Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Apr 17;76(Pt 5):664–667. doi: 10.1107/S205698902000496X

Synthesis and crystal structure of ABW-type SrFe1.40V0.60O4

Thomas Gstir a, Volker Kahlenberg a,*, Hannes Krüger a, Simon Penner b
PMCID: PMC7199274  PMID: 32431929

A member of the novel solid-solution series SrFexV2–xO4 (x = 1.40) has been structurally characterized. Topologically, the compound belongs to the zeolite-type ABW.

Keywords: crystal structure, cation substitution, solid solution, topology, zeolite, ABW

Abstract

Single crystals of SrFe1.40V0.60O4, strontium tetra­oxidodi[ferrate(III)/vanad­ate(III)], have been obtained as a side product in the course of sinter experiments aimed at the synthesis of double perovskites in the system SrO–Fe2O3–V2O5. The crystal structure can be characterized by layers of six-membered rings of TO4-tetra­hedra (T: FeIII, VIII) perpendicular to [100]. Stacking of the layers along [100] results in a three-dimensional framework enclosing tunnel-like cavities in which SrII cations are incorporated for charge compensation. The sequence of directedness of up (U) and down (D) pointing vertices of neighboring tetra­hedra in a single six-membered ring is UUUDDD. The topology of the tetra­hedral framework belongs to the zeolite-type ABW.

Chemical context  

Solid oxide fuel cell (SOFC) technology is considered as particularly promising for energy storage applications (Larminie et al., 2003). SOFCs are electrochemical devices that consist of three main parts: (i) a redox-capable porous cathode that reduces O2 to O2– anions, (ii) an electrolyte transporting these anions to the anode, and (iii) the anode, where the fuel (hydrogen or carbon-containing fuels) is electro-oxidized by the O2– anions to CO2 and H2O (Huang & Goodenough, 2009). Double perovskites with the general composition A 2(BB′)O6 have been studied intensively as potential anode materials in SOFCs (Xu et al., 2019). In the course of an explorative study on double perovskites combining mixed ionic-electronic conductivity with catalytic activity for fuel oxidation, we tried to synthesize Sr2FeVO6 using a ceramic synthesis route in the range between 1473 and 1573 K. For the highest reaction temperature, where partial melting occurred, a member of the previously unknown SrFexV2–xO4 solid-solution series was observed as a side-product, and the crystal structure of the member with x = 1.40 is reported here.

Structural commentary  

SrFe1.40V0.60O4 exhibits a three-dimensional framework of corner-linked TO4-tetra­hedra (T: FeIII, VIII). Charge compensation is achieved by the incorporation of SrII cations residing in tunnel-like cavities running parallel to [100] (Fig. 1). The compound is isostructural with SrFe2O4 (Kahlenberg & Fischer, 2001) and γ-SrGa2O4 (Kahlenberg et al., 2000).

Figure 1.

Figure 1

Projection of the framework structure along [100]. [TO4] tetra­hedra are shown in blue. Oxygen and strontium atoms are given in red and orange, respectively. Displacement ellipsoids are drawn at the 70% probability level.

All atoms occupy general positions. Fe <—> V substitutions occur on each of the four symmetrically non-equivalent T-sites occupying the centers of distorted tetra­hedra formed by oxygen atoms. Site-population refinements indicate no clear trend when comparing the individual Fe:V distributions. The Fe:V population at the T-sites is more or less balanced ranging from 64 (3) to 75 (3)% of iron. Individual T–-O distances adopt values between 1.820 (6) and 1.901 (5) Å. The distortion of the tetra­hedra is also reflected in the variation of the O—T—O bond angles scattering between 98.2 (2) and 129.9 (2)°. According to Robinson et al. (1971), the distortions can be expressed numerically by means of the quadratic elongation λ and the angle variance σ 2. These two parameters exhibit values between 1.009 and 1.016 for λ and 34.72 and 59.96 for σ2.

Each of the two symmetrically independent SrII cations is coordinated by seven oxygen atoms within the channels of the framework. They are located off-center and have irregular coordination spheres formed by the oxygen atoms of two adjacent six-membered tetra­hedral rings (Figs. 2, 3). Bond-valence-sum calculations using the parameter sets for the Sr—O bonds given by Brown & Altermatt (1985) resulted in the following values (in v.u.) considering cation–anion inter­actions up to 3.2 Å: Sr1: 1.911 and Sr2: 1.692. The considerable underbonding of the Sr2 position indicates that the bonds are stretched and that this Sr site resides in a cavity that is too large. A similar situation has been observed in isostructural SrFe2O4 and γ-SrGa2O4.

Figure 2.

Figure 2

Representation of the coordination polyhedron around Sr1. Displacement ellipsoids are drawn at the 70% probability level. [Symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) Inline graphic + x, Inline graphic − y, −Inline graphic + z; (iii) Inline graphic − x, Inline graphic + y, Inline graphic − z; (iv) −Inline graphic + x, Inline graphic − y, −Inline graphic + z].

Figure 3.

Figure 3

Representation of the coordination polyhedron around Sr2. Ellipsoids are drawn at the 70% level. [Symmetry codes: (i) Inline graphic − x, Inline graphic + y, Inline graphic − z; (ii) Inline graphic − x, Inline graphic + y, Inline graphic − z; (iii) Inline graphic + x, Inline graphic − y, −Inline graphic + z; (iv) 1 − x, 1 − y, 1 − z; (v) x, 1 + y, z]

Topological features  

SrFe1.40V0.60O4 belongs to the ABW zeolite structure type (Baerlocher et al., 2007). This class of materials comprises a large number of representatives and has been investigated in great detail because of the complex phase transitions and inter­esting ferroic effects (Bu et al., 1997). The polyhedral connectivity results in a three-dimensional network built from six-, four- and eight-membered rings. Perpendicular to [100], for example, the structure can be decomposed into layers consisting of six-membered rings (S6R) of [TO4]-tetra­hedra forming honeycomb nets (Fig. 4). Within a single S6R, three tetra­hedra with vertices up (U) alternate with three tetra­hedra having their vertices down (D) (sequence of directedness: UUUDDD). Using the terminology of Flörke (1967), the relative orientation of paired tetra­hedra belonging to different adjacent layers can be approximately classified as a trans-configuration (Fig. 1). Alternatively, the layers can be regarded as being constructed from the condensation of unbranched vierer single-chains via common corners. Perpendicular to [010] the network contains strongly corrugated layers of S4R and S8R (Fig. 5). The S8Rs are highly elliptical. Subsequent layers are connected by bridging vertex oxygen atoms, forming eight-ring channels that propagate along [010]. The elliptical shape of the channels is also reflected in the high framework density (Brunner & Meyer, 1989), with a value of 20.0 tetra­hedral atoms/1000 Å3.

Figure 4.

Figure 4

Single tetra­hedral layer with six-membered rings in a projection along [100]. T-sites in the centres of the tetra­hedra are shown in blue. Displacement ellipsoids are drawn at the 70% probability level.

Figure 5.

Figure 5

Strongly folded tetra­hedral layer with four- and eight-membered rings in a projection along [010]. Displacement ellipsoids are drawn at the 70% probability level.

Synthesis and initial characterization  

Single-crystals of SrFe1.40V0.60O4 were obtained in the course of a series of synthesis experiments aimed at the preparation of a possible double perovskite phase with composition Sr2FeVO6. Therefore, mixtures of the dried starting materials SrCO3, Fe2O3 and V2O5 were homogenized in the molar ratio 4:1:1 using a ball mill operated at 600 r.p.m. for 45 min under ethanol. The resulting slurry was dried for 24 h at 323 K and subsequently re-ground by hand. An amount of about 0.5 g was pressed into a pellet having a diameter of 12 mm. Thermal treatment was performed in a resistance-heated horizontal tube furnace in air. Therefore, the tablet was placed on a platinum foil contained in an alumina-ceramic combustion boat. The sample was heated from 298 K to 1473 K with a ramp of 100 K h−1, followed by 25 K h−1 to 1423 K and finally at 10 h K−1 to 1573 K. After annealing for 48 h at the maximum temperature, the container was quenched to room temperature. The partially melted pellet was removed from the foil, crushed in an agate mortar and transferred to a glass slide under a reflected-light microscope. A first optical inspection revealed the presence of at least two different crystalline phases: (a) larger, transparent–colorless crystals up to 150 µm in size and (b) considerably smaller, opaque black–brown specimens with maximum dimensions of about 50 µm. Preliminary single-crystal diffraction experiments revealed the larger crystals to be Sr3(VO4)2 (Carrillo-Cabrera & von Schnering, 1993) while the second phase could be indexed with a monoclinic primitive unit cell similar to the one reported for SrFe2O4 (Kahlenberg & Fischer, 2001). Since the larger samples of the second phase always exhibited inter­growth of several crystals, we finally decided to focus on the fraction with smaller crystallites and to perform the relevant diffraction studies for structure elucidation using synchrotron radiation at the X06DA beamline of the Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland. Therefore, a sample was mounted on the tip of a 0.25 mm diameter LithoLoop made by Mol­ecular Dimensions Inc. with a drop of Paratone-N oil (Hampton Research) and flash cooled in a 100 K nitro­gen gas stream.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 1. Initial coordinates for the refinement calculations were taken from the crystal structure refinement of SrFe2O4 (Kahlenberg & Fischer, 2001) after transformation to monoclinic second setting. Site-population refinements of the Fe:V ratios on the T-sites indicated the presence of a member of the solid-solution series SrFexV2–xO4.

Table 1. Experimental details.

Crystal data
Chemical formula SrFe1.40V0.60O4
M r 260.37
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 8.0594 (8), 10.8768 (9), 9.1218 (8)
β (°) 91.544 (7)
V3) 799.33 (12)
Z 8
Radiation type Synchrotron, λ = 0.72931 Å
μ (mm−1) 20.91
Crystal size (mm) 0.03 × 0.02 × 0.01
 
Data collection
Diffractometer Aerotech
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018)
T min, T max 0.614, 0.871
No. of measured, independent and observed [I > 2σ(I)] reflections 5200, 1746, 1572
R int 0.067
(sin θ/λ)max−1) 0.641
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.050, 0.144, 1.14
No. of reflections 1746
No. of parameters 131
Δρmax, Δρmin (e Å−3) 1.74, −1.37

Computer programs: CrysAlis PRO (Rigaku OD, 2018), SHELXL97 (Sheldrick, 2008), VESTA (Momma & Izumi, 2011), publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S205698902000496X/wm5552sup1.cif

e-76-00664-sup1.cif (22.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698902000496X/wm5552Isup2.hkl

e-76-00664-Isup2.hkl (84.2KB, hkl)

CCDC reference: 1995764

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Anuschka Pauluhn is thanked for her help during the data collections at the X06DA beamline. The research leading to these results has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 730872, project CALIPSOplus.

supplementary crystallographic information

Crystal data

SrFe1.40V0.60O4 F(000) = 961.6
Mr = 260.37 Dx = 4.327 Mg m3
Monoclinic, P21/n Synchrotron radiation, λ = 0.72931 Å
Hall symbol: -P 2yn Cell parameters from 2398 reflections
a = 8.0594 (8) Å θ = 3.5–33.9°
b = 10.8768 (9) Å µ = 20.91 mm1
c = 9.1218 (8) Å T = 100 K
β = 91.544 (7)° Fragment, brown-black
V = 799.33 (12) Å3 0.03 × 0.02 × 0.01 mm
Z = 8

Data collection

Aerotech diffractometer 1746 independent reflections
Radiation source: SLS super-bending magnet 2.9T, X06DA 1572 reflections with I > 2σ(I)
Bartels Monochromator with dual channel cut crystals (DCCM) in (±∓) geometry monochromator Rint = 0.067
Detector resolution: 5.81 pixels mm-1 θmax = 27.9°, θmin = 3.0°
rotation method scans h = −9→10
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2018) k = −13→13
Tmin = 0.614, Tmax = 0.871 l = −11→11
5200 measured reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Primary atom site location: isomorphous structure methods
R[F2 > 2σ(F2)] = 0.050 Secondary atom site location: notdet
wR(F2) = 0.144 w = 1/[σ2(Fo2) + (0.0821P)2] where P = (Fo2 + 2Fc2)/3
S = 1.14 (Δ/σ)max < 0.001
1746 reflections Δρmax = 1.74 e Å3
131 parameters Δρmin = −1.37 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Sr1 0.49713 (9) 0.34684 (7) 0.20513 (7) 0.0190 (3)
Sr2 0.50716 (9) 0.89165 (6) 0.23511 (8) 0.0193 (3)
Fe1 0.22326 (15) 0.13896 (10) 0.06706 (12) 0.0163 (4) 0.64 (3)
Fe2 0.29893 (14) 0.13638 (10) 0.40844 (12) 0.0164 (4) 0.75 (3)
Fe3 0.17887 (15) 0.88717 (9) 0.93230 (12) 0.0166 (4) 0.71 (4)
Fe4 0.74301 (15) 0.11238 (9) 0.40681 (12) 0.0159 (4) 0.70 (3)
V1 0.22326 (15) 0.13896 (10) 0.06706 (12) 0.0163 (4) 0.36 (3)
V2 0.29893 (14) 0.13638 (10) 0.40844 (12) 0.0164 (4) 0.25 (3)
V3 0.17887 (15) 0.88717 (9) 0.93230 (12) 0.0166 (4) 0.29 (4)
V4 0.74301 (15) 0.11238 (9) 0.40681 (12) 0.0159 (4) 0.30 (3)
O1 0.0192 (7) 0.1337 (5) 0.9770 (6) 0.0218 (11)
O2 0.5181 (7) 0.1144 (5) 0.3576 (6) 0.0235 (12)
O3 0.2158 (6) 0.2238 (5) 0.2460 (5) 0.0208 (11)
O4 0.8217 (6) 0.0290 (5) 0.2457 (5) 0.0209 (11)
O5 0.8530 (6) 0.2590 (5) 0.4510 (5) 0.0196 (10)
O6 0.2367 (6) 0.7187 (5) 0.9126 (5) 0.0193 (11)
O7 0.7805 (7) 0.0230 (5) 0.5784 (5) 0.0238 (12)
O8 0.3105 (6) 0.9810 (5) 0.0607 (6) 0.0217 (11)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Sr1 0.0171 (4) 0.0186 (4) 0.0210 (4) −0.0003 (3) −0.0052 (3) 0.0001 (2)
Sr2 0.0184 (5) 0.0167 (4) 0.0226 (4) 0.0007 (2) −0.0058 (3) −0.0016 (2)
Fe1 0.0162 (7) 0.0141 (6) 0.0182 (6) −0.0007 (4) −0.0042 (4) −0.0008 (4)
Fe2 0.0161 (7) 0.0146 (6) 0.0183 (6) 0.0005 (4) −0.0038 (4) 0.0007 (4)
Fe3 0.0163 (7) 0.0148 (7) 0.0184 (6) −0.0006 (4) −0.0051 (4) −0.0002 (4)
Fe4 0.0154 (7) 0.0140 (6) 0.0182 (6) −0.0002 (4) −0.0047 (4) −0.0005 (4)
V1 0.0162 (7) 0.0141 (6) 0.0182 (6) −0.0007 (4) −0.0042 (4) −0.0008 (4)
V2 0.0161 (7) 0.0146 (6) 0.0183 (6) 0.0005 (4) −0.0038 (4) 0.0007 (4)
V3 0.0163 (7) 0.0148 (7) 0.0184 (6) −0.0006 (4) −0.0051 (4) −0.0002 (4)
V4 0.0154 (7) 0.0140 (6) 0.0182 (6) −0.0002 (4) −0.0047 (4) −0.0005 (4)
O1 0.024 (3) 0.022 (3) 0.019 (3) −0.003 (2) −0.002 (2) −0.001 (2)
O2 0.024 (3) 0.020 (3) 0.027 (3) 0.002 (2) −0.002 (2) −0.004 (2)
O3 0.025 (3) 0.018 (3) 0.019 (2) 0.001 (2) −0.0046 (19) 0.0019 (19)
O4 0.022 (3) 0.018 (3) 0.023 (2) 0.005 (2) −0.003 (2) 0.002 (2)
O5 0.018 (3) 0.019 (2) 0.022 (2) −0.001 (2) −0.0044 (18) 0.001 (2)
O6 0.016 (3) 0.020 (3) 0.021 (2) −0.002 (2) −0.0041 (18) 0.0004 (19)
O7 0.031 (3) 0.018 (3) 0.022 (3) −0.002 (2) −0.009 (2) 0.0020 (19)
O8 0.021 (3) 0.015 (3) 0.028 (3) 0.000 (2) −0.009 (2) 0.001 (2)

Geometric parameters (Å, º)

Sr1—O1i 2.490 (5) Fe4—O5 1.863 (5)
Sr1—O4ii 2.495 (5) O1—V1xiii 1.820 (6)
Sr1—O7iii 2.506 (5) O1—Fe1xiii 1.820 (6)
Sr1—O6iv 2.527 (5) O1—V3xii 1.832 (6)
Sr1—O3 2.668 (5) O1—Fe3xii 1.832 (6)
Sr1—O5iii 2.811 (5) O1—Sr1xiv 2.490 (5)
Sr1—O2 2.889 (5) O2—Sr2ix 2.668 (5)
Sr2—O8 2.419 (5) O3—Sr2xv 2.571 (5)
Sr2—O5ii 2.517 (5) O4—V3iv 1.862 (5)
Sr2—O3v 2.571 (5) O4—Fe3iv 1.862 (5)
Sr2—O2vi 2.668 (5) O4—Sr1xvi 2.495 (5)
Sr2—O6vii 2.706 (5) O4—Sr2ix 2.942 (5)
Sr2—O4vi 2.942 (5) O5—V1xvii 1.872 (5)
Sr2—O7iv 3.057 (6) O5—Fe1xvii 1.872 (5)
Fe1—O1viii 1.820 (6) O5—Sr2xvi 2.517 (5)
Fe1—O8ix 1.858 (5) O5—Sr1xvii 2.811 (5)
Fe1—O5iii 1.872 (5) O6—V2xviii 1.891 (5)
Fe1—O3 1.877 (5) O6—Fe2xviii 1.891 (5)
Fe2—O7x 1.853 (6) O6—Sr1iv 2.527 (5)
Fe2—O2 1.854 (6) O6—Sr2xix 2.706 (5)
Fe2—O3 1.869 (5) O7—V2x 1.853 (6)
Fe2—O6xi 1.891 (5) O7—Fe2x 1.853 (6)
Fe3—O1xii 1.832 (6) O7—Sr1xvii 2.506 (5)
Fe3—O4iv 1.862 (5) O7—Sr2iv 3.057 (6)
Fe3—O8xiii 1.863 (5) O8—V1vi 1.858 (5)
Fe3—O6 1.901 (5) O8—Fe1vi 1.858 (5)
Fe4—O4 1.853 (5) O8—V3viii 1.863 (5)
Fe4—O2 1.855 (6) O8—Fe3viii 1.863 (5)
Fe4—O7 1.860 (5)
O1i—Sr1—O4ii 74.21 (17) V1xiii—O1—Fe3xii 126.0 (3)
O1i—Sr1—O7iii 116.19 (18) Fe1xiii—O1—Fe3xii 126.0 (3)
O4ii—Sr1—O7iii 91.79 (17) V3xii—O1—Fe3xii 0.00 (7)
O1i—Sr1—O6iv 114.11 (17) V1xiii—O1—Sr1xiv 119.1 (3)
O4ii—Sr1—O6iv 78.52 (16) Fe1xiii—O1—Sr1xiv 119.1 (3)
O7iii—Sr1—O6iv 123.51 (17) V3xii—O1—Sr1xiv 114.9 (3)
O1i—Sr1—O3 86.65 (17) Fe3xii—O1—Sr1xiv 114.9 (3)
O4ii—Sr1—O3 150.33 (16) Fe2—O2—Fe4 150.7 (3)
O7iii—Sr1—O3 76.34 (16) Fe2—O2—Sr2ix 101.6 (2)
O6iv—Sr1—O3 130.71 (16) Fe4—O2—Sr2ix 96.4 (2)
O1i—Sr1—O5iii 150.77 (17) Fe2—O2—Sr1 87.9 (2)
O4ii—Sr1—O5iii 134.45 (15) Fe4—O2—Sr1 99.8 (2)
O7iii—Sr1—O5iii 65.40 (15) Sr2ix—O2—Sr1 126.3 (2)
O6iv—Sr1—O5iii 82.57 (15) Fe2—O3—Fe1 114.8 (3)
O3—Sr1—O5iii 64.90 (14) Fe2—O3—Sr2xv 123.0 (2)
O1i—Sr1—O2 66.00 (15) Fe1—O3—Sr2xv 116.5 (2)
O4ii—Sr1—O2 125.61 (16) Fe2—O3—Sr1 94.5 (2)
O7iii—Sr1—O2 138.40 (18) Fe1—O3—Sr1 94.5 (2)
O6iv—Sr1—O2 85.32 (17) Sr2xv—O3—Sr1 104.54 (18)
O3—Sr1—O2 62.13 (16) Fe4—O4—V3iv 117.3 (3)
O5iii—Sr1—O2 93.22 (15) Fe4—O4—Fe3iv 117.3 (3)
O8—Sr2—O5ii 94.82 (17) V3iv—O4—Fe3iv 0.00 (6)
O8—Sr2—O3v 83.26 (16) Fe4—O4—Sr1xvi 117.2 (2)
O5ii—Sr2—O3v 87.97 (16) V3iv—O4—Sr1xvi 122.2 (2)
O8—Sr2—O2vi 85.67 (18) Fe3iv—O4—Sr1xvi 122.2 (2)
O5ii—Sr2—O2vi 142.41 (18) Fe4—O4—Sr2ix 87.81 (19)
O3v—Sr2—O2vi 129.21 (18) V3iv—O4—Sr2ix 103.8 (2)
O8—Sr2—O6vii 175.50 (17) Fe3iv—O4—Sr2ix 103.8 (2)
O5ii—Sr2—O6vii 80.68 (15) Sr1xvi—O4—Sr2ix 95.86 (17)
O3v—Sr2—O6vii 96.47 (15) Fe4—O5—V1xvii 111.1 (3)
O2vi—Sr2—O6vii 97.91 (16) Fe4—O5—Fe1xvii 111.1 (3)
O8—Sr2—O4vi 111.49 (16) V1xvii—O5—Fe1xvii 0.00 (8)
O5ii—Sr2—O4vi 84.97 (15) Fe4—O5—Sr2xvi 124.3 (2)
O3v—Sr2—O4vi 164.10 (15) V1xvii—O5—Sr2xvi 108.0 (2)
O2vi—Sr2—O4vi 60.41 (16) Fe1xvii—O5—Sr2xvi 108.0 (2)
O6vii—Sr2—O4vi 68.34 (14) Fe4—O5—Sr1xvii 90.66 (18)
O8—Sr2—O7iv 75.56 (16) V1xvii—O5—Sr1xvii 90.07 (17)
O5ii—Sr2—O7iv 155.43 (15) Fe1xvii—O5—Sr1xvii 90.07 (17)
O3v—Sr2—O7iv 68.68 (15) Sr2xvi—O5—Sr1xvii 127.46 (19)
O2vi—Sr2—O7iv 60.55 (17) V2xviii—O6—Fe2xviii 0.00 (9)
O6vii—Sr2—O7iv 108.56 (14) V2xviii—O6—Fe3 109.4 (2)
O4vi—Sr2—O7iv 119.55 (14) Fe2xviii—O6—Fe3 109.4 (2)
O1viii—Fe1—O8ix 107.2 (2) V2xviii—O6—Sr1iv 112.6 (2)
O1viii—Fe1—O5iii 106.0 (2) Fe2xviii—O6—Sr1iv 112.6 (2)
O8ix—Fe1—O5iii 108.2 (2) Fe3—O6—Sr1iv 121.7 (2)
O1viii—Fe1—O3 111.0 (2) V2xviii—O6—Sr2xix 100.9 (2)
O8ix—Fe1—O3 120.2 (2) Fe2xviii—O6—Sr2xix 100.9 (2)
O5iii—Fe1—O3 103.4 (2) Fe3—O6—Sr2xix 108.6 (2)
O7x—Fe2—O2 103.2 (2) Sr1iv—O6—Sr2xix 101.25 (16)
O7x—Fe2—O3 114.2 (2) V2x—O7—Fe2x 0.00 (7)
O2—Fe2—O3 101.0 (2) V2x—O7—Fe4 119.6 (3)
O7x—Fe2—O6xi 109.0 (2) Fe2x—O7—Fe4 119.6 (3)
O2—Fe2—O6xi 116.4 (2) V2x—O7—Sr1xvii 137.4 (2)
O3—Fe2—O6xi 112.6 (2) Fe2x—O7—Sr1xvii 137.4 (2)
O1xii—Fe3—O4iv 118.2 (2) Fe4—O7—Sr1xvii 100.9 (2)
O1xii—Fe3—O8xiii 105.8 (2) V2x—O7—Sr2iv 88.8 (2)
O4iv—Fe3—O8xiii 105.6 (2) Fe2x—O7—Sr2iv 88.8 (2)
O1xii—Fe3—O6 98.2 (2) Fe4—O7—Sr2iv 101.6 (2)
O4iv—Fe3—O6 112.6 (2) Sr1xvii—O7—Sr2iv 95.81 (17)
O8xiii—Fe3—O6 116.8 (2) V1vi—O8—Fe1vi 0.00 (10)
O4—Fe4—O2 99.6 (2) V1vi—O8—V3viii 108.4 (2)
O4—Fe4—O7 111.1 (2) Fe1vi—O8—V3viii 108.4 (2)
O2—Fe4—O7 110.2 (3) V1vi—O8—Fe3viii 108.4 (2)
O4—Fe4—O5 114.8 (2) Fe1vi—O8—Fe3viii 108.4 (2)
O2—Fe4—O5 119.9 (2) V3viii—O8—Fe3viii 0.00 (6)
O7—Fe4—O5 101.5 (2) V1vi—O8—Sr2 126.4 (2)
V1xiii—O1—Fe1xiii 0.00 (6) Fe1vi—O8—Sr2 126.4 (2)
V1xiii—O1—V3xii 126.0 (3) V3viii—O8—Sr2 123.1 (2)
Fe1xiii—O1—V3xii 126.0 (3) Fe3viii—O8—Sr2 123.1 (2)

Symmetry codes: (i) x+1/2, −y+1/2, z−1/2; (ii) −x+3/2, y+1/2, −z+1/2; (iii) x−1/2, −y+1/2, z−1/2; (iv) −x+1, −y+1, −z+1; (v) −x+1/2, y+1/2, −z+1/2; (vi) x, y+1, z; (vii) x+1/2, −y+3/2, z−1/2; (viii) x, y, z−1; (ix) x, y−1, z; (x) −x+1, −y, −z+1; (xi) −x+1/2, y−1/2, −z+3/2; (xii) −x, −y+1, −z+2; (xiii) x, y, z+1; (xiv) x−1/2, −y+1/2, z+1/2; (xv) −x+1/2, y−1/2, −z+1/2; (xvi) −x+3/2, y−1/2, −z+1/2; (xvii) x+1/2, −y+1/2, z+1/2; (xviii) −x+1/2, y+1/2, −z+3/2; (xix) x−1/2, −y+3/2, z+1/2.

References

  1. Baerlocher, Ch., McCusker, L. B. & Olson, D. H. (2007). Atlas of Zeolite Framework Types, 6th revised ed. Amsterdam: Elsevier.
  2. Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.
  3. Brunner, G. O. & Meyer, W. M. (1989). Nature, 337, 146–147.
  4. Bu, X., Feng, P., Gier, T. E. & Stucky, G. D. (1997). Zeolites, 19, 200–208.
  5. Carrillo-Cabrera, W. & von Schnering, H. G. (1993). Z. Kristallogr. 205, 271–276.
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Flörke, O. (1967). Fortschr. Mineral, 44, 181–230.
  8. Huang, K. & Goodenough, J. B. (2009). Solid Oxide Fuel Cell Technology: Principles, Performance and Operations. New York: Woodhead Publishing in Energy, CRC Press.
  9. Kahlenberg, V. & Fischer, R. X. (2001). Solid State Sci. 3, 433–439.
  10. Kahlenberg, V., Fischer, R. X. & Shaw, C. S. J. (2000). J. Solid State Chem. 153, 294–300.
  11. Larminie, J., Dicks, A. & McDonald, M. S. (2003). Fuel cells explained. Vol. 2. New York: Wiley.
  12. Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276.
  13. Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  14. Robinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567–570. [DOI] [PubMed]
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  17. Xu, X., Zhong, Y. & Shao, Z. (2019). Trends Chem. 1, 410–424.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S205698902000496X/wm5552sup1.cif

e-76-00664-sup1.cif (22.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698902000496X/wm5552Isup2.hkl

e-76-00664-Isup2.hkl (84.2KB, hkl)

CCDC reference: 1995764

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES