Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Apr 21;76(Pt 5):692–696. doi: 10.1107/S205698902000506X

Cis versus trans arrangement of di­thio­carbazate ligands in bis-chelated Ni and Cu complexes

Khurshida Begum a,*, Sabina Begum b, Chanmiya Sheikh c, Ryuta Miyatake d, Ennio Zangrando e
PMCID: PMC7199265  PMID: 32431934

Two bis-chelated metal complexes of nickel(II) and copper(II) with N,S Schiff bases in a cis configuration are presented and compared with similar species in the CSD having trans-configured ligands.

Keywords: crystal structure, di­thio­carbazate ligand, nickel(II) complex, copper(II) complex, cis-trans configuration

Abstract

The structures are described of two bis-chelated metal complexes of nickel(II) and copper(II) with S-n-hexyl 3-(1-phenyl­ethyl­idene)di­thio­carbazate Schiff bases in a cis configuration, namely, bis­[S-n-hexyl 3-(1-phenyl­ethyl­idene)di­thio­carbazato-κ2 N 3,S]nickel(II), [Ni(C15H21N2S2)2], and bis­[S-n-hexyl 3-(1-phenyl­ethyl­idene)di­thio­carbazato-κ2 N 3,S]copper(II), [Cu(C15H21N2S2)2]. In both complexes, the metals have distorted square-planar geometries. A search in the Cambridge Structural Database [Groom et al. (2016). Acta Cryst. B72, 171–179] for bis-chelated nickel(II) and copper(II) complexes with similar Schiff bases retrieved 55 and 36 hits for the two metals, respectively. An analysis of the geometrical parameters of complexes showing cis and trans configurations is reported and the values compared with those for the complexes described in this work.

Chemical context  

Thio­semicarbazones, semicarbazones, hydrazide/hydrazones and di­thio­carbazate Schiff bases and their complexes have been widely studied for their significant bioactivities and pharmacological properties (Beraldo et al. 2004; Altıntop et al., 2016). The presence of hard nitro­gen and soft sulfur atoms enable these ligands to react with both transition and main-group metals (Arion, 2019) and transition-metal complexes derived from these N,S Schiff bases occupy a central role in the area of coordination chemistry. The nature of the long alkyl substituent chains, when present, may play a role in determining the liquid crystalline behavior of the complexes and thus their mesomorphic potential (Tomma et al., 2018; Lai et al., 1998).graphic file with name e-76-00692-scheme1.jpg

Therefore, considering the above facts and in a continuation of our inter­est in this field (Zangrando et al., 2017), the present work reports a study on the synthesis and structural characterization of NiII and CuII complexes 1 and 2 with the Schiff base derived from S-n-hexyl­dithio­carbazate and aceto­phenone (HL). The single crystal X-ray structures of these distorted square-planar complexes of nickel and copper, NiL 2 and CuL 2, show cis configurations of the ligands. Since similar complexes can show both cis and trans configurations, we report herein a comparison with the geometry of structurally characterized complexes retrieved from the Cambridge Structural Database (Groom et al., 2016).

Structural commentary  

Structure of complex 1  

In the NiL 2 complex, the nickel atom is located on a crystallographic twofold axis and exhibits a distorted square-planar geometry. An ORTEP drawing of the complex is depicted in Fig. 1 and selected geometrical data are reported in Table 1. The two Schiff bases, in their deprotonated imino thiol­ate form, are coordinated through the β-nitro­gen atom, N1, and the thiol­ate sulfur atom, S1, donors to the metal center in a cis-planar configuration. The Ni—S and Ni—N bond distances are 2.1600 (4) and 1.9295 (10) Å, respectively, with an S—Ni—N chelating angle of 85.68 (3)°.

Figure 1.

Figure 1

ORTEP view (50% probability ellipsoids) of the nickel(II) complex (1) with the labeling scheme for the asymmetric unit. (Primed atoms are related by the symmetry operation −x + 1, y, −z + Inline graphic).

Table 1. Selected geometric parameters (Å, °) for 1 .

Ni1—N1 1.9295 (10) Ni1—S1 2.1600 (4)
       
S1—Ni1—S1i 93.12 (2) N1—Ni1—S1i 163.99 (3)
N1—Ni1—S1 85.68 (3) N1—Ni1—N1i 99.79 (6)

Symmetry code: (i) Inline graphic.

The square-planar geometry is tetra­hedrally distorted and the dihedral angle formed by the mean planes through the two five-membered rings is 19.46 (5)°. The distortion from a planar arrangement is effected in order to circumvent steric clashes between the phenyl rings due to the cis configuration of the ligands.

Structure of complex 2  

In CuL 2, the whole copper(II) complex is crystallographically independent although it exhibits pseudo twofold symmetry. An ORTEP view is shown in Fig. 2, and selected geometrical data are reported in Table 2. The arrangement of the ligands is similar to that of the nickel derivative, but a different conformation of the two alkyl chains leads to a lack of symmetry. Here the Cu—S and Cu—N bond distances are 2.2299 (9) and 2.2414 (9) Å, and 2.023 (3) and 2.020 (3) Å, respectively, while the chelating angles are similar at 85.43 (8) and 85.37 (8)°. The square-planar geometry shows a more significant tetra­hedral distortion than is found in complex 1, having a dihedral angle between the two five-membered rings of 40.41 (12)°. It is worth noting that compared to similar ligands in their uncoordinated state (see for example Begum et al., 2015), a rotation about the C9—N2 by 180° is observed in the metal complexes in order to allow the N,S chelating behavior towards the metal.

Figure 2.

Figure 2

ORTEP view (50% probability ellipsoids) of the copper(II) complex (2).

Table 2. Selected geometric parameters (Å, °) for 2 .

Cu1—N1 2.023 (3) Cu1—S1 2.2299 (9)
Cu1—N3 2.020 (3) Cu1—S3 2.2414 (9)
       
S1—Cu1—S3 98.53 (4) N1—Cu1—S3 152.51 (8)
N1—Cu1—S1 85.43 (8) N3—Cu1—S3 85.37 (8)
N3—Cu1—S1 149.66 (8) N1—Cu1—N3 104.90 (11)

The configuration assumed by the ligands in each complex leads the phenyl hydrogen atoms to sit above and below the metal centres with a separation of ∼2.6 Å, indicating the presence of M⋯H intra­molecular inter­actions.

Supra­molecular features  

Figs. 3 and 4 display the crystal packing of the two complexes. The slightly shorter distance between the nickel ions in 1 (8.337 Å) compared to that of the copper atoms in 2 (8.518 Å) is likely the result of the different conformations of the alkyl chains. In both structures no significant π–π inter­actions involving phenyl rings are detected. C—H⋯π inter­actions are observed in 1 (Table 3) but no such inter­actions are observed in 2.

Figure 3.

Figure 3

The crystal packing of the Ni complex viewed down the b axis (H atoms are not shown for clarity).

Figure 4.

Figure 4

The crystal packing of the Cu complex viewed down the b axis (H atoms are not shown for clarity).

Table 3. C—H⋯π interation (Å, °) in 1 .

Cg is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14ACg ii 0.99 2.75 3.5892 (18) 143

Symmetry code: (ii) Inline graphic.

Database survey  

Table 3 reports the mean values of the coordination bond lengths and angles of nickel(II) and copper(II) complexes bis-chelated by di­thio­carbazate ligands, as retrieved from the CSD (version 5.40, update of August 2019; Groom et al., 2016). Whereas the number of trans-configured nickel complexes is higher than the number of cis complexes, for copper, the numbers of trans- and cis-planar complexes are almost equal. The Ni—N, Cu—N and Cu—S bond distances are comparable in the cis and trans isomers, while for the Ni–S bond distances, a slight shorter distance is observed for the cis isomers than for the trans isomers [2.157 (8) vs 2.174 (8) Å]. More significant is the dihedral angle between the five-membered rings of the chelating ligands, which has a value close to 0° in both the trans-configured Ni and Cu complexes, while in the cis-Ni complexes the angle does not exceed 31°, and in the cis-Cu complexes, the smallest value observed is 32.27°, indicating a propensity for copper(II) to assume a tetra­hedral configuration. In fact, in some of the cis copper complexes in Table 4, the metal is present in effectively a tetra­hedral geometry with a dihedral angle between the five-membered rings of ca 80° (Mondal et al., 2014; Santra et al., 2016; Tarafder et al., 2008). Another feature is a slight difference between the N—Ni—N and S—Ni—S angles in the cis complexes (100.39 and 92.30°, respectively), while the N—Cu—N and S—Cu—S angles are comparable (ca 106°) in the cis-Cu complexes.

Table 4. Coordination bond lengths and angles (Å, °) in the di­thio­carbazate nickel and copper complexes with trans and cis configurations retrieved from the CSD.

α is the dihedral angle between the five-membered rings of the chelating ligands.

  trans-NiL 2 cis-NiL 2 trans-CuL 2 cis-CuL 2
No. of structures 32 23 19 17
M—N mean 1.920 (13) 1.924 (20) 1.996 (37) 2.013 (22)
M—N range 1.878–1.952 1.851–1.995 1.923–2.043 1.986–2.066
M—S mean 2.174 (8) 2.157 (8) 2.244 (37) 2.240 (17)
M—S range 2.145–2.195 2.141–2.177 2.166–2.281 2.215–2.287
N—M—N mean 179.21 100.39 179.34 105.76
S—M—S mean 178.39 92.30 179.01 106.28
α mean 1.75 21.25 0.80 50.25
α range 0.00–19.41 10.24–30.10 0.00–10.93 32.27–81.61

Overall, it is difficult to assess what drives particular complexes to assume either a cis or a trans configuration upon crystallization and the most plausible reason may arise from crystal-packing requirements. Similar derivatives having thienyl­methyl­ene instead of the phenyl­ethyl­idene fragments crystallize with a trans configuration (Begum et al., 2016).

Synthesis of the Schiff base ligand  

Hydrazine hydrate (2.50 g, 0.05 mol, 99%) was added to an ethano­lic solution (30 ml) of KOH (2.81 g, 0.05 mol) and the mixture was stirred at 273 K for 45 min. To this solution, carbon di­sulfide (3.81 g, 0.05 mol) was added dropwise under constant stirring for one h. Then 1-bromo­hexane (8.25 g, 0.05 mol) was added dropwise at 273 K under vigorous stirring for another hour. Finally, aceto­phenone (6.00 g, 0.05 mol) in ethanol (2.0 ml) was added and the mixture refluxed for 30 minutes. The hot mixture was filtered and then the filtrate cooled to 273 K to give a precipitate of the Schiff base product, which was recrystallized from ethanol at room temperature and dried in a vacuum desiccator over anhydrous CaCl2.

Synthesis of the Ni complex, 1  

A solution of nickel(II) acetate tetra­hydrate (0.06 g, 0.25 mmol, 7 mL methanol) was added to a solution of the ligand, (0.147 g, 0.5 mmol, 10 mL methanol). The resulting mixture was stirred at room temperature for five h. An olive green precipitate was formed, filtered off, washed with methanol and dried in vacuo over anhydrous CaCl2. Dark reddish brown single crystals of the compound, suitable for X-ray diffraction, were obtained by slow evaporation from a mixture of chloro­form and toluene (5:1). Yield 85%. ESI-MS (FAB) calcd. m/z for C30H42N4S4Ni + H+: 644.1646 amu, found 645.1724 amu. M.p. 374 K.

Synthesis of the Cu complex, 2  

The copper complex was prepared by a similar method to that used for nickel in the presence of Cu(CH3COO)2·H2O. Dark reddish brown single crystals of the compound, suitable for X-ray diffraction, were obtained by slow evaporation from a mixture of chloro­form and aceto­nitrile (4:1). Yield 83%. ESI-MS (FAB) calcd. m/z for C30H42N4S4Cu + H+: 649.1588 amu, found 650.1665 amu. M.p. 418 K.

Refinement details  

Crystal data, data collection and structure refinement details are summarized in Table 5. The hydrogen atoms were included as riding contributions with fixed isotropic displacement parameters in idealized positions [C—H = 0.95–0.99 Å; U iso(H) = 1.2 or 1.5U eq(C)]. The structure of 2 was refined as an inversion twin.

Table 5. Experimental details.

  1 2
Crystal data
Chemical formula [Ni(C15H21N2S2)2] [Cu(C15H21N2S2)2]
M r 645.62 650.45
Crystal system, space group Monoclinic, C2/c Monoclinic, C c
Temperature (K) 173 173
a, b, c (Å) 23.9721 (5), 8.3967 (2), 16.6739 (3) 22.7441 (7), 8.8636 (3), 17.0117 (6)
β (°) 101.046 (1) 109.158 (1)
V3) 3294.05 (12) 3239.53 (19)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.87 0.96
Crystal size (mm) 0.38 × 0.30 × 0.07 0.23 × 0.10 × 0.03
 
Data collection
Diffractometer Rigaku R-AXIS RAPID Rigaku R-AXIS RAPID
Absorption correction Multi-scan (ABSCOR; Rigaku, 1995) Multi-scan (ABSCOR; Rigaku, 1995)
T min, T max 0.684, 0.941 0.772, 0.976
No. of measured, independent and observed [I > 2σ(I)] reflections 15965, 3768, 3589 7274, 7274, 6505
R int 0.025 0.025
(sin θ/λ)max−1) 0.649 0.649
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.027, 0.081, 1.15 0.031, 0.074, 1.04
No. of reflections 3768 7274
No. of parameters 179 357
No. of restraints 0 2
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.32, −0.33 0.70, −0.22
Absolute structure Refined as an inversion twin.
Absolute structure parameter 0.482 (10)

Computer programs: RAPID-AUTO and CrystalStructure (Rigaku, 2010), SIR92 (Altomare et al., 1994) and SHELXL2014 (Sheldrick, 2015).

Supplementary Material

Crystal structure: contains datablock(s) I, II, global. DOI: 10.1107/S205698902000506X/cq2035sup1.cif

e-76-00692-sup1.cif (407.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698902000506X/cq2035Isup2.hkl

e-76-00692-Isup2.hkl (300.9KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S205698902000506X/cq2035IIsup3.hkl

e-76-00692-IIsup3.hkl (577.9KB, hkl)

CCDC references: 1057808, 1403802

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

KB and SB are grateful to the Department of Chemistry, Shahjalal University of Science and Technology, for the provision of laboratory facilities. MCS acknowledges the Department of Applied Chemistry, Toyama University, for providing funds for the single-crystal X-ray analysis.

supplementary crystallographic information

Bis[S-n-hexyl 3-(1-phenylethylidene)dithiocarbazato-κ2N3,S]nickel(II) (I) . Crystal data

[Ni(C15H21N2S2)2] F(000) = 1368
Mr = 645.62 Dx = 1.302 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71075 Å
a = 23.9721 (5) Å Cell parameters from 4789 reflections
b = 8.3967 (2) Å θ = 3.3–27.5°
c = 16.6739 (3) Å µ = 0.87 mm1
β = 101.046 (1)° T = 173 K
V = 3294.05 (12) Å3 Prism, purple
Z = 4 0.38 × 0.30 × 0.07 mm

Bis[S-n-hexyl 3-(1-phenylethylidene)dithiocarbazato-κ2N3,S]nickel(II) (I) . Data collection

Rigaku R-AXIS RAPID diffractometer 3589 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1 Rint = 0.025
ω scans θmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan (ABSCOR; Rigaku, 1995) h = −30→30
Tmin = 0.684, Tmax = 0.941 k = −10→10
15965 measured reflections l = −21→21
3768 independent reflections

Bis[S-n-hexyl 3-(1-phenylethylidene)dithiocarbazato-κ2N3,S]nickel(II) (I) . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081 H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0458P)2 + 1.5849P] where P = (Fo2 + 2Fc2)/3
3768 reflections (Δ/σ)max = 0.002
179 parameters Δρmax = 0.32 e Å3
0 restraints Δρmin = −0.33 e Å3

Bis[S-n-hexyl 3-(1-phenylethylidene)dithiocarbazato-κ2N3,S]nickel(II) (I) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Bis[S-n-hexyl 3-(1-phenylethylidene)dithiocarbazato-κ2N3,S]nickel(II) (I) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.5000 1.00787 (2) 0.7500 0.02259 (8)
S1 0.47077 (2) 1.18475 (4) 0.65741 (2) 0.03381 (10)
S2 0.39340 (2) 1.11935 (4) 0.50136 (2) 0.03696 (11)
N1 0.49459 (4) 0.85983 (12) 0.66033 (6) 0.0216 (2)
N2 0.45428 (5) 0.89369 (13) 0.58858 (6) 0.0260 (2)
C1 0.60886 (5) 0.81446 (16) 0.75593 (8) 0.0270 (3)
H1 0.6020 0.9207 0.7371 0.032*
C2 0.65594 (6) 0.78033 (19) 0.81594 (8) 0.0344 (3)
H2 0.6814 0.8631 0.8376 0.041*
C3 0.66588 (6) 0.6262 (2) 0.84440 (9) 0.0379 (3)
H3 0.6981 0.6034 0.8857 0.046*
C4 0.62895 (7) 0.50520 (18) 0.81276 (10) 0.0363 (3)
H4 0.6354 0.3998 0.8331 0.044*
C5 0.58238 (6) 0.53742 (16) 0.75130 (8) 0.0283 (3)
H5 0.5579 0.4534 0.7284 0.034*
C6 0.57150 (5) 0.69294 (15) 0.72306 (7) 0.0230 (2)
C7 0.52256 (5) 0.72868 (14) 0.65686 (7) 0.0220 (2)
C8 0.50807 (6) 0.61449 (16) 0.58659 (8) 0.0304 (3)
H8A 0.4700 0.5709 0.5851 0.046*
H8B 0.5358 0.5275 0.5935 0.046*
H8C 0.5090 0.6706 0.5353 0.046*
C9 0.44213 (6) 1.04365 (16) 0.58425 (8) 0.0269 (3)
C10 0.38023 (7) 0.9506 (2) 0.43216 (8) 0.0369 (3)
H10A 0.3617 0.9900 0.3776 0.044*
H10B 0.4173 0.9042 0.4267 0.044*
C11 0.34357 (6) 0.81914 (19) 0.45734 (8) 0.0347 (3)
H11A 0.3070 0.8649 0.4654 0.042*
H11B 0.3630 0.7733 0.5101 0.042*
C12 0.33199 (7) 0.6872 (2) 0.39342 (9) 0.0406 (3)
H12A 0.3093 0.7315 0.3425 0.049*
H12B 0.3687 0.6502 0.3811 0.049*
C13 0.30051 (6) 0.5448 (2) 0.41990 (9) 0.0359 (3)
H13A 0.3242 0.4961 0.4689 0.043*
H13B 0.2649 0.5824 0.4354 0.043*
C14 0.28614 (7) 0.4183 (2) 0.35383 (10) 0.0437 (4)
H14A 0.3219 0.3761 0.3408 0.052*
H14B 0.2645 0.4686 0.3037 0.052*
C15 0.25158 (8) 0.2802 (2) 0.37790 (12) 0.0532 (4)
H15A 0.2721 0.2320 0.4286 0.080*
H15B 0.2458 0.2002 0.3343 0.080*
H15C 0.2146 0.3195 0.3863 0.080*

Bis[S-n-hexyl 3-(1-phenylethylidene)dithiocarbazato-κ2N3,S]nickel(II) (I) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.02882 (14) 0.01537 (12) 0.02345 (13) 0.000 0.00467 (9) 0.000
S1 0.0469 (2) 0.01795 (16) 0.03453 (18) 0.00174 (13) 0.00255 (15) 0.00438 (12)
S2 0.0389 (2) 0.03350 (19) 0.03533 (19) 0.00545 (14) −0.00088 (15) 0.01283 (14)
N1 0.0239 (5) 0.0193 (5) 0.0213 (5) −0.0007 (4) 0.0033 (4) 0.0022 (4)
N2 0.0268 (5) 0.0271 (5) 0.0226 (5) 0.0012 (4) 0.0012 (4) 0.0033 (4)
C1 0.0269 (6) 0.0278 (6) 0.0272 (6) −0.0019 (5) 0.0077 (5) −0.0024 (5)
C2 0.0265 (6) 0.0456 (8) 0.0306 (6) −0.0044 (6) 0.0043 (5) −0.0074 (6)
C3 0.0269 (7) 0.0561 (9) 0.0294 (6) 0.0087 (6) 0.0021 (5) 0.0032 (6)
C4 0.0313 (7) 0.0396 (8) 0.0386 (8) 0.0105 (5) 0.0078 (6) 0.0116 (6)
C5 0.0268 (6) 0.0244 (6) 0.0344 (7) 0.0033 (5) 0.0077 (5) 0.0024 (5)
C6 0.0222 (6) 0.0250 (6) 0.0231 (5) 0.0017 (4) 0.0071 (4) −0.0004 (5)
C7 0.0243 (6) 0.0191 (5) 0.0231 (5) −0.0020 (4) 0.0057 (4) 0.0005 (4)
C8 0.0367 (7) 0.0246 (6) 0.0291 (6) 0.0000 (5) 0.0039 (5) −0.0056 (5)
C9 0.0282 (6) 0.0249 (6) 0.0274 (6) 0.0010 (5) 0.0052 (5) 0.0061 (5)
C10 0.0378 (8) 0.0472 (8) 0.0250 (6) 0.0008 (7) 0.0040 (5) 0.0060 (6)
C11 0.0303 (7) 0.0472 (8) 0.0263 (6) −0.0003 (6) 0.0048 (5) 0.0002 (6)
C12 0.0391 (8) 0.0529 (9) 0.0310 (7) −0.0024 (7) 0.0100 (6) −0.0052 (7)
C13 0.0292 (7) 0.0482 (8) 0.0296 (7) 0.0020 (6) 0.0039 (5) −0.0044 (6)
C14 0.0380 (8) 0.0549 (10) 0.0398 (8) −0.0032 (7) 0.0116 (6) −0.0123 (7)
C15 0.0461 (10) 0.0583 (11) 0.0551 (10) −0.0091 (8) 0.0095 (8) −0.0104 (9)

Bis[S-n-hexyl 3-(1-phenylethylidene)dithiocarbazato-κ2N3,S]nickel(II) (I) . Geometric parameters (Å, º)

Ni1—N1i 1.9295 (10) C7—C8 1.5023 (17)
Ni1—N1 1.9295 (10) C8—H8A 0.9800
Ni1—S1i 2.1600 (4) C8—H8B 0.9800
Ni1—S1 2.1600 (4) C8—H8C 0.9800
S1—C9 1.7443 (14) C10—C11 1.519 (2)
S2—C9 1.7493 (13) C10—H10A 0.9900
S2—C10 1.8163 (17) C10—H10B 0.9900
N1—C7 1.2963 (16) C11—C12 1.526 (2)
N1—N2 1.4151 (14) C11—H11A 0.9900
N2—C9 1.2913 (17) C11—H11B 0.9900
C1—C2 1.3872 (19) C12—C13 1.524 (2)
C1—C6 1.3984 (17) C12—H12A 0.9900
C1—H1 0.9500 C12—H12B 0.9900
C2—C3 1.383 (2) C13—C14 1.521 (2)
C2—H2 0.9500 C13—H13A 0.9900
C3—C4 1.384 (2) C13—H13B 0.9900
C3—H3 0.9500 C14—C15 1.523 (3)
C4—C5 1.390 (2) C14—H14A 0.9900
C4—H4 0.9500 C14—H14B 0.9900
C5—C6 1.3956 (18) C15—H15A 0.9800
C5—H5 0.9500 C15—H15B 0.9800
C6—C7 1.4794 (17) C15—H15C 0.9800
S1—Ni1—S1i 93.12 (2) N2—C9—S1 124.67 (10)
N1—Ni1—S1 85.68 (3) N2—C9—S2 120.52 (11)
N1—Ni1—S1i 163.99 (3) S1—C9—S2 114.81 (8)
N1—Ni1—N1i 99.79 (6) C11—C10—S2 115.51 (10)
N1i—Ni1—S1i 85.68 (3) C11—C10—H10A 108.4
N1i—Ni1—S1 163.99 (3) S2—C10—H10A 108.4
C9—S1—Ni1 93.62 (4) C11—C10—H10B 108.4
C9—S2—C10 103.11 (7) S2—C10—H10B 108.4
C7—N1—N2 114.09 (10) H10A—C10—H10B 107.5
C7—N1—Ni1 128.55 (9) C10—C11—C12 111.85 (12)
N2—N1—Ni1 117.34 (8) C10—C11—H11A 109.2
C9—N2—N1 110.70 (10) C12—C11—H11A 109.2
C2—C1—C6 120.22 (13) C10—C11—H11B 109.2
C2—C1—H1 119.9 C12—C11—H11B 109.2
C6—C1—H1 119.9 H11A—C11—H11B 107.9
C3—C2—C1 120.23 (13) C13—C12—C11 113.67 (12)
C3—C2—H2 119.9 C13—C12—H12A 108.8
C1—C2—H2 119.9 C11—C12—H12A 108.8
C2—C3—C4 120.03 (13) C13—C12—H12B 108.8
C2—C3—H3 120.0 C11—C12—H12B 108.8
C4—C3—H3 120.0 H12A—C12—H12B 107.7
C3—C4—C5 120.20 (13) C14—C13—C12 113.20 (13)
C3—C4—H4 119.9 C14—C13—H13A 108.9
C5—C4—H4 119.9 C12—C13—H13A 108.9
C4—C5—C6 120.18 (13) C14—C13—H13B 108.9
C4—C5—H5 119.9 C12—C13—H13B 108.9
C6—C5—H5 119.9 H13A—C13—H13B 107.8
C5—C6—C1 119.09 (12) C13—C14—C15 113.56 (14)
C5—C6—C7 120.78 (11) C13—C14—H14A 108.9
C1—C6—C7 120.07 (11) C15—C14—H14A 108.9
N1—C7—C6 118.82 (11) C13—C14—H14B 108.9
N1—C7—C8 122.19 (11) C15—C14—H14B 108.9
C6—C7—C8 118.96 (11) H14A—C14—H14B 107.7
C7—C8—H8A 109.5 C14—C15—H15A 109.5
C7—C8—H8B 109.5 C14—C15—H15B 109.5
H8A—C8—H8B 109.5 H15A—C15—H15B 109.5
C7—C8—H8C 109.5 C14—C15—H15C 109.5
H8A—C8—H8C 109.5 H15A—C15—H15C 109.5
H8B—C8—H8C 109.5 H15B—C15—H15C 109.5

Symmetry code: (i) −x+1, y, −z+3/2.

Bis[S-n-hexyl 3-(1-phenylethylidene)dithiocarbazato-κ2N3,S]nickel(II) (I) . Hydrogen-bond geometry (Å, º)

Cg is the centroid of the C1–C6 ring.

D—H···A D—H H···A D···A D—H···A
C14—H14A···Cgii 0.99 2.75 3.5892 (18) 143

Symmetry code: (ii) −x+1, −y+1, −z+1.

Bis[S-n-hexyl 3-(1-phenylethylidene)dithiocarbazato-κ2N3,S]copper(II) (II) . Crystal data

[Cu(C15H21N2S2)2] F(000) = 1372
Mr = 650.45 Dx = 1.334 Mg m3
Monoclinic, Cc Mo Kα radiation, λ = 0.71075 Å
a = 22.7441 (7) Å Cell parameters from 4858 reflections
b = 8.8636 (3) Å θ = 3.3–27.4°
c = 17.0117 (6) Å µ = 0.96 mm1
β = 109.158 (1)° T = 173 K
V = 3239.53 (19) Å3 Platelet, brown
Z = 4 0.23 × 0.10 × 0.03 mm

Bis[S-n-hexyl 3-(1-phenylethylidene)dithiocarbazato-κ2N3,S]copper(II) (II) . Data collection

Rigaku R-AXIS RAPID diffractometer 6505 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1 Rint = 0.025
ω scans θmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan (ABSCOR; Rigaku, 1995) h = −29→29
Tmin = 0.772, Tmax = 0.976 k = −11→11
7274 measured reflections l = −22→22
7274 independent reflections

Bis[S-n-hexyl 3-(1-phenylethylidene)dithiocarbazato-κ2N3,S]copper(II) (II) . Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031 H-atom parameters constrained
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0443P)2] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
7274 reflections Δρmax = 0.70 e Å3
357 parameters Δρmin = −0.22 e Å3
2 restraints Absolute structure: Refined as an inversion twin
Primary atom site location: structure-invariant direct methods Absolute structure parameter: 0.482 (10)

Bis[S-n-hexyl 3-(1-phenylethylidene)dithiocarbazato-κ2N3,S]copper(II) (II) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a two-component inversion twin

Bis[S-n-hexyl 3-(1-phenylethylidene)dithiocarbazato-κ2N3,S]copper(II) (II) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.76372 (2) 0.47483 (4) 0.64581 (2) 0.02901 (10)
S1 0.72319 (5) 0.66910 (10) 0.56233 (6) 0.0427 (2)
S2 0.65326 (5) 0.65000 (14) 0.38556 (6) 0.0541 (3)
S3 0.80973 (4) 0.60386 (9) 0.76328 (5) 0.0377 (2)
S4 0.87369 (5) 0.46750 (11) 0.92560 (6) 0.0422 (2)
N1 0.76458 (13) 0.3684 (3) 0.54100 (16) 0.0298 (6)
N2 0.72530 (14) 0.4255 (4) 0.46522 (18) 0.0372 (7)
N3 0.75419 (12) 0.3083 (3) 0.72177 (16) 0.0283 (6)
N4 0.79439 (13) 0.3123 (3) 0.80456 (16) 0.0320 (6)
C1 0.83534 (16) 0.1791 (4) 0.6128 (2) 0.0328 (7)
C2 0.83552 (19) 0.0237 (4) 0.6288 (3) 0.0449 (9)
H2 0.8092 −0.0422 0.5884 0.054*
C3 0.8741 (2) −0.0326 (5) 0.7033 (3) 0.0593 (13)
H3 0.8732 −0.1374 0.7144 0.071*
C4 0.9139 (2) 0.0595 (6) 0.7618 (3) 0.0577 (12)
H4 0.9401 0.0185 0.8129 0.069*
C5 0.91577 (18) 0.2123 (5) 0.7460 (3) 0.0498 (9)
H5 0.9436 0.2763 0.7860 0.060*
C6 0.87702 (16) 0.2717 (4) 0.6720 (2) 0.0366 (8)
H6 0.8787 0.3764 0.6611 0.044*
C7 0.79159 (15) 0.2419 (4) 0.5351 (2) 0.0339 (7)
C8 0.7800 (2) 0.1604 (5) 0.4547 (2) 0.0489 (10)
H8A 0.7354 0.1395 0.4299 0.073*
H8B 0.8031 0.0651 0.4648 0.073*
H8C 0.7938 0.2230 0.4166 0.073*
C9 0.70540 (17) 0.5602 (5) 0.4723 (2) 0.0389 (8)
C10 0.6477 (2) 0.5274 (5) 0.2988 (3) 0.0504 (10)
H10A 0.6293 0.5855 0.2468 0.061*
H10B 0.6904 0.4983 0.3016 0.061*
C11 0.6101 (2) 0.3855 (6) 0.2931 (3) 0.0636 (13)
H11A 0.5700 0.4110 0.3010 0.076*
H11B 0.6329 0.3158 0.3383 0.076*
C12 0.5971 (2) 0.3049 (5) 0.2076 (3) 0.0570 (11)
H12A 0.6346 0.3124 0.1906 0.068*
H12B 0.5892 0.1965 0.2143 0.068*
C13 0.54203 (19) 0.3702 (5) 0.1394 (2) 0.0470 (9)
H13A 0.5509 0.4772 0.1308 0.056*
H13B 0.5051 0.3677 0.1578 0.056*
C14 0.5267 (2) 0.2878 (5) 0.0568 (3) 0.0598 (11)
H14A 0.5221 0.1788 0.0661 0.072*
H14B 0.5618 0.2997 0.0350 0.072*
C15 0.4673 (2) 0.3451 (5) −0.0081 (3) 0.0626 (12)
H15A 0.4326 0.3366 0.0137 0.094*
H15B 0.4584 0.2845 −0.0589 0.094*
H15C 0.4728 0.4509 −0.0209 0.094*
C16 0.67196 (15) 0.1824 (4) 0.6188 (2) 0.0299 (7)
C17 0.65939 (18) 0.0441 (4) 0.5760 (2) 0.0390 (8)
H17 0.6801 −0.0451 0.6016 0.047*
C18 0.6168 (2) 0.0384 (4) 0.4966 (3) 0.0469 (10)
H18 0.6090 −0.0543 0.4670 0.056*
C19 0.58533 (18) 0.1674 (5) 0.4601 (2) 0.0453 (9)
H19 0.5562 0.1628 0.4053 0.054*
C20 0.59591 (16) 0.3024 (4) 0.5024 (2) 0.0395 (8)
H20 0.5736 0.3902 0.4773 0.047*
C21 0.63895 (15) 0.3099 (4) 0.5813 (2) 0.0316 (7)
H21 0.6461 0.4033 0.6104 0.038*
C22 0.71886 (15) 0.1898 (4) 0.7031 (2) 0.0299 (7)
C23 0.72371 (19) 0.0637 (4) 0.7638 (2) 0.0434 (9)
H23A 0.7662 0.0234 0.7822 0.065*
H23B 0.6944 −0.0165 0.7368 0.065*
H23C 0.7137 0.1019 0.8120 0.065*
C24 0.82018 (17) 0.4433 (4) 0.8252 (2) 0.0338 (8)
C25 0.87310 (19) 0.2823 (4) 0.9736 (2) 0.0451 (9)
H25A 0.8390 0.2782 0.9978 0.054*
H25B 0.8659 0.2022 0.9309 0.054*
C26 0.93557 (19) 0.2566 (5) 1.0418 (2) 0.0471 (9)
H26A 0.9364 0.1523 1.0630 0.057*
H26B 0.9691 0.2650 1.0167 0.057*
C27 0.94983 (18) 0.3651 (5) 1.1151 (2) 0.0408 (8)
H27A 0.9467 0.4700 1.0941 0.049*
H27B 0.9183 0.3519 1.1432 0.049*
C28 1.01432 (18) 0.3406 (5) 1.1781 (2) 0.0501 (10)
H28A 1.0200 0.2315 1.1909 0.060*
H28B 1.0458 0.3709 1.1524 0.060*
C29 1.02664 (18) 0.4269 (5) 1.2592 (2) 0.0477 (9)
H29A 1.0719 0.4248 1.2901 0.057*
H29B 1.0143 0.5335 1.2462 0.057*
C30 0.99290 (19) 0.3655 (5) 1.3133 (2) 0.0534 (10)
H30A 0.9480 0.3716 1.2842 0.080*
H30B 1.0036 0.4245 1.3648 0.080*
H30C 1.0048 0.2600 1.3266 0.080*

Bis[S-n-hexyl 3-(1-phenylethylidene)dithiocarbazato-κ2N3,S]copper(II) (II) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.03446 (19) 0.02179 (16) 0.03268 (19) −0.00067 (18) 0.01359 (15) −0.00063 (18)
S1 0.0537 (6) 0.0254 (4) 0.0478 (5) 0.0061 (4) 0.0151 (4) 0.0052 (4)
S2 0.0525 (6) 0.0622 (7) 0.0448 (5) 0.0179 (5) 0.0124 (4) 0.0183 (5)
S3 0.0465 (5) 0.0260 (4) 0.0391 (5) −0.0078 (4) 0.0120 (4) −0.0041 (3)
S4 0.0466 (5) 0.0408 (5) 0.0335 (5) −0.0107 (4) 0.0054 (4) −0.0032 (4)
N1 0.0329 (13) 0.0283 (13) 0.0301 (13) 0.0021 (11) 0.0129 (11) 0.0022 (11)
N2 0.0380 (16) 0.0435 (17) 0.0314 (14) 0.0007 (14) 0.0129 (12) 0.0036 (13)
N3 0.0305 (14) 0.0255 (13) 0.0300 (13) −0.0037 (11) 0.0115 (11) −0.0044 (11)
N4 0.0349 (14) 0.0304 (14) 0.0312 (14) −0.0054 (12) 0.0115 (11) −0.0032 (11)
C1 0.0354 (18) 0.0269 (16) 0.0435 (19) 0.0024 (14) 0.0227 (15) 0.0011 (15)
C2 0.051 (2) 0.0243 (16) 0.066 (3) 0.0055 (16) 0.027 (2) 0.0049 (18)
C3 0.064 (3) 0.039 (2) 0.085 (3) 0.012 (2) 0.039 (3) 0.020 (2)
C4 0.052 (2) 0.062 (3) 0.062 (3) 0.025 (2) 0.024 (2) 0.025 (2)
C5 0.038 (2) 0.060 (2) 0.051 (2) 0.0027 (19) 0.0147 (17) 0.001 (2)
C6 0.0342 (17) 0.0313 (16) 0.049 (2) 0.0042 (15) 0.0195 (15) 0.0038 (16)
C7 0.0374 (17) 0.0298 (16) 0.0390 (18) −0.0010 (15) 0.0189 (14) −0.0029 (14)
C8 0.059 (2) 0.045 (2) 0.044 (2) 0.0051 (19) 0.0178 (19) −0.0100 (18)
C9 0.0375 (19) 0.0437 (19) 0.0378 (19) 0.0053 (17) 0.0155 (16) 0.0115 (17)
C10 0.041 (2) 0.067 (3) 0.043 (2) 0.0022 (19) 0.0135 (17) 0.0181 (19)
C11 0.053 (2) 0.082 (3) 0.053 (3) −0.010 (2) 0.014 (2) 0.027 (2)
C12 0.056 (3) 0.049 (2) 0.067 (3) −0.002 (2) 0.022 (2) 0.013 (2)
C13 0.046 (2) 0.049 (2) 0.053 (2) −0.0027 (19) 0.0261 (18) 0.0005 (19)
C14 0.069 (3) 0.047 (2) 0.072 (3) −0.002 (2) 0.034 (2) −0.008 (2)
C15 0.078 (3) 0.055 (3) 0.055 (3) −0.009 (2) 0.024 (2) −0.014 (2)
C16 0.0310 (16) 0.0278 (15) 0.0340 (16) −0.0067 (13) 0.0149 (13) −0.0032 (13)
C17 0.045 (2) 0.0290 (18) 0.044 (2) −0.0014 (16) 0.0158 (16) −0.0034 (16)
C18 0.052 (2) 0.041 (2) 0.046 (2) −0.0160 (19) 0.0134 (18) −0.0131 (18)
C19 0.043 (2) 0.053 (2) 0.0363 (19) −0.0130 (18) 0.0079 (16) −0.0038 (17)
C20 0.0335 (17) 0.043 (2) 0.0417 (19) −0.0036 (16) 0.0125 (15) 0.0017 (17)
C21 0.0328 (16) 0.0302 (16) 0.0348 (17) −0.0050 (14) 0.0150 (13) −0.0046 (14)
C22 0.0339 (17) 0.0264 (15) 0.0333 (16) −0.0009 (13) 0.0163 (13) −0.0024 (13)
C23 0.051 (2) 0.0363 (18) 0.042 (2) −0.0107 (18) 0.0138 (17) 0.0035 (17)
C24 0.0337 (18) 0.0371 (19) 0.0301 (17) −0.0023 (15) 0.0098 (14) −0.0044 (15)
C25 0.055 (2) 0.0394 (19) 0.0387 (19) −0.0092 (18) 0.0131 (17) −0.0028 (16)
C26 0.054 (2) 0.048 (2) 0.0388 (19) 0.0107 (19) 0.0141 (17) −0.0030 (18)
C27 0.044 (2) 0.041 (2) 0.0378 (18) 0.0061 (17) 0.0138 (16) −0.0044 (16)
C28 0.042 (2) 0.061 (3) 0.044 (2) 0.0095 (19) 0.0111 (17) −0.0032 (19)
C29 0.039 (2) 0.050 (2) 0.046 (2) −0.0037 (18) 0.0040 (16) −0.0035 (19)
C30 0.047 (2) 0.065 (3) 0.045 (2) −0.010 (2) 0.0096 (17) −0.008 (2)

Bis[S-n-hexyl 3-(1-phenylethylidene)dithiocarbazato-κ2N3,S]copper(II) (II) . Geometric parameters (Å, º)

Cu1—N1 2.023 (3) C13—H13A 0.9900
Cu1—N3 2.020 (3) C13—H13B 0.9900
Cu1—S1 2.2299 (9) C14—C15 1.524 (7)
Cu1—S3 2.2414 (9) C14—H14A 0.9900
S1—C9 1.742 (4) C14—H14B 0.9900
S2—C9 1.752 (4) C15—H15A 0.9800
S2—C10 1.804 (5) C15—H15B 0.9800
S3—C24 1.740 (4) C15—H15C 0.9800
S4—C24 1.755 (4) C16—C21 1.391 (5)
S4—C25 1.835 (4) C16—C17 1.406 (5)
N1—C7 1.298 (4) C16—C22 1.481 (4)
N1—N2 1.400 (4) C17—C18 1.381 (5)
N2—C9 1.296 (5) C17—H17 0.9500
N3—C22 1.297 (4) C18—C19 1.383 (6)
N3—N4 1.406 (4) C18—H18 0.9500
N4—C24 1.296 (5) C19—C20 1.376 (5)
C1—C6 1.399 (5) C19—H19 0.9500
C1—C2 1.404 (5) C20—C21 1.380 (5)
C1—C7 1.478 (5) C20—H20 0.9500
C2—C3 1.377 (7) C21—H21 0.9500
C2—H2 0.9500 C22—C23 1.501 (5)
C3—C4 1.373 (7) C23—H23A 0.9800
C3—H3 0.9500 C23—H23B 0.9800
C4—C5 1.384 (7) C23—H23C 0.9800
C4—H4 0.9500 C25—C26 1.528 (5)
C5—C6 1.383 (5) C25—H25A 0.9900
C5—H5 0.9500 C25—H25B 0.9900
C6—H6 0.9500 C26—C27 1.523 (5)
C7—C8 1.491 (5) C26—H26A 0.9900
C8—H8A 0.9800 C26—H26B 0.9900
C8—H8B 0.9800 C27—C28 1.522 (5)
C8—H8C 0.9800 C27—H27A 0.9900
C10—C11 1.506 (6) C27—H27B 0.9900
C10—H10A 0.9900 C28—C29 1.521 (6)
C10—H10B 0.9900 C28—H28A 0.9900
C11—C12 1.559 (7) C28—H28B 0.9900
C11—H11A 0.9900 C29—C30 1.481 (6)
C11—H11B 0.9900 C29—H29A 0.9900
C12—C13 1.515 (6) C29—H29B 0.9900
C12—H12A 0.9900 C30—H30A 0.9800
C12—H12B 0.9900 C30—H30B 0.9800
C13—C14 1.519 (6) C30—H30C 0.9800
S1—Cu1—S3 98.53 (4) C13—C14—H14B 109.0
N1—Cu1—S1 85.43 (8) C15—C14—H14B 109.0
N3—Cu1—S1 149.66 (8) H14A—C14—H14B 107.8
N1—Cu1—S3 152.51 (8) C14—C15—H15A 109.5
N3—Cu1—S3 85.37 (8) C14—C15—H15B 109.5
N1—Cu1—N3 104.90 (11) H15A—C15—H15B 109.5
C9—S1—Cu1 93.45 (13) C14—C15—H15C 109.5
C9—S2—C10 105.16 (19) H15A—C15—H15C 109.5
C24—S3—Cu1 93.07 (12) H15B—C15—H15C 109.5
C24—S4—C25 102.70 (18) C21—C16—C17 118.9 (3)
C7—N1—N2 114.6 (3) C21—C16—C22 121.1 (3)
C7—N1—Cu1 127.8 (2) C17—C16—C22 120.0 (3)
N2—N1—Cu1 117.1 (2) C18—C17—C16 119.8 (3)
C9—N2—N1 112.6 (3) C18—C17—H17 120.1
C22—N3—N4 114.4 (3) C16—C17—H17 120.1
C22—N3—Cu1 128.5 (2) C17—C18—C19 120.2 (3)
N4—N3—Cu1 116.84 (18) C17—C18—H18 119.9
C24—N4—N3 112.5 (3) C19—C18—H18 119.9
C6—C1—C2 118.6 (3) C20—C19—C18 120.5 (3)
C6—C1—C7 121.4 (3) C20—C19—H19 119.7
C2—C1—C7 120.0 (3) C18—C19—H19 119.7
C3—C2—C1 119.6 (4) C19—C20—C21 119.9 (3)
C3—C2—H2 120.2 C19—C20—H20 120.1
C1—C2—H2 120.2 C21—C20—H20 120.1
C4—C3—C2 121.4 (4) C20—C21—C16 120.7 (3)
C4—C3—H3 119.3 C20—C21—H21 119.7
C2—C3—H3 119.3 C16—C21—H21 119.7
C3—C4—C5 119.8 (4) N3—C22—C16 117.7 (3)
C3—C4—H4 120.1 N3—C22—C23 122.3 (3)
C5—C4—H4 120.1 C16—C22—C23 120.0 (3)
C6—C5—C4 119.9 (4) C22—C23—H23A 109.5
C6—C5—H5 120.1 C22—C23—H23B 109.5
C4—C5—H5 120.1 H23A—C23—H23B 109.5
C5—C6—C1 120.7 (3) C22—C23—H23C 109.5
C5—C6—H6 119.6 H23A—C23—H23C 109.5
C1—C6—H6 119.6 H23B—C23—H23C 109.5
N1—C7—C1 116.9 (3) N4—C24—S3 127.5 (3)
N1—C7—C8 122.9 (3) N4—C24—S4 118.7 (3)
C1—C7—C8 120.2 (3) S3—C24—S4 113.7 (2)
C7—C8—H8A 109.5 C26—C25—S4 109.3 (3)
C7—C8—H8B 109.5 C26—C25—H25A 109.8
H8A—C8—H8B 109.5 S4—C25—H25A 109.8
C7—C8—H8C 109.5 C26—C25—H25B 109.8
H8A—C8—H8C 109.5 S4—C25—H25B 109.8
H8B—C8—H8C 109.5 H25A—C25—H25B 108.3
N2—C9—S1 127.2 (3) C27—C26—C25 115.0 (3)
N2—C9—S2 120.1 (3) C27—C26—H26A 108.5
S1—C9—S2 112.7 (2) C25—C26—H26A 108.5
C11—C10—S2 116.2 (3) C27—C26—H26B 108.5
C11—C10—H10A 108.2 C25—C26—H26B 108.5
S2—C10—H10A 108.2 H26A—C26—H26B 107.5
C11—C10—H10B 108.2 C28—C27—C26 112.6 (3)
S2—C10—H10B 108.2 C28—C27—H27A 109.1
H10A—C10—H10B 107.4 C26—C27—H27A 109.1
C10—C11—C12 111.9 (4) C28—C27—H27B 109.1
C10—C11—H11A 109.2 C26—C27—H27B 109.1
C12—C11—H11A 109.2 H27A—C27—H27B 107.8
C10—C11—H11B 109.2 C29—C28—C27 114.5 (3)
C12—C11—H11B 109.2 C29—C28—H28A 108.6
H11A—C11—H11B 107.9 C27—C28—H28A 108.6
C13—C12—C11 113.3 (4) C29—C28—H28B 108.6
C13—C12—H12A 108.9 C27—C28—H28B 108.6
C11—C12—H12A 108.9 H28A—C28—H28B 107.6
C13—C12—H12B 108.9 C30—C29—C28 113.6 (4)
C11—C12—H12B 108.9 C30—C29—H29A 108.8
H12A—C12—H12B 107.7 C28—C29—H29A 108.8
C12—C13—C14 113.9 (4) C30—C29—H29B 108.8
C12—C13—H13A 108.8 C28—C29—H29B 108.8
C14—C13—H13A 108.8 H29A—C29—H29B 107.7
C12—C13—H13B 108.8 C29—C30—H30A 109.5
C14—C13—H13B 108.8 C29—C30—H30B 109.5
H13A—C13—H13B 107.7 H30A—C30—H30B 109.5
C13—C14—C15 112.9 (4) C29—C30—H30C 109.5
C13—C14—H14A 109.0 H30A—C30—H30C 109.5
C15—C14—H14A 109.0 H30B—C30—H30C 109.5

References

  1. Altıntop, M. D., Temel, H. E., Sever, B., Akalın Çiftçi, G. & Kaplancıklı, Z. A. (2016). Molecules, 21, 1598.
  2. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
  3. Arion, V. B. (2019). Coord. Chem. Rev. 387, 348–397.
  4. Begum, M. S., Howlader, M. B. H., Miyatake, R., Zangrando, E. & Sheikh, M. C. (2015). Acta Cryst. E71, o199. [DOI] [PMC free article] [PubMed]
  5. Begum, M. S., Zangrando, E., Howlader, M. B. H., Sheikh, M. C., Miyatake, R., Hossain, M. M., Alam, M. M. & Hasnat, M. A. (2016). Polyhedron, 105, 56–61.
  6. Beraldo, H. & Gambino, D. (2004). Mini Rev. Med. Chem. 4, 31–39. [DOI] [PubMed]
  7. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  8. Lai, C. K., Tsai, C. & Pang, Y. (1998). J. Mater. Chem. 8, 1355–1360.
  9. Mondal, G., Bera, P., Santra, A., Jana, S., Mandal, T. N., Mondal, A., Seok, S. I. & Bera, P. (2014). New J. Chem. 38, 4774–4782.
  10. Rigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
  11. Rigaku (2010). RAPID-AUTO and CrystalStructure. Rigaku Corporation, Tokyo, Japan.
  12. Santra, A., Mondal, G., Acharjya, M., Bera, P., Panja, A., Mandal, T. K., Mitra, P. & Bera, P. (2016). Polyhedron, 113, 5–15.
  13. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  14. Tarafder, M. T. H., Islam, M. T., Islam, M. A. A. A. A., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, m416–m417. [DOI] [PMC free article] [PubMed]
  15. Tomma, H. J., Ghali, S. T. & Al-Dujaili, H. A. (2018). Mol. Cryst. Liq. Cryst. 664, 85–94.
  16. Zangrando, E., Begum, M. S., Sheikh, M. C., Miyatake, R., Hossain, M. M., Alam, M. M., Hasnat, M. A., Halim, M. A., Ahmed, S., Rahman, M. N. & Ghosh, A. (2017). Arabian J. Chem 10, 172–184.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, II, global. DOI: 10.1107/S205698902000506X/cq2035sup1.cif

e-76-00692-sup1.cif (407.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698902000506X/cq2035Isup2.hkl

e-76-00692-Isup2.hkl (300.9KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S205698902000506X/cq2035IIsup3.hkl

e-76-00692-IIsup3.hkl (577.9KB, hkl)

CCDC references: 1057808, 1403802

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES