Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Apr 21;76(Pt 5):697–702. doi: 10.1107/S2056989020005101

2-[(2,4,6-Tri­methyl­benzene)­sulfon­yl]phthalazin-1(2H)-one: crystal structure, Hirshfeld surface analysis and computational study

David Chukwuma Izuogu a,b,c, Jonnie Niyi Asegbeloyin a,, Mukesh M Jotani d, Edward R T Tiekink e,*
PMCID: PMC7199273  PMID: 32431935

The mol­ecule in the title crystal has the shape of the letter V with the dihedral angle between the phthalazin-1-one and mesityl residues being 83.26 (4)°. Mol­ecules assemble into a linear, supra­molecular tape by phthalazinone-C6-C—H⋯O(sulfoxide) and π(phthalazinone-N2C4)–π(phthalazinone-C6) stacking inter­actions.

Keywords: crystal structure, phthalazinone, Hirshfeld surface analysis

Abstract

The X-ray crystal structure of the title phthalazin-1-one derivative, C17H16N2O3S {systematic name: 2-[(2,4,6-tri­methyl­benzene)­sulfon­yl]-1,2-di­hydro­phthalazin-1-one}, features a tetra­hedral sulfoxide-S atom, connected to phthalazin-1-one and mesityl residues. The dihedral angle [83.26 (4)°] between the organic substituents is consistent with the mol­ecule having the shape of the letter V. In the crystal, phthalazinone-C6-C—H⋯O(sulfoxide) and π(phthalazinone-N2C4)–π(phthalazinone-C6) stacking [inter-centroid distance = 3.5474 (9) Å] contacts lead to a linear supra­molecular tape along the a-axis direction; tapes assemble without directional inter­actions between them. The analysis of the calculated Hirshfeld surfaces confirm the importance of the C—H⋯O and π-stacking inter­actions but, also H⋯H and C—H⋯C contacts. The calculation of the inter­action energies indicate the importance of dispersion terms with the greatest energies calculated for the C—H⋯O and π-stacking inter­actions.

Chemical context  

Phthalazin-1(2H)-one derivatives are a group of di­aza­heterobicycles that are noteworthy for their inter­esting medicinal applications. Thus, this class of compound has been reported to possess a wide variety of biological properties such as anti-diabetic (Mylari et al., 1992), anti-cancer (Menear et al., 2008 ), anti-inflammatory and analgesic (Pakulska et al., 2009), anti-histamine (Procopiou et al., 2011), anti-hypertensive and anti-thrombotic (Cherkez et al., 1986) activities. Some N-substituted phthalazinones have attracted attention as a result of their potential role as anti-asthmatic agents (Ukita et al., 1999), their ability to inhibit thromboxane A2 (TXA2) synthetase and to induce bronchodialation (Yamaguchi et al., 1993). At the present time, a number of phthalazin-1(2H)-one-based drugs are in use (Wu et al., 2012; Teran et al., 2019). A number of reaction pathways to the phthalazinone skeleton are known, notable among which include multi-step reactions involving cyclo­condensation reactions of phthalic anhydrides, phthalimides, phthalaldehydic acid or 2-acyl­benzoic acids with substituted hydrazines, in the presence of appropriate catal­ysts (Haider & Holzer, 2004). The conversion of phthalimides via Friedel–Crafts conditions or with organometallics to 2-keto benzoic acid hydrazides or 3,3-disubstituted indolin­ones, which are viable inter­mediates to substituted phthalazin-1(2H)-ones, have also been reported (Ismail et al., 1984; Chun et al., 2004) . Several other synthetic routes, involving various inter­mediates, have also been reported (Mylari et al., 1991; Yamaguchi et al., 1993; Acosta et al., 1995; Bele & Darabantu, 2003; Mahmoodi & Salehpour, 2003; Cockcroft et al., 2006; Del Olmo et al., 2006). In an earlier communication (Asegbeloyin et al., 2018), the dysprosium(III)-catalysed conversion of 2-{[2-(phenyl­sulfon­yl)hydrazinyl­idene] meth­yl}benzoic acid to 2-(phenyl­sulfon­yl)phthalazin-1-(2H)-one was described. In the present study, the title compound, 2-[(2,4,6-tri­methyl­benzene)­sulfon­yl]-1,2-di­hydro­phthalazin-1-one, (I), was obtained by the catalytic conversion of 2-{[2-(2,4,6-tri­methyl­phenyl­sulfon­yl)hydrazinyl­idene]meth­yl}benzoic acid. Herein, the crystal and mol­ecular structures of (I) are described as is a detailed analysis of the mol­ecular packing by an evaluation of the calculated Hirshfeld surfaces augmented by a computational chemistry study.graphic file with name e-76-00697-scheme1.jpg

Structural commentary  

The mol­ecule of (I), Fig. 1, may be conveniently described as a central SO2 residue with mesityl and phthalazin-1-one substituents. The geometry about the S1 atom is distorted tetra­hedral with the range of angles subtended at S1 being a narrow 103.58 (6)° for N1—S1—C1, involving the singly-bonded N1 and C1 atoms, to a wide 118.39 (6)°, for O1—S1—O2, involving the doubly-bonded sulfoxide-O1, O2 atoms. The organic residues lie to the opposite side of the mol­ecule to the SO2 residue, forming dihedral angles of 67.35 (4)° [phthalazin-1-one with r.m.s. deviation = 0.0105 Å] and 49.79 (6)° [mesit­yl]. The dihedral angle between the organic residues of 83.26 (4)° indicates a close to orthogonal relationship. The N2—N1—C10—O3 torsion angle of −179.88 (12)° indicates a co-planar arrangement for these atoms, which allows for the close approach of the N2 and O3 atoms, i.e. 2.6631 (15) Å, suggestive of a stabilizing contact (Nakanishi et al., 2007). Globally, the mol­ecule has the shape of the letter V. Within the hetero-ring of the phthalazin-1-one substituent, the N1—N2 bond length is 1.3808 (15) Å and C10—N1 = 1.4003 (17) Å. In each of the C17=N2 [1.2911 (18) Å] and C10=O3 [1.2175 (15) Å] bonds, double-bond character is noted. The bond angles about the N1 atom are non-symmetric, with the endocyclic N2—N1—C10 angle of 126.97 (11) Å being significantly wider than the exocyclic N2—N1—S1 [113.93 (9) Å] and C10—N1—S1 [118.89 (8) Å] angles.

Figure 1.

Figure 1

The mol­ecular structures of (I) showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.

Supra­molecular features  

The formation of a supra­molecular tape sustained by phthal­a­zinone-C6-C—H⋯O(sulfoxide) contacts, Table 1, and π(phthalazinone)–π(phthalazinone) stacking is the main feature of the mol­ecular packing in the crystal of (I), Fig. 2(a). The π-stacking occurs between centrosymmetrically related phthalazinone rings, i.e. between the N2C4 and C6 i rings with an inter-centroid distance = 3.5474 (9) Å, angle of inclination = 1.17 (7)° for symmetry operation (i) 1 − x, 1 − y, 2 − z. As shown in Fig. 2(b), the tapes inter-digitate along the c-axis direction allowing for putative π-stacking between mesityl rings but, the inter-centroid separation is long at 4.1963 (8) Å. The assemblies shown in Fig. 2(b) stack along the a-axis direction, again without directional inter­actions between them, Fig. 2(c).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O2i 0.95 2.49 3.3395 (18) 149

Symmetry code: (i) Inline graphic.

Figure 2.

Figure 2

Mol­ecular packing in the crystal of (I): (a) supra­molecular tape sustained by phthalazinone-C—H⋯O(sulfoxide) and π(phthalazinone)–π(phthalazinone) stacking interactions shown as orange and purple dashed lines, respectively, (b) a view of the unit-cell contents down the a axis showing the inter-digitation of tapes and (c) a view of the unit-cell contents down the c axis showing the stacking of assemblies of (b) along the a-axis direction.

Hirshfeld surface analysis  

In order to probe the inter­actions between mol­ecules of (I) in the crystal, the Hirshfeld surfaces and two-dimensional fingerprint plots were calculated with the program Crystal Explorer 17 (Turner et al., 2017) using established procedures described by Tan et al. (2019). In addition to the bright-red spots appearing near the sulfoxide-O2 and phthalazinone-H12 atoms on the Hirshfeld surface in Fig. 3(a),(b), the presence of diminutive red spots near methyl-C7 and benzene-H5 are indicative of inter­molecular C—H⋯C contacts as C—H⋯π contacts are not preferred because of the V-shaped mol­ecular geometry of (I). Also, the group of faint-red spots near alternate carbon atoms C10, C12, C14 and C16 of the phthalazinone-C6 ring on the d norm-mapped Hirshfeld surface in Fig. 3(b) is indicative of short intra-chain C⋯C contacts [Table 2 and Fig. 2(a)] and is consistent with the significant contribution from π–π stacking between centrosymmetrically related phthalazinone-N2C4 and C6 rings, encompassing connections between phthalazinone-C6 rings [3.6657 (9) Å with angle of inclination = 0.03 (7)°]. The involvement of the methyl-C8 atom in C—H⋯O [to provide links between the chains shown in Fig. 2(b)] and C—H⋯C contacts, Table 2, is highlighted in Fig. 3(c). The blue and red regions corres­ponding to positive and negative electrostatic potentials, respectively, on the Hirshfeld surface mapped over electrostatic potential shown in Fig. 4 represent the involvement of different atoms in the inter­molecular inter­actions in the crystal.

Figure 3.

Figure 3

(a)–(c) Three views of Hirshfeld surface mapped over d norm for (I) in the range −0.128 to + 1.298 arbitrary units. The inter­molecular C-H⋯O and short inter­atomic C⋯C contacts are represented with black dashed lines, and the short inter­atomic H⋯H, O⋯H/H⋯O and C⋯H/H⋯C contacts with sky-blue, yellow and red dashed lines, respectively.

Table 2. A summary of short inter­atomic contacts (Å) in (I)a .

Contact Distance Symmetry operation
C10⋯C14 3.345 (2) 1 − x, 1 − y, 2 − z
C12⋯C16 3.351 (2) 1 − x, 1 − y, 2 − z
O1⋯H9C 2.58 1 + x, y, z
O1⋯H14 2.61 1 − x, 1 − y, 2 − z
O3⋯H8A 2.60 x, 1 − y, 1 − z
C5⋯H7C 2.78 1 − x, 2 − y, 1 − z
C7⋯H5 2.61 1 + x, y, z
C10⋯H8A 2.79 x, 1 − y, 1 − z
H12⋯H9A 2.20 x, −1 + y, z

Notes: (a) The inter­atomic distances are calculated in Crystal Explorer 17 (Turner et al., 2017) whereby the X—H bond lengths are adjusted to their neutron values; (b) these inter­actions correspond to conventional hydrogen bonds.

Figure 4.

Figure 4

(a) and (b) Two views of the calculated electrostatic potential mapped onto the Hirshfeld surface within the isosurface range −0.093 to 0.040 atomic units. The red and blue regions represent negative and positive electrostatic potentials, respectively.

The overall two-dimensional fingerprint plots for (I) and those delineated into H⋯H, O⋯H/H⋯O, C⋯H/H⋯C and C⋯C contacts are illustrated in Fig. 5(a)–(e), respectively; the percentage contributions from the different inter­atomic contacts to the Hirshfeld surfaces are summarized in Table 3. A short inter­atomic H⋯H contact involving the phthalazinone-H12 and methyl-H9A atoms, Table 2, appears as a small peak at d e + d i ∼2.2 Å in the fingerprint plot delineated into H⋯H contacts, Fig. 5(b). In the fingerprint plot delineated into O⋯H/H⋯O contacts illustrated in Fig. 5(c), a pair of forceps-like tips at d e + d i ∼2.3 Å, indicate the inter­molecular C—H⋯O inter­action involving the phthalazinone-H12 and sulfoxide-O2 atoms, whereas the other inter­atomic O⋯H/H⋯O contacts are merged within the plot and appear as a pair of intense blue spikes at d e + d i ∼2.8 Å. Despite the observation that inter­molecular C—H⋯π contacts are usually preferred by methyl groups, none are found involving those substituted at (C1–C6) benzene ring in the crystal due to the V-shaped geometry. Rather, the involvement of methyl-C7 and H5A atoms, and benzene-C5 and H7C atoms [to provide links between the chains shown in Fig. 2(b)] in C—H⋯C inter­actions, Table 2, are characterized as the pair of forceps-like flat tips about d e + d i ∼2.8 Å in the fingerprint plot delineated into C⋯H/H⋯C contacts, Fig. 5(d). The presence of π–π stacking inter­actions between symmetry-related phthalazinone-N2C4 and C6 rings is also evident as the arrow-shaped distribution of points around d e, d i ∼1.8 Å in the fingerprint plot delineated into C⋯C contacts, Fig. 5(e). The contribution from other inter­atomic contacts, summarized in Table 2, show a negligible effect on the calculated Hirshfeld surface of (I).

Figure 5.

Figure 5

(a) The overall two-dimensional fingerprint plots for (I), and those delineated into (b) H⋯H, (c) O⋯H/H⋯O, (d) C⋯H/H⋯C and (e) C⋯C contacts.

Table 3. Percentage contributions to inter­molecular contacts on the Hirshfeld surface calculated for (I).

Contact Percentage contribution
H⋯H 44.9
O⋯H/H⋯O 24.0
C⋯H/H⋯C 18.1
C⋯C 6.5
N⋯H/H⋯ N 4.0
C⋯O/O⋯C 1.1
C⋯N/N⋯C 0.7
N⋯N 0.4
C⋯S/S⋯C 0.2

Computational chemistry  

The pairwise inter­action energies between the mol­ecules within the crystal of (I) were calculated by summing up four energy components, comprising electrostatic (E ele), polarization (E pol), dispersion (E dis) and exchange–repulsion (E rep) following Turner et al. (2017). The energies were obtained by using the wave function calculated at the B3LYP/6-31G(d,p) level of theory. The nature and strength of the inter­molecular inter­actions in terms of their energies are qu­anti­tatively summarized in Table 4, where it is clear that the dispersive component makes the major contribution to the inter­action energies in the crystal in the absence of conventional hydrogen bonding. It is revealed from the inter­action energies listed in Table 4, that the π–π stacking inter­action between phthalazinone-N2C4 and C6 rings and the short inter­atomic O1⋯H14 contact have the greatest energy. The short inter­atomic C5⋯H7C, O3⋯H8A and C10⋯H8A contacts also have significant inter­action energies due to their participation in inversion-related contacts. Lower energies, compared to above inter­actions, are calculated for the H12⋯H9A, C7⋯H5 and O1⋯H9C contacts.

Table 4. A summary of inter­action energies (kJ mol−1) calculated for (I).

Contact R (Å) E ele E pol E dis E rep E tot
Cg(N2C4)⋯Cg(C6)i +            
Cg(C6)⋯Cg(C6)i + 8.12 −28.9 −5.0 −64.7 48.2 −60.8
O1⋯H14i            
C5⋯H7C ii 7.84 −21.3 −5.5 −60.9 43.5 −52.8
O3 ⋯H8A iii +            
C10 ⋯H8A iii 7.54 −10.7 −2.0 −56.8 32.6 −42.1
C12—H12⋯O2iv +            
H12⋯H9A iv 8.17 −4.4 −4.6 −20.5 18.0 −14.8
O1⋯H9C v +            
C7⋯H5v 7.98 −3.1 −2.0 −16.9 14.2 −10.6

Symmetry codes: (i) 1 − x, 1 − y, 2 − z; (ii) 1 − x, 2 − y, 1 − z; (iii) − x, 1 − y, 1 − z; (iv) x, −1 + y, z; (v) 1 + x, y, z.

Fig. 6 illustrates the magnitudes of inter­molecular energies represented graphically by energy frameworks to highlight the supra­molecular architecture of the crystal through cylinders joining the centroids of mol­ecular pairs using red, green and blue colour codes for the components E ele, E disp and E tot, respectively. The images emphasize the importance of dispersion inter­actions in the mol­ecular packing.

Figure 6.

Figure 6

Perspective views of the energy frameworks calculated for (I), showing the (a) electrostatic force, (b) dispersion force and (c) total energy. The radii of the cylinders are proportional to the relative strength of the corresponding energies and were adjusted to the same scale factor of 50 with a cut-off value of 3 kJ mol−1 within 4 × 4 × 4 unit cells.

Database survey  

There is only a single direct analogue to (I) in the crystallographic literature, namely 2-(phenyl­sulfon­yl)phthalazin-1(2H)-one (Asegbeloyin et al., 2018), (II). A comparison of key geometric parameters for (I) and (II) is given in Table 5. The data in Table 5 confirm the closeness of the salient bond lengths, but also show significant differences in the torsion angles about the N1—S1 and C1—S1 bonds, i.e. by up to 18 and 8°, respectively. These conformational differences are highlighted in the overlay diagram of Fig. 7 and in the dihedral angles between the aromatic residues of 83.26 (4) and 78.12 (4)° for (I) and (II), respectively.

Table 5. A comparison of key geometric parameters (Å, °) for (I) and (II).

  (I) (II)
N1—N2 1.3808 (15) 1.384 (2)
C10—O3 1.2175 (15 1.212 (3)
C10—N1 1.4003 (17) 1.406 (2)
C17—N2 1.2911 (18) 1.283 (2)
N2⋯O2 2.6631 (15) 2.6394 (19)
N2—N1—S1—O1 120.33 (10) 138.71 (12)
N2—N1—S1—O2 −5.52 (11) 9.59 (13)
N1—S1—C1—C2 −111.55 (11) −103.95 (16)
N1—S1—C1—C6 69.70 (11) 76.49 (17)

Figure 7.

Figure 7

An overlay diagram for (I) (red image) and (II) (blue). The mol­ecules have been overlapped so the hetero-rings are coincident.

Synthesis and crystallization  

2-{[2-(2,4,6-Tri­methyl­phenyl­sulfon­yl)hydrazinyl­idene]meth­yl}benzoic acid (III) was obtained by a method reported earlier (Asegbeloyin et al., 2018). Compound (I) was obtained from the following reaction. An ethanol solution (10 ml) of Dy(O2CCH3)3·4H2O (Wako Chemicals, Japan; 1 mmol, 411.692 mg) was added with constant stirring to an ethanol solution (20 ml) of (III) (1,039.2 mg, 3 mmol). The resulting mixture was refluxed for 3 h in an oil bath. The obtained colourless solution was concentrated to afford a colourless precipitate, which was filtered, dried under suction and further dried in vacuo over CaCl2. The precipitates were dissolved in ethanol, the resultant colourless solution was filtered and left at room temperature for 48 h to obtain colourless crystals of (I).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 6. The carbon-bound H atoms were placed in calculated positions (C—H = 0.95–0.98 Å) and were included in the refinement in the riding-model approximation, with U iso(H) set to 1.2–1.5U eq(C).

Table 6. Experimental details.

Crystal data
Chemical formula C17H16N2O3S
M r 328.38
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 100
a, b, c (Å) 7.9782 (4), 8.1711 (5), 12.6661 (7)
α, β, γ (°) 92.214 (2), 93.423 (1), 114.274 (1)
V3) 749.55 (7)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.23
Crystal size (mm) 0.38 × 0.12 × 0.08
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 1996)
T min, T max 0.924, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 11665, 5913, 4625
R int 0.027
(sin θ/λ)max−1) 0.804
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.048, 0.122, 1.02
No. of reflections 5913
No. of parameters 211
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.59, −0.39

Computer programs: APEX2 and SAINT (Bruker, 2002), SHELXT (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ), ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989020005101/lh5956sup1.cif

e-76-00697-sup1.cif (355.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020005101/lh5956Isup2.hkl

e-76-00697-Isup2.hkl (470.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020005101/lh5956Isup3.cml

CCDC reference: 1996401

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to Professor Masahiro Yamashita of the Department of Chemistry, Tohoku University, for the X-ray intensity data.

supplementary crystallographic information

Crystal data

C17H16N2O3S Z = 2
Mr = 328.38 F(000) = 344
Triclinic, P1 Dx = 1.455 Mg m3
a = 7.9782 (4) Å Mo Kα radiation, λ = 0.71073 Å
b = 8.1711 (5) Å Cell parameters from 5241 reflections
c = 12.6661 (7) Å θ = 2.7–34.7°
α = 92.214 (2)° µ = 0.23 mm1
β = 93.423 (1)° T = 100 K
γ = 114.274 (1)° Prism, colourless
V = 749.55 (7) Å3 0.38 × 0.12 × 0.08 mm

Data collection

Bruker APEXII CCD diffractometer 4625 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.027
ω scans θmax = 34.9°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −12→12
Tmin = 0.924, Tmax = 1.000 k = −13→7
11665 measured reflections l = −19→19
5913 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0579P)2 + 0.3671P] where P = (Fo2 + 2Fc2)/3
5913 reflections (Δ/σ)max < 0.001
211 parameters Δρmax = 0.59 e Å3
0 restraints Δρmin = −0.39 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.52952 (4) 0.91549 (4) 0.73039 (2) 0.00972 (8)
O1 0.70758 (13) 0.91524 (14) 0.72487 (8) 0.01414 (19)
O2 0.51875 (14) 1.07825 (13) 0.76724 (7) 0.01422 (19)
O3 0.45530 (14) 0.53580 (14) 0.72961 (7) 0.01357 (19)
N1 0.42015 (15) 0.76225 (15) 0.82277 (8) 0.0107 (2)
N2 0.36966 (17) 0.83676 (16) 0.90820 (9) 0.0138 (2)
C1 0.38648 (17) 0.82486 (17) 0.61201 (9) 0.0097 (2)
C2 0.44783 (17) 0.75451 (17) 0.52613 (10) 0.0103 (2)
C3 0.32852 (18) 0.69064 (18) 0.43396 (10) 0.0116 (2)
H3 0.367189 0.643377 0.375142 0.014*
C4 0.15518 (18) 0.69371 (18) 0.42516 (10) 0.0126 (2)
C5 0.09886 (18) 0.76139 (19) 0.51177 (10) 0.0133 (2)
H5 −0.020289 0.761710 0.506665 0.016*
C6 0.21077 (18) 0.82878 (18) 0.60579 (10) 0.0116 (2)
C7 0.63166 (18) 0.7437 (2) 0.52408 (11) 0.0141 (2)
H7A 0.636640 0.683730 0.456594 0.021*
H7B 0.647194 0.675014 0.582699 0.021*
H7C 0.730720 0.865470 0.531622 0.021*
C8 0.0315 (2) 0.6274 (2) 0.32396 (11) 0.0190 (3)
H8A −0.094563 0.608096 0.337969 0.028*
H8B 0.032099 0.513741 0.296720 0.028*
H8C 0.076289 0.717057 0.271317 0.028*
C9 0.1341 (2) 0.9043 (2) 0.69211 (11) 0.0190 (3)
H9A 0.184991 1.035634 0.691039 0.028*
H9B 0.168371 0.871735 0.761207 0.028*
H9C −0.000599 0.854423 0.680026 0.028*
C10 0.40551 (17) 0.58589 (17) 0.80886 (10) 0.0099 (2)
C11 0.32443 (17) 0.47264 (18) 0.89581 (10) 0.0106 (2)
C12 0.30524 (18) 0.29500 (18) 0.89276 (10) 0.0132 (2)
H12 0.343082 0.246095 0.834285 0.016*
C13 0.23047 (19) 0.19062 (19) 0.97587 (11) 0.0153 (3)
H13 0.216814 0.069423 0.974185 0.018*
C14 0.17479 (19) 0.2621 (2) 1.06236 (11) 0.0160 (3)
H14 0.123129 0.189023 1.118763 0.019*
C15 0.19460 (19) 0.4382 (2) 1.06607 (11) 0.0154 (3)
H15 0.157015 0.486375 1.124986 0.018*
C16 0.27053 (18) 0.54625 (18) 0.98247 (10) 0.0118 (2)
C17 0.2996 (2) 0.73194 (19) 0.98264 (10) 0.0145 (2)
H17 0.264466 0.781298 1.042086 0.017*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.00989 (13) 0.01011 (14) 0.00894 (13) 0.00401 (11) 0.00008 (10) 0.00083 (10)
O1 0.0094 (4) 0.0174 (5) 0.0147 (4) 0.0047 (4) 0.0002 (3) 0.0018 (4)
O2 0.0193 (5) 0.0103 (4) 0.0128 (4) 0.0061 (4) 0.0007 (4) −0.0004 (3)
O3 0.0168 (5) 0.0153 (5) 0.0105 (4) 0.0083 (4) 0.0033 (3) 0.0004 (3)
N1 0.0139 (5) 0.0110 (5) 0.0083 (4) 0.0060 (4) 0.0022 (4) 0.0010 (4)
N2 0.0203 (6) 0.0139 (5) 0.0094 (4) 0.0093 (5) 0.0019 (4) −0.0013 (4)
C1 0.0105 (5) 0.0107 (5) 0.0082 (5) 0.0046 (4) 0.0002 (4) 0.0007 (4)
C2 0.0109 (5) 0.0109 (5) 0.0106 (5) 0.0054 (4) 0.0030 (4) 0.0023 (4)
C3 0.0139 (5) 0.0121 (6) 0.0094 (5) 0.0059 (5) 0.0025 (4) 0.0006 (4)
C4 0.0121 (5) 0.0128 (6) 0.0113 (5) 0.0035 (5) −0.0001 (4) 0.0009 (4)
C5 0.0107 (5) 0.0176 (6) 0.0130 (5) 0.0073 (5) 0.0002 (4) 0.0008 (5)
C6 0.0115 (5) 0.0143 (6) 0.0107 (5) 0.0071 (5) 0.0010 (4) 0.0005 (4)
C7 0.0118 (5) 0.0181 (6) 0.0151 (5) 0.0086 (5) 0.0035 (5) 0.0016 (5)
C8 0.0167 (6) 0.0226 (7) 0.0134 (6) 0.0050 (6) −0.0036 (5) −0.0036 (5)
C9 0.0186 (6) 0.0309 (8) 0.0138 (6) 0.0172 (6) 0.0002 (5) −0.0043 (5)
C10 0.0091 (5) 0.0112 (5) 0.0094 (5) 0.0045 (4) −0.0012 (4) −0.0005 (4)
C11 0.0100 (5) 0.0122 (6) 0.0094 (5) 0.0044 (4) 0.0004 (4) 0.0010 (4)
C12 0.0140 (6) 0.0125 (6) 0.0132 (5) 0.0059 (5) 0.0001 (4) −0.0003 (4)
C13 0.0143 (6) 0.0119 (6) 0.0185 (6) 0.0041 (5) 0.0009 (5) 0.0038 (5)
C14 0.0135 (6) 0.0188 (7) 0.0149 (6) 0.0052 (5) 0.0024 (5) 0.0069 (5)
C15 0.0148 (6) 0.0207 (7) 0.0116 (5) 0.0079 (5) 0.0031 (5) 0.0020 (5)
C16 0.0114 (5) 0.0137 (6) 0.0108 (5) 0.0060 (5) 0.0003 (4) 0.0006 (4)
C17 0.0195 (6) 0.0167 (6) 0.0103 (5) 0.0104 (5) 0.0025 (5) −0.0008 (4)

Geometric parameters (Å, º)

S1—O1 1.4273 (10) C7—H7C 0.9800
S1—O2 1.4300 (10) C8—H8A 0.9800
S1—N1 1.7422 (11) C8—H8B 0.9800
S1—C1 1.7646 (12) C8—H8C 0.9800
O3—C10 1.2175 (15) C9—H9A 0.9800
N1—N2 1.3808 (15) C9—H9B 0.9800
N1—C10 1.4003 (17) C9—H9C 0.9800
N2—C17 1.2911 (18) C10—C11 1.4694 (18)
C1—C6 1.4130 (18) C11—C12 1.3943 (19)
C1—C2 1.4142 (17) C11—C16 1.4034 (18)
C2—C3 1.3975 (18) C12—C13 1.3847 (19)
C2—C7 1.5066 (18) C12—H12 0.9500
C3—C4 1.3913 (19) C13—C14 1.400 (2)
C3—H3 0.9500 C13—H13 0.9500
C4—C5 1.3883 (18) C14—C15 1.380 (2)
C4—C8 1.5055 (19) C14—H14 0.9500
C5—C6 1.3917 (18) C15—C16 1.4059 (19)
C5—H5 0.9500 C15—H15 0.9500
C6—C9 1.5125 (18) C16—C17 1.438 (2)
C7—H7A 0.9800 C17—H17 0.9500
C7—H7B 0.9800
O1—S1—O2 118.39 (6) C4—C8—H8B 109.5
O1—S1—N1 106.22 (6) H8A—C8—H8B 109.5
O2—S1—N1 104.37 (6) C4—C8—H8C 109.5
O1—S1—C1 112.48 (6) H8A—C8—H8C 109.5
O2—S1—C1 110.28 (6) H8B—C8—H8C 109.5
N1—S1—C1 103.58 (6) C6—C9—H9A 109.5
N2—N1—C10 126.97 (11) C6—C9—H9B 109.5
N2—N1—S1 113.93 (9) H9A—C9—H9B 109.5
C10—N1—S1 118.89 (8) C6—C9—H9C 109.5
C17—N2—N1 116.47 (12) H9A—C9—H9C 109.5
C6—C1—C2 121.56 (11) H9B—C9—H9C 109.5
C6—C1—S1 117.50 (9) O3—C10—N1 120.86 (12)
C2—C1—S1 120.94 (10) O3—C10—C11 124.94 (12)
C3—C2—C1 117.37 (12) N1—C10—C11 114.19 (11)
C3—C2—C7 116.62 (11) C12—C11—C16 120.62 (12)
C1—C2—C7 126.01 (11) C12—C11—C10 120.00 (11)
C4—C3—C2 122.42 (12) C16—C11—C10 119.36 (12)
C4—C3—H3 118.8 C13—C12—C11 119.31 (12)
C2—C3—H3 118.8 C13—C12—H12 120.3
C5—C4—C3 118.48 (12) C11—C12—H12 120.3
C5—C4—C8 120.39 (12) C12—C13—C14 120.60 (13)
C3—C4—C8 121.12 (12) C12—C13—H13 119.7
C4—C5—C6 122.33 (12) C14—C13—H13 119.7
C4—C5—H5 118.8 C15—C14—C13 120.31 (13)
C6—C5—H5 118.8 C15—C14—H14 119.8
C5—C6—C1 117.83 (11) C13—C14—H14 119.8
C5—C6—C9 116.57 (12) C14—C15—C16 119.85 (13)
C1—C6—C9 125.58 (12) C14—C15—H15 120.1
C2—C7—H7A 109.5 C16—C15—H15 120.1
C2—C7—H7B 109.5 C11—C16—C15 119.30 (13)
H7A—C7—H7B 109.5 C11—C16—C17 117.99 (12)
C2—C7—H7C 109.5 C15—C16—C17 122.69 (12)
H7A—C7—H7C 109.5 N2—C17—C16 125.01 (12)
H7B—C7—H7C 109.5 N2—C17—H17 117.5
C4—C8—H8A 109.5 C16—C17—H17 117.5
O1—S1—N1—N2 120.33 (10) C2—C1—C6—C5 −0.2 (2)
O2—S1—N1—N2 −5.52 (11) S1—C1—C6—C5 178.53 (10)
C1—S1—N1—N2 −120.99 (10) C2—C1—C6—C9 −178.71 (14)
O1—S1—N1—C10 −54.70 (11) S1—C1—C6—C9 0.02 (19)
O2—S1—N1—C10 179.45 (10) N2—N1—C10—O3 −179.88 (12)
C1—S1—N1—C10 63.98 (11) S1—N1—C10—O3 −5.57 (17)
C10—N1—N2—C17 −0.8 (2) N2—N1—C10—C11 0.98 (18)
S1—N1—N2—C17 −175.38 (10) S1—N1—C10—C11 175.29 (9)
O1—S1—C1—C6 −176.04 (10) O3—C10—C11—C12 2.1 (2)
O2—S1—C1—C6 −41.49 (12) N1—C10—C11—C12 −178.79 (11)
N1—S1—C1—C6 69.70 (11) O3—C10—C11—C16 −179.23 (12)
O1—S1—C1—C2 2.71 (13) N1—C10—C11—C16 −0.13 (17)
O2—S1—C1—C2 137.26 (11) C16—C11—C12—C13 0.6 (2)
N1—S1—C1—C2 −111.55 (11) C10—C11—C12—C13 179.29 (12)
C6—C1—C2—C3 0.74 (19) C11—C12—C13—C14 −0.1 (2)
S1—C1—C2—C3 −177.95 (10) C12—C13—C14—C15 −0.3 (2)
C6—C1—C2—C7 179.99 (13) C13—C14—C15—C16 0.2 (2)
S1—C1—C2—C7 1.30 (19) C12—C11—C16—C15 −0.75 (19)
C1—C2—C3—C4 −0.3 (2) C10—C11—C16—C15 −179.40 (12)
C7—C2—C3—C4 −179.65 (12) C12—C11—C16—C17 177.93 (12)
C2—C3—C4—C5 −0.6 (2) C10—C11—C16—C17 −0.72 (18)
C2—C3—C4—C8 178.73 (13) C14—C15—C16—C11 0.3 (2)
C3—C4—C5—C6 1.2 (2) C14—C15—C16—C17 −178.29 (13)
C8—C4—C5—C6 −178.16 (13) N1—N2—C17—C16 −0.2 (2)
C4—C5—C6—C1 −0.8 (2) C11—C16—C17—N2 0.9 (2)
C4—C5—C6—C9 177.86 (14) C15—C16—C17—N2 179.58 (14)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C12—H12···O2i 0.95 2.49 3.3395 (18) 149

Symmetry code: (i) x, y−1, z.

Funding Statement

This work was funded by Sunway University Sdn Bhd grant STR-RCTR-RCCM-001-2019.

References

  1. Acosta, A., de la Cruz, P., De Miguel, P., Diez-Barra, E., de la Hoz, A., Langa, F., Loupy, A., Majdoub, M., Martin, N., Sanchez, C. & Seoane, C. (1995). Tetrahedron Lett. 36, 2165–2168.
  2. Asegbeloyin, J. N., Izuogu, D. C., Oyeka, E. E., Okpareke, O. C. & Ibezim, A. (2018). J. Mol. Struct. 1175, 219–229.
  3. Bele, C. & Darabantu, M. (2003). Heterocycl. Commun. 9, 641–646.
  4. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  5. Bruker (2002). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Cherkez, S., Herzig, J. & Yellin, H. (1986). J. Med. Chem. 29, 947–959. [DOI] [PubMed]
  7. Chun, T. G., Kim, K. S., Lee, S., Jeong, T. S., Lee, H. Y., Kim, Y. H. & Lee, W. S. (2004). Synth. Commun. 34, 1301–1308.
  8. Cockcroft, X. L., Dillon, K. J., Dixon, L., Drzewiecki, J., Kerrigan, F., Loh, V. M. Jr, Martin, N. M. B., Meneara, K. A. & Smith, G. C. M. (2006). Bioorg. Med. Chem. Lett. 16, 1040–1044. [DOI] [PubMed]
  9. Del Olmo, E., Barboza, B., Ybarra, M. I., Lopez-Perez, J. L., Carron, R., Sevilla, M. A., Bosellid, C. & San Feliciano, A. (2006). Bioorg. Med. Chem. Lett. 16, 2786–2790. [DOI] [PubMed]
  10. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  11. Haider, N. & Holzer, W. (2004). Science Synth. 16, 315–372.
  12. Ismail, M. F., El-Bassiouny, F. A. & Younes, H. A. (1984). Tetrahedron 40, 983–2984.
  13. Mahmoodi, N. O. & Salehpour, M. J. (2003). Heterocycl. Chem. 40, 875–878.
  14. Menear, K. A., Adcock, C., Boulter, R., Cockcroft, X., Copsey, L., Cranston, A., Dillon, K. J., Drzewiecki, J., Garman, S., Gomez, S., Javaid, H., Kerrigan, F., Knights, C., Lau, A., Loh, V. M. Jr, Matthews, I. T. W., Moore, S., O’Connor, M. J., Smith, G. C. M. & Martin, N. M. B. (2008). J. Med. Chem. 51, 6581–6591. [DOI] [PubMed]
  15. Mylari, B. L., Beyer, T. A., Scott, P. J., Aldinger, C. E., Dee, M. F., Siegel, T. W. & Zembrowski, W. J. (1992). J. Med. Chem. 35, 457–465. [DOI] [PubMed]
  16. Mylari, B. L., Larson, E. R., Beyer, T. A., Zembrowski, W. J., Aldinger, C. E., Dee, M. F., Siegel, T. W. & Singleton, D. H. (1991). J. Med. Chem. 34, 108–122. [DOI] [PubMed]
  17. Nakanishi, W., Nakamoto, T., Hayashi, S., Sasamori, T. & Tokitoh, N. (2007). Chem. Eur. J 13, 255–268. [DOI] [PubMed]
  18. Pakulska, W., Malinowski, Z., Szczesniak, A. K., Czarnecka, E. & Epsztajn, J. (2009). Arch. Pharm. Chem. Life Sci 342, 41–47. [DOI] [PubMed]
  19. Procopiou, P. A., Browning, C., Buckley, J. M., Clark, K. L., Fechner, L., Gore, P. M., Hancock, A. P., Hodgson, S. T., Holmes, D. S., Kranz, M., Looker, B. E., Morriss, K. M. L., Parton, D. L., Russell, L. J., Slack, R. J., Sollis, S. L., Vile, S. & Watts, C. J. (2011). J. Med. Chem. 54, 2183–2195. [DOI] [PubMed]
  20. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  21. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  22. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  23. Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318. [DOI] [PMC free article] [PubMed]
  24. Teran, C., Besada, P., Vila, N. & Costa-Lago, M. C. (2019). Eur. J. Med. Chem 161, 468–478. [DOI] [PubMed]
  25. Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.
  26. Ukita, T., Sugahara, M., Terakawa, Y., Kuroda, T., Wada, K., Nakata, A., Ohmachi, Y., Kikkawa, H., Ikezawa, K. & Naito, K. (1999). J. Med. Chem. 42, 1088-1099. [DOI] [PubMed]
  27. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  28. Wu, X.-F., Neumann, H., Neumann, S. & Beller, M. (2012). Chem. Eur. J. 18, 8596-8599. [DOI] [PubMed]
  29. Yamaguchi, M., Kamei, K., Koga, T., Akima, M., Kuroki, T. & Ohi, N. (1993). J. Med. Chem. 36, 4052–4060. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989020005101/lh5956sup1.cif

e-76-00697-sup1.cif (355.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020005101/lh5956Isup2.hkl

e-76-00697-Isup2.hkl (470.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020005101/lh5956Isup3.cml

CCDC reference: 1996401

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES