −0.0095 (6) | 0.0021 (6) |
| C8 | 0.0658 (10) | 0.0599 (10) | 0.0551 (9) | 0.0081 (8) | 0.0010 (7) | −0.0165 (8) |
| C10 | 0.0336 (6) | 0.0298 (6) | 0.0372 (6) | 0.0032 (5) | −0.0017 (5) | 0.0027 (5) |
| C11 | 0.0371 (6) | 0.0300 (6) | 0.0371 (6) | −0.0005 (5) | −0.0010 (5) | 0.0020 (5) |
| C12 | 0.0431 (7) | 0.0437 (7) | 0.0454 (7) | −0.0106 (6) | −0.0011 (6) | 0.0032 (6) |
| C13 | 0.0550 (9) | 0.0468 (8) | 0.0499 (8) | −0.0182 (7) | −0.0099 (6) | 0.0010 (7) |
| C14 | 0.0599 (9) | 0.0446 (7) | 0.0392 (7) | −0.0069 (7) | −0.0064 (6) | −0.0033 (6) |
| C15 | 0.0414 (7) | 0.0355 (6) | 0.0384 (7) | 0.0047 (5) | −0.0030 (5) | 0.0016 (5) |
| C16 | 0.0445 (7) | 0.0547 (8) | 0.0362 (7) | 0.0053 (6) | 0.0017 (5) | −0.0019 (6) |
| C17 | 0.0380 (7) | 0.0662 (9) | 0.0452 (8) | 0.0001 (7) | 0.0079 (6) | 0.0039 (7) |
| C18 | 0.0328 (7) | 0.0502 (8) | 0.0504 (8) | −0.0046 (6) | 0.0027 (6) | −0.0005 (6) |
Geometric parameters (Å, º)
| O1—C3 | 1.3587 (14) | C9—C10 | 1.4230 (17) |
| O1—H1O | 0.8200 | C7—H7 | 0.9300 |
| N1—C9 | 1.3865 (16) | C8—H8A | 0.9600 |
| N1—C1 | 1.4529 (17) | C8—H8B | 0.9600 |
| N1—H1N | 0.870 (15) | C8—H8C | 0.9600 |
| C1—N2 | 1.4745 (16) | C10—C15 | 1.4161 (17) |
| C1—C2 | 1.5074 (17) | C10—C11 | 1.4168 (16) |
| C1—H1 | 0.9800 | C11—C12 | 1.3744 (18) |
| O2—C4 | 1.3677 (15) | C12—C13 | 1.4017 (19) |
| O2—C8 | 1.4088 (17) | C12—H12 | 0.9300 |
| N2—C11 | 1.4124 (16) | C13—C14 | 1.355 (2) |
| N2—H2N | 0.864 (15) | C13—H13 | 0.9300 |
| C2—C3 | 1.3922 (17) | C14—C15 | 1.4160 (19) |
| C2—C7 | 1.3930 (17) | C14—H14 | 0.9300 |
| C3—C4 | 1.3942 (17) | C15—C16 | 1.4074 (18) |
| C4—C5 | 1.3826 (18) | C16—C17 | 1.359 (2) |
| C5—C6 | 1.386 (2) | C16—H16 | 0.9300 |
| C5—H5 | 0.9300 | C17—C18 | 1.397 (2) |
| C6—C7 | 1.370 (2) | C17—H17 | 0.9300 |
| C6—H6 | 0.9300 | C18—H18 | 0.9300 |
| C9—C18 | 1.3710 (17) | ||
| O1···O2 | 2.5772 (14) | C5···H8Ai | 2.94 |
| O1···N2 | 2.6668 (14) | C5···H8B | 2.72 |
| C12···O1i | 3.1736 (17) | C5···H8C | 2.80 |
| C17···O1ii | 3.3145 (17) | C8···H5 | 2.55 |
| C11···O1i | 3.3650 (15) | H13···C9i | 2.93 |
| N2···O1i | 2.9867 (14) | H13···C10i | 2.97 |
| H2N···O1i | 2.196 (15) | C10···H1 | 2.95 |
| H18···O1ii | 2.88 | C12···H1Oi | 2.88 |
| H12···O1i | 2.66 | H1···H7 | 2.39 |
| H17···O1ii | 2.63 | H1N···H18 | 2.44 |
| O2···H6iii | 2.87 | H1O···H2N | 2.31 |
| N1···H1O | 2.86 | H17···H1Oii | 2.57 |
| H12···N1i | 2.86 | H18···H1Oii | 2.47 |
| N2···H1O | 1.96 | H2N···H12 | 2.43 |
| C18···C12ii | 3.567 (2) | H5···H8B | 2.28 |
| C1···H1O | 2.46 | H5···H8C | 2.40 |
| C4···H8Ai | 2.92 | H14···H16 | 2.53 |
| C3—O1—H1O | 109.5 | C2—C7—H7 | 119.5 |
| C9—N1—C1 | 116.86 (10) | O2—C8—H8A | 109.5 |
| C9—N1—H1N | 115.4 (10) | O2—C8—H8B | 109.5 |
| C1—N1—H1N | 113.3 (10) | H8A—C8—H8B | 109.5 |
| N1—C1—N2 | 106.56 (10) | O2—C8—H8C | 109.5 |
| N1—C1—C2 | 109.17 (10) | H8A—C8—H8C | 109.5 |
| N2—C1—C2 | 111.38 (10) | H8B—C8—H8C | 109.5 |
| N1—C1—H1 | 109.9 | C15—C10—C11 | 119.89 (11) |
| N2—C1—H1 | 109.9 | C15—C10—C9 | 119.70 (11) |
| C2—C1—H1 | 109.9 | C11—C10—C9 | 120.31 (11) |
| C4—O2—C8 | 117.50 (11) | C12—C11—N2 | 121.79 (11) |
| C11—N2—C1 | 115.25 (10) | C12—C11—C10 | 119.96 (11) |
| C11—N2—H2N | 111.1 (10) | N2—C11—C10 | 118.20 (10) |
| C1—N2—H2N | 110.1 (10) | C11—C12—C13 | 119.68 (12) |
| C3—C2—C7 | 118.64 (12) | C11—C12—H12 | 120.2 |
| C3—C2—C1 | 121.17 (11) | C13—C12—H12 | 120.2 |
| C7—C2—C1 | 120.00 (11) | C14—C13—C12 | 121.57 (13) |
| O1—C3—C2 | 122.54 (11) | C14—C13—H13 | 119.2 |
| O1—C3—C4 | 116.99 (11) | C12—C13—H13 | 119.2 |
| C2—C3—C4 | 120.47 (11) | C13—C14—C15 | 120.54 (12) |
| O2—C4—C5 | 125.78 (12) | C13—C14—H14 | 119.7 |
| O2—C4—C3 | 114.47 (11) | C15—C14—H14 | 119.7 |
| C5—C4—C3 | 119.75 (12) | C16—C15—C14 | 123.25 (12) |
| C4—C5—C6 | 119.84 (12) | C16—C15—C10 | 118.50 (12) |
| C4—C5—H5 | 120.1 | C14—C15—C10 | 118.24 (12) |
| C6—C5—H5 | 120.1 | C17—C16—C15 | 120.63 (13) |
| C7—C6—C5 | 120.39 (12) | C17—C16—H16 | 119.7 |
| C7—C6—H6 | 119.8 | C15—C16—H16 | 119.7 |
| C5—C6—H6 | 119.8 | C16—C17—C18 | 121.31 (13) |
| C18—C9—N1 | 123.65 (12) | C16—C17—H17 | 119.3 |
| C18—C9—C10 | 119.61 (12) | C18—C17—H17 | 119.3 |
| N1—C9—C10 | 116.62 (11) | C9—C18—C17 | 120.20 (13) |
| C6—C7—C2 | 120.90 (13) | C9—C18—H18 | 119.9 |
| C6—C7—H7 | 119.5 | C17—C18—H18 | 119.9 |
| C9—N1—C1—N2 | 56.76 (13) | C18—C9—C10—C15 | −0.81 (17) |
| C9—N1—C1—C2 | 177.15 (10) | N1—C9—C10—C15 | −176.97 (10) |
| N1—C1—N2—C11 | −52.57 (13) | C18—C9—C10—C11 | 175.67 (11) |
| C2—C1—N2—C11 | −171.54 (10) | N1—C9—C10—C11 | −0.50 (16) |
| N1—C1—C2—C3 | −78.14 (14) | C1—N2—C11—C12 | −157.13 (12) |
| N2—C1—C2—C3 | 39.26 (16) | C1—N2—C11—C10 | 25.13 (15) |
| N1—C1—C2—C7 | 96.72 (13) | C15—C10—C11—C12 | 1.88 (17) |
| N2—C1—C2—C7 | −145.88 (12) | C9—C10—C11—C12 | −174.59 (11) |
| C7—C2—C3—O1 | −179.32 (11) | C15—C10—C11—N2 | 179.66 (10) |
| C1—C2—C3—O1 | −4.39 (18) | C9—C10—C11—N2 | 3.19 (17) |
| C7—C2—C3—C4 | 0.17 (18) | N2—C11—C12—C13 | 179.45 (12) |
| C1—C2—C3—C4 | 175.10 (11) | C10—C11—C12—C13 | −2.86 (19) |
| C8—O2—C4—C5 | −2.9 (2) | C11—C12—C13—C14 | 0.8 (2) |
| C8—O2—C4—C3 | 176.72 (12) | C12—C13—C14—C15 | 2.2 (2) |
| O1—C3—C4—O2 | −0.28 (16) | C13—C14—C15—C16 | 175.57 (13) |
| C2—C3—C4—O2 | −179.80 (11) | C13—C14—C15—C10 | −3.1 (2) |
| O1—C3—C4—C5 | 179.39 (12) | C11—C10—C15—C16 | −177.68 (11) |
| C2—C3—C4—C5 | −0.13 (18) | C9—C10—C15—C16 | −1.19 (17) |
| O2—C4—C5—C6 | 179.60 (12) | C11—C10—C15—C14 | 1.09 (17) |
| C3—C4—C5—C6 | 0.0 (2) | C9—C10—C15—C14 | 177.58 (11) |
| C4—C5—C6—C7 | 0.2 (2) | C14—C15—C16—C17 | −176.13 (13) |
| C1—N1—C9—C18 | 152.51 (12) | C10—C15—C16—C17 | 2.57 (19) |
| C1—N1—C9—C10 | −31.50 (15) | C15—C16—C17—C18 | −2.0 (2) |
| C5—C6—C7—C2 | −0.1 (2) | N1—C9—C18—C17 | 177.36 (12) |
| C3—C2—C7—C6 | −0.1 (2) | C10—C9—C18—C17 | 1.5 (2) |
| C1—C2—C7—C6 | −175.04 (13) | C16—C17—C18—C9 | −0.1 (2) |
Symmetry codes: (i) −x+3/2, y+1/2, z; (ii) x−1/2, y, −z+3/2; (iii) x+1/2, −y+1/2, −z+1.
Hydrogen-bond geometry (Å, º)
Cg1 and Cg4 are the centroids of rings A (C2–C7) and D (C9/C10/C15–C18), respectively.
| D—H···A | D—H | H···A | D···A | D—H···A |
| O1—H1O···N2 | 0.82 | 1.96 | 2.6667 (14) | 144 |
| N2—H2N···O1i | 0.864 (15) | 2.196 (15) | 2.9870 (14) | 152.2 (13) |
| C8—H8A···Cg1iv | 0.96 | 2.82 | 3.6580 (17) | 146 |
| C13—H13···Cg4i | 0.93 | 2.87 | 3.7336 (16) | 155 |
| C16—H16···Cg1v | 0.93 | 2.87 | 3.4880 (15) | 125 |
Symmetry codes: (i) −x+3/2, y+1/2, z; (iv) x, −y−1/2, z−1/2; (v) x+1/2, −y−1/2, −z.
Funding Statement
This work was funded by Hacettepe University Scientific Research Project Unit grant 013 D04 602 004 to T. Hokkelek.
References
- Akıncı, P. A., Gülcemal, S., Kazheva, O. N., Alexandrov, G. G., Dyachenko, O. A., Çetinkaya, E. & Çetinkaya, B. (2014). J. Organomet. Chem. 765, 23–30.
- Aly, A. A. & El-Shaieb, K. M. (2004). Tetrahedron, 60, 3797–3802.
- Baranov, D. S. & Fadeev, D. S. (2016). Mendeleev Commun. 26, 174–176.
- Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.
- Claramunt, R. M., Dotor, J. & Elguero, J. (1995). Ann. Quim. 91, 151–183.
- Cucciolito, M. E., Panunzi, B., Ruffo, F. & Tuzi, A. (2013a). Tetrahedron Lett. 54, 1503–1506.
- Cucciolito, M. E., Panunzi, B., Ruffo, F. & Tuzi, A. (2013b). Acta Cryst. E69, o1133–o1134. [DOI] [PMC free article] [PubMed]
- Del Valle, J. C., Catalán, J., Foces-Foces, C., Llamas-Saiz, A. L., Elguero, J., Sanz, D., Dotor, J. & Claramunt, R. M. (1997). J. Lumin. 75, 17–26.
- Dzieduszycka, M., Martelli, S., Arciemiuk, M., Bontemps-Gracz, M. M., Kupiec, A. & Borowski, E. (2002). Bioorg. Med. Chem. 10, 1025–1035. [DOI] [PubMed]
- Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, US
- Fun, H.-K., Chanawanno, K. & Chantrapromma, S. (2011). Acta Cryst. E67, o715–o716. [DOI] [PMC free article] [PubMed]
- Ghorbani, M. H. (2012). Acta Cryst. E68, o2605. [DOI] [PMC free article] [PubMed]
- Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. [DOI] [PMC free article] [PubMed]
- He, X., Mao, J., Ma, Q. & Tang, Y. (2018). J. Mol. Liq. 269, 260–268.
- Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.
- Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: http://hirshfeldsurface.net/
- Koca, I., ngren, H., Kýbrýz, E. & Yýlmaz, F. (2012). Dyes Pigments, 95, 421–426.
- Lahmidi, S., Sebbar, N. K., Hökelek, T., Chkirate, K., Mague, J. T. & Essassi, E. M. (2018). Acta Cryst. E74, 1833–1837. [DOI] [PMC free article] [PubMed]
- Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587. [DOI] [PMC free article] [PubMed]
- Maloney, S., Slawin, A. M. Z. & Woollins, J. D. (2013). Acta Cryst. E69, o246. [DOI] [PMC free article] [PubMed]
- Manimekalai, A., Vijayalakshmi, N. & Selvanayagam, S. (2014). Acta Cryst. E70, o959. [DOI] [PMC free article] [PubMed]
- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
- Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
- Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.
- Turner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249–4255. [DOI] [PubMed]
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.
- Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738. [DOI] [PubMed]
- Varsha, G., Arun, V., Robinson, P. P., Sebastian, M., Varghese, D., Leeju, P., Jayachandran, V. P. & Yusuff, K. M. M. (2010). Tetrahedron Lett. 51, 2174–2177.
- Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636. [DOI] [PubMed]
- Zhao, J.-F., Liu, Y., Soh, J. B., Li, Y.-X., Ganguly, R., Ye, K.-Q., Huo, F., Huang, L., Tok, A. L. Y., Loo, J. S. C. & Zhang, Q. (2012). Tetrahedron Lett. 53, 6044–6047.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989020004284/lh5952sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020004284/lh5952Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989020004284/lh5952Isup3.cdx
Supporting information file. DOI: 10.1107/S2056989020004284/lh5952Isup4.cml
CCDC reference: 1976883
Additional supporting information: crystallographic information; 3D view; checkCIF report








