Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Apr 24;76(Pt 5):728–731. doi: 10.1107/S2056989020005393

Crystal structure and Hirshfeld surface analysis of 4-{[(anthracen-9-yl)meth­yl]amino}­benzoic acid di­methyl­formamide monosolvate

Adeeba Ahmed a, Aiman Ahmad a, Musheer Ahmad a, Valentina A Kalibabchuk b,*
PMCID: PMC7199275  PMID: 32431941

In the crystal structure of the title compound inter­molecular hydrogen-bonding inter­actions and weak C—H⋯π inter­actions between the constituents lead to the formation of a three-dimensional network. Hirshfeld surface analysis revealed that H⋯H inter­actions dominate the crystal packing.

Keywords: crystal structure, 4-amino­benzoic acid (PABA), anthracene, inter­molecular hydrogen bonding, C—H⋯π inter­actions, Hirshfeld surface analysis

Abstract

The title compound, C22H17NO2·C3H7NO, was synthesized by condensation of an aromatic aldehyde with a secondary amine and subsequent reduction. It was crystallized from a di­methyl­formamide solution as a monosolvate, C22H17NO2·C3H7NO. The aromatic mol­ecule is non-planar with a dihedral angle between the mean planes of the aniline moiety and the methyl anthracene moiety of 81.36 (8)°. The torsion angle of the Car­yl—CH2—NH—Car­yl backbone is 175.9 (2)°. The crystal structure exhibits a three-dimensional supra­molecular network, resulting from hydrogen-bonding inter­actions between the carb­oxy­lic OH group and the solvent O atom as well as between the amine functionality and the O atom of the carb­oxy­lic group and additional C—H⋯π inter­actions. Hirshfeld surface analysis was performed to qu­antify the inter­molecular inter­actions.

Chemical context  

Schiff bases belong to a class of organic compounds that are formed by the condensation reaction of a carbonyl carbon with an aliphatic/aromatic amine, resulting in the formation of a characteristic imine bond (–HC=N–). Many Schiff bases exhibit activities of biological and pharmaceutical significance. Moreover, Schiff bases are actively used as organic linkers for building metal complexes with inter­esting properties.graphic file with name e-76-00728-scheme1.jpg

Here we report the synthesis and crystal structure of a reduced Schiff base that was formed by a condensation reaction of anthraldehyde with 4-amino benzoic acid (PABA). The title compound crystallizes with a di­methyl­formamide (DMF) solvent mol­ecule in a 1:1: ratio. Both anthraldehyde and PABA have shown anti­cancer (Pavitha et al., 2017), fluorescence (Obali & Ucan, 2012; Singh et al., 2014), sensing (Zhou et al., 2012 ), anti­microbial (Vidya, 2016) and magnetic properties (Dianu et al., 2010).

Structural commentary  

The title mol­ecule is non-planar, with the tricyclic fragment nearly perpendicular to the phenyl ring of the PABA moiety, making a dihedral angle of 81.36 (8)° (Fig. 1). The torsion angle of the Car­yl—CH2—NH—Car­yl backbone (C9—C8—N1—C5) is 175.9 (2)°. The C8—N1 bond length of 1.452 (3) Å is in agreement with the corresponding bond length of 1.457 (3) Å in the solvent-free compound [CSD (Groom et al., 2016) refcode RUCJIL; Ahmed et al., 2020], just as the bond lengths in the carb­oxy­lic group of the title compound, C1—O2 = 1.230 (3), C1—O1 = 1.322 (3) Å, are virtually identical with those of the solvent-free compound [1.238 (3) and 1.325 (3) Å, respectively].

Figure 1.

Figure 1

The mol­ecular structures of the components in the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Supra­molecular features  

Classical hydrogen-bonding inter­actions between the carb­oxy­lic OH group (O1) and the solvent O atom (O3) as well as between the amine functionality (N1) and the O atom of the carb­oxy­lic group (O2) lead to the formation of supra­molecular layers extending parallel to (10Inline graphic) (Fig. 2, Table 1). C—H⋯π inter­actions involving the phenyl C—H groups of PABA as donor groups and the π system of the anthracene moiety link adjacent layers into a three-dimensional network (Fig. 3, Table 1).

Figure 2.

Figure 2

View along [010] showing a layer formed by hydrogen-bonding inter­actions between the mol­ecule and the solvent. Purple and blue dashed lines represent the N—H⋯O and O—H⋯O bonds, respectively.

Table 1. Hydrogen-bond geometry (Å, °).

Cg5 and Cg7 are the centroids of the 10-membered ring system C9–C22 and of the 14-membered anthracene moiety, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3 1.02 (4) 1.59 (4) 2.590 (3) 167 (4)
N1—H1A⋯O2i 0.88 (1) 2.13 (1) 2.973 (3) 160 (1)
C18—H18⋯O3ii 0.95 (1) 2.40 (1) 3.277 (4) 154 (1)
C6—H6⋯Cg7iii 0.95 2.80 (1) 3.552 (2) 137 (1)
C7—H7⋯Cg5iii 0.95 2.99 (1) 3.646 (3) 138 (1)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 3.

Figure 3

The crystal packing showing C—H⋯π inter­actions between the layers, building up a three-dimensional network.

Hirshfeld Surface Analysis  

Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) were performed with CrystalExplorer (Turner et al., 2017). The Hirshfeld surfaces are colour-mapped with the normalized contact distance, d norm, varying from red (distances shorter than the sum of the van der Waals radii) through white to blue (distances longer than the sum of the van der Waals radii). The positions of the O—H⋯O and N—H⋯O hydrogen bonds between the mol­ecules are indicated by the red regions on the Hirshfeld surface (Fig. 4).

Figure 4.

Figure 4

Hirshfeld surface of the two mol­ecules in the title compound mapped over d norm, in the colour range −0. 461 to 1.471 a.u..

The two-dimensional fingerprint plot (Fig. 5 a) and those delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) N⋯H/H⋯N and (e) O⋯H/H⋯O inter­actions reveal contributions of 47.9%, 34.2%, 0.6% and 13.7%, respectively, to the overall surface.

Figure 5.

Figure 5

(a) Two-dimensional fingerprint plot of the title compound, and those delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) N⋯H/H⋯N and (e) O⋯H/H⋯O inter­actions.

Database survey  

Next to the solvent-free crystal structure (RUCJIL; Ahmed et al., 2020), a search of the Cambridge Structural Database (CSD,Version 5.40, update August 2019; Groom et al., 2016) for the N-(anthracen-9-ylmeth­yl)aniline skeleton gave six hits, five polymeric metal complexes of the ligand 5-[(anthracen-9-ylmeth­yl)amino]­isophthalic acid containing gadolinium (VOLSOG, VOLSUM, VOLTAT, VOLTIB; Singh et al., 2014) and cadmium (EYUMOC; Yan et al., 2016) as well as an organic mol­ecule with a calix(4)arene ring (Bu et al., 2004). In these structures, the bridging C—N bond length varies from ≃ 1.389 to 1.494 Å, compared to the C8—N1 bond length of 1.452 (3) Å in the title structure.

Synthesis and crystallization  

The Schiff base was synthesized and subsequently reduced by a reported procedure (Ahmed et al., 2020). To this reduced ligand (0.15 mmol), ethanol and di­methyl­formamide were added in an equal volume ratio, and the mixture was heated under reflux for 3–4 h at 353 K. The solution was then allowed to cool to room temperature, filtered and kept for slow evaporation. After 10 to 12 d, small colourless block-like crystals began to grow that were dried and characterized by single crystal X-ray diffraction.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. Hydrogen atoms bound to N or O atoms were located in a difference-Fourier map and were freely refined, while the C-bound hydrogen atoms were included in calculated positions and allowed to ride on their parent C atom: C—H = 0.93–0.97 Å with U iso(H) = 1.2U eq(C).

Table 2. Experimental details.

Crystal data
Chemical formula C22H17NO2·C3H7NO
M r 400.48
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 10.6878 (9), 8.9088 (7), 21.9503 (19)
β (°) 99.049 (3)
V3) 2064.0 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.36 × 0.28 × 0.16
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016)
T min, T max 0.368, 0.746
No. of measured, independent and observed [I ≥ 2u(I)] reflections 31593, 3668, 2477
R int 0.139
(sin θ/λ)max−1) 0.596
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.057, 0.184, 1.12
No. of reflections 3668
No. of parameters 278
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.47, −0.37

Computer programs: APEX2 and SAINT (Bruker, 2016), olex2.solve (Bourhis et al., 2015), olex2.refine (Bourhis et al., 2015) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989020005393/wm5548sup1.cif

e-76-00728-sup1.cif (689.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020005393/wm5548Isup2.hkl

e-76-00728-Isup2.hkl (136.4KB, hkl)

CCDC reference: 1982147

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the Department of Applied Chemistry, ZHCET, Aligarh Muslim University, Aligarh, U.P., India, for providing laboratory facilities.

supplementary crystallographic information

Crystal data

C22H17NO2·C3H7NO F(000) = 848.4030
Mr = 400.48 Dx = 1.289 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 10.6878 (9) Å Cell parameters from 4326 reflections
b = 8.9088 (7) Å θ = 3.2–28.1°
c = 21.9503 (19) Å µ = 0.09 mm1
β = 99.049 (3)° T = 100 K
V = 2064.0 (3) Å3 Block, colourless
Z = 4 0.36 × 0.28 × 0.16 mm

Data collection

Bruker APEXII CCD diffractometer 2477 reflections with I≥ 2u(I)
φ and ω scans Rint = 0.139
Absorption correction: multi-scan (SADABS; Bruker, 2016) θmax = 25.1°, θmin = 3.0°
Tmin = 0.368, Tmax = 0.746 h = −14→14
31593 measured reflections k = −11→11
3668 independent reflections l = −29→29

Refinement

Refinement on F2 41 constraints
Least-squares matrix: full Primary atom site location: iterative
R[F2 > 2σ(F2)] = 0.057 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.184 w = 1/[σ2(Fo2) + (0.0846P)2 + 0.3653P] where P = (Fo2 + 2Fc2)/3
S = 1.12 (Δ/σ)max < 0.001
3668 reflections Δρmax = 0.47 e Å3
278 parameters Δρmin = −0.37 e Å3
0 restraints

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.73134 (18) 0.7445 (2) 0.43603 (9) 0.0355 (5)
O2 0.88916 (17) 0.7377 (2) 0.38033 (9) 0.0323 (5)
O3 0.83886 (19) 0.9615 (2) 0.50335 (9) 0.0400 (5)
N1 0.49557 (19) 0.2754 (2) 0.23347 (11) 0.0271 (5)
H1a 0.52980 (19) 0.2410 (2) 0.20230 (11) 0.0326 (7)*
N2 0.8603 (2) 1.1906 (2) 0.46049 (11) 0.0319 (6)
C1 0.7855 (2) 0.6922 (3) 0.39023 (13) 0.0271 (6)
C2 0.7105 (2) 0.5787 (3) 0.35193 (12) 0.0239 (6)
C3 0.7566 (2) 0.5171 (3) 0.30121 (12) 0.0262 (6)
H3 0.8380 (2) 0.5456 (3) 0.29315 (12) 0.0314 (7)*
C4 0.6864 (2) 0.4164 (3) 0.26299 (13) 0.0270 (6)
H4 0.7197 (2) 0.3763 (3) 0.22878 (13) 0.0324 (8)*
C5 0.5653 (2) 0.3715 (3) 0.27377 (12) 0.0242 (6)
C6 0.5206 (2) 0.4299 (3) 0.32576 (12) 0.0263 (6)
H6 0.4407 (2) 0.3988 (3) 0.33498 (12) 0.0316 (7)*
C7 0.5920 (2) 0.5320 (3) 0.36341 (12) 0.0251 (6)
H7 0.5597 (2) 0.5715 (3) 0.39801 (12) 0.0302 (7)*
C8 0.3682 (2) 0.2265 (3) 0.23901 (13) 0.0272 (6)
H8a 0.3697 (2) 0.1682 (3) 0.27751 (13) 0.0327 (8)*
H8b 0.3128 (2) 0.3149 (3) 0.24074 (13) 0.0327 (8)*
C9 0.3172 (2) 0.1300 (3) 0.18389 (12) 0.0234 (6)
C10 0.2375 (2) 0.1918 (3) 0.13285 (12) 0.0248 (6)
C11 0.1944 (3) 0.3436 (3) 0.13080 (14) 0.0344 (7)
H11 0.2224 (3) 0.4081 (3) 0.16466 (14) 0.0412 (9)*
C12 0.1145 (3) 0.3979 (4) 0.08172 (16) 0.0452 (8)
H12 0.0856 (3) 0.4987 (4) 0.08225 (16) 0.0543 (10)*
C13 0.0737 (3) 0.3074 (4) 0.03015 (16) 0.0456 (9)
H13 0.0174 (3) 0.3471 (4) −0.00384 (16) 0.0548 (10)*
C14 0.1141 (3) 0.1640 (4) 0.02867 (14) 0.0372 (7)
H14 0.0880 (3) 0.1048 (4) −0.00706 (14) 0.0447 (9)*
C15 0.1955 (2) 0.0998 (3) 0.07979 (12) 0.0282 (6)
C16 0.2339 (2) −0.0494 (3) 0.07998 (13) 0.0289 (7)
H16 0.2064 (2) −0.1097 (3) 0.04472 (13) 0.0347 (8)*
C17 0.3112 (2) −0.1129 (3) 0.13030 (12) 0.0266 (6)
C18 0.3469 (3) −0.2670 (3) 0.13064 (15) 0.0350 (7)
H18 0.3170 (3) −0.3283 (3) 0.09599 (15) 0.0420 (9)*
C19 0.4230 (3) −0.3272 (3) 0.17973 (16) 0.0407 (8)
H19 0.4447 (3) −0.4306 (3) 0.17957 (16) 0.0489 (10)*
C20 0.4701 (3) −0.2375 (3) 0.23099 (15) 0.0368 (7)
H20 0.5252 (3) −0.2804 (3) 0.26469 (15) 0.0441 (9)*
C21 0.4378 (2) −0.0896 (3) 0.23285 (13) 0.0306 (7)
H21 0.4707 (2) −0.0312 (3) 0.26793 (13) 0.0367 (8)*
C22 0.3555 (2) −0.0209 (3) 0.18322 (12) 0.0235 (6)
C23 0.8782 (3) 1.0922 (3) 0.50634 (14) 0.0318 (7)
H23 0.9249 (3) 1.1247 (3) 0.54448 (14) 0.0381 (8)*
C24 0.9129 (3) 1.3401 (3) 0.46883 (15) 0.0401 (8)
H24a 0.8440 (3) 1.4139 (3) 0.4638 (9) 0.0602 (12)*
H24b 0.9620 (16) 1.3491 (7) 0.5103 (3) 0.0602 (12)*
H24c 0.9684 (15) 1.3586 (9) 0.4381 (6) 0.0602 (12)*
C25 0.7882 (3) 1.1510 (4) 0.40096 (14) 0.0445 (8)
H25a 0.8462 (3) 1.136 (2) 0.3711 (3) 0.0668 (12)*
H25b 0.7411 (15) 1.0580 (13) 0.4049 (2) 0.0668 (12)*
H25c 0.7286 (14) 1.2320 (11) 0.3868 (5) 0.0668 (12)*
H1 0.776 (4) 0.836 (4) 0.4571 (18) 0.085 (13)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0360 (12) 0.0387 (12) 0.0343 (12) −0.0078 (9) 0.0132 (9) −0.0087 (10)
O2 0.0293 (11) 0.0377 (11) 0.0307 (11) −0.0076 (8) 0.0071 (9) −0.0032 (9)
O3 0.0511 (13) 0.0329 (12) 0.0356 (13) −0.0006 (9) 0.0058 (10) −0.0041 (10)
N1 0.0206 (11) 0.0305 (12) 0.0311 (13) −0.0044 (9) 0.0066 (10) −0.0092 (10)
N2 0.0321 (13) 0.0264 (12) 0.0366 (15) 0.0015 (10) 0.0039 (11) −0.0002 (11)
C1 0.0242 (15) 0.0293 (15) 0.0288 (16) 0.0008 (11) 0.0071 (12) 0.0040 (12)
C2 0.0220 (13) 0.0238 (13) 0.0260 (15) 0.0027 (10) 0.0043 (11) 0.0031 (11)
C3 0.0201 (13) 0.0254 (14) 0.0331 (16) −0.0019 (10) 0.0045 (11) 0.0012 (12)
C4 0.0240 (14) 0.0272 (14) 0.0311 (16) 0.0007 (11) 0.0088 (11) −0.0040 (12)
C5 0.0215 (13) 0.0230 (13) 0.0278 (15) 0.0016 (10) 0.0030 (11) 0.0018 (12)
C6 0.0199 (13) 0.0284 (14) 0.0316 (16) 0.0005 (11) 0.0070 (11) 0.0012 (12)
C7 0.0230 (14) 0.0275 (14) 0.0255 (15) 0.0017 (11) 0.0055 (11) −0.0011 (12)
C8 0.0197 (14) 0.0317 (15) 0.0309 (16) −0.0039 (11) 0.0060 (11) −0.0039 (12)
C9 0.0166 (13) 0.0278 (14) 0.0267 (15) −0.0037 (10) 0.0064 (11) −0.0007 (12)
C10 0.0179 (13) 0.0265 (14) 0.0311 (16) −0.0033 (10) 0.0075 (11) 0.0036 (12)
C11 0.0327 (16) 0.0330 (16) 0.0387 (18) 0.0027 (12) 0.0097 (13) 0.0042 (14)
C12 0.0374 (18) 0.0412 (18) 0.057 (2) 0.0063 (14) 0.0066 (16) 0.0160 (17)
C13 0.0301 (17) 0.058 (2) 0.047 (2) 0.0023 (15) −0.0001 (15) 0.0250 (17)
C14 0.0266 (15) 0.0536 (19) 0.0307 (17) −0.0107 (14) 0.0021 (13) 0.0099 (15)
C15 0.0212 (14) 0.0355 (15) 0.0284 (16) −0.0060 (11) 0.0055 (11) 0.0037 (13)
C16 0.0240 (14) 0.0356 (16) 0.0281 (16) −0.0089 (11) 0.0066 (12) −0.0044 (13)
C17 0.0209 (13) 0.0284 (14) 0.0326 (16) −0.0046 (11) 0.0106 (12) −0.0013 (12)
C18 0.0336 (16) 0.0291 (15) 0.045 (2) −0.0057 (12) 0.0159 (14) −0.0033 (14)
C19 0.0361 (17) 0.0262 (15) 0.062 (2) 0.0008 (13) 0.0139 (16) 0.0051 (15)
C20 0.0260 (15) 0.0352 (16) 0.048 (2) 0.0010 (12) 0.0036 (14) 0.0132 (15)
C21 0.0217 (14) 0.0340 (15) 0.0358 (17) −0.0047 (11) 0.0040 (12) 0.0039 (13)
C22 0.0168 (13) 0.0256 (13) 0.0290 (15) −0.0029 (10) 0.0065 (11) 0.0027 (12)
C23 0.0307 (15) 0.0281 (15) 0.0360 (18) 0.0041 (12) 0.0036 (13) −0.0066 (13)
C24 0.0380 (18) 0.0304 (16) 0.053 (2) −0.0011 (13) 0.0099 (15) 0.0012 (15)
C25 0.047 (2) 0.049 (2) 0.0341 (18) −0.0011 (15) −0.0030 (15) 0.0005 (15)

Geometric parameters (Å, º)

O1—C1 1.322 (3) C11—H11 0.9500
O1—H1 1.02 (4) C11—C12 1.354 (4)
O2—C1 1.230 (3) C12—H12 0.9500
O3—C23 1.236 (3) C12—C13 1.402 (5)
N1—H1a 0.8800 C13—H13 0.9500
N1—C5 1.365 (3) C13—C14 1.351 (4)
N1—C8 1.452 (3) C14—H14 0.9500
N2—C23 1.326 (4) C14—C15 1.427 (4)
N2—C24 1.446 (3) C15—C16 1.391 (4)
N2—C25 1.452 (4) C16—H16 0.9500
C1—C2 1.470 (4) C16—C17 1.392 (4)
C2—C3 1.399 (4) C17—C18 1.424 (4)
C2—C7 1.393 (3) C17—C22 1.439 (4)
C3—H3 0.9500 C18—H18 0.9500
C3—C4 1.368 (4) C18—C19 1.355 (4)
C4—H4 0.9500 C19—H19 0.9500
C4—C5 1.410 (3) C19—C20 1.407 (4)
C5—C6 1.405 (4) C20—H20 0.9500
C6—H6 0.9500 C20—C21 1.365 (4)
C6—C7 1.376 (4) C21—H21 0.9500
C7—H7 0.9500 C21—C22 1.426 (4)
C8—H8a 0.9900 C23—H23 0.9500
C8—H8b 0.9900 C24—H24a 0.9800
C8—C9 1.514 (4) C24—H24b 0.9800
C9—C10 1.408 (4) C24—H24c 0.9800
C9—C22 1.406 (3) C25—H25a 0.9800
C10—C11 1.427 (4) C25—H25b 0.9800
C10—C15 1.437 (4) C25—H25c 0.9800
H1—O1—C1 114 (2) H13—C13—C12 119.91 (18)
C5—N1—H1a 118.07 (14) C14—C13—C12 120.2 (3)
C8—N1—H1a 118.07 (14) C14—C13—H13 119.91 (19)
C8—N1—C5 123.9 (2) H14—C14—C13 119.40 (19)
C24—N2—C23 120.4 (2) C15—C14—C13 121.2 (3)
C25—N2—C23 121.1 (2) C15—C14—H14 119.40 (18)
C25—N2—C24 118.6 (2) C14—C15—C10 118.9 (3)
O2—C1—O1 122.2 (3) C16—C15—C10 119.2 (2)
C2—C1—O1 114.4 (2) C16—C15—C14 121.9 (3)
C2—C1—O2 123.4 (2) H16—C16—C15 119.03 (16)
C3—C2—C1 119.8 (2) C17—C16—C15 121.9 (2)
C7—C2—C1 122.1 (2) C17—C16—H16 119.03 (16)
C7—C2—C3 118.1 (2) C18—C17—C16 121.4 (3)
H3—C3—C2 119.41 (15) C22—C17—C16 119.2 (2)
C4—C3—C2 121.2 (2) C22—C17—C18 119.4 (2)
C4—C3—H3 119.41 (16) H18—C18—C17 119.59 (17)
H4—C4—C3 119.59 (16) C19—C18—C17 120.8 (3)
C5—C4—C3 120.8 (2) C19—C18—H18 119.59 (17)
C5—C4—H4 119.59 (15) H19—C19—C18 119.81 (17)
C4—C5—N1 119.4 (2) C20—C19—C18 120.4 (3)
C6—C5—N1 122.6 (2) C20—C19—H19 119.81 (17)
C6—C5—C4 118.0 (2) H20—C20—C19 119.60 (17)
H6—C6—C5 119.79 (15) C21—C20—C19 120.8 (3)
C7—C6—C5 120.4 (2) C21—C20—H20 119.60 (18)
C7—C6—H6 119.79 (15) H21—C21—C20 119.32 (18)
C6—C7—C2 121.5 (2) C22—C21—C20 121.4 (3)
H7—C7—C2 119.26 (15) C22—C21—H21 119.32 (16)
H7—C7—C6 119.26 (15) C17—C22—C9 119.6 (2)
H8a—C8—N1 109.85 (14) C21—C22—C9 123.2 (2)
H8b—C8—N1 109.85 (14) C21—C22—C17 117.2 (2)
H8b—C8—H8a 108.3 N2—C23—O3 125.1 (3)
C9—C8—N1 109.2 (2) H23—C23—O3 117.46 (17)
C9—C8—H8a 109.85 (14) H23—C23—N2 117.46 (16)
C9—C8—H8b 109.85 (14) H24a—C24—N2 109.5
C10—C9—C8 120.7 (2) H24b—C24—N2 109.5
C22—C9—C8 118.8 (2) H24b—C24—H24a 109.5
C22—C9—C10 120.4 (2) H24c—C24—N2 109.5
C11—C10—C9 123.2 (2) H24c—C24—H24a 109.5
C15—C10—C9 119.7 (2) H24c—C24—H24b 109.5
C15—C10—C11 117.2 (2) H25a—C25—N2 109.5
H11—C11—C10 119.22 (16) H25b—C25—N2 109.5
C12—C11—C10 121.6 (3) H25b—C25—H25a 109.5
C12—C11—H11 119.22 (19) H25c—C25—N2 109.5
H12—C12—C11 119.52 (19) H25c—C25—H25a 109.5
C13—C12—C11 121.0 (3) H25c—C25—H25b 109.5
C13—C12—H12 119.52 (18)

Hydrogen-bond geometry (Å, º)

Cg5 and Cg7 are the centroids of the 10-membered ring system C9–C22 and of the 14-membered anthracene moiety, respectively.

D—H···A D—H H···A D···A D—H···A
O1—H1···O3 1.02 (4) 1.59 (4) 2.590 (3) 167 (4)
N1—H1A···O2i 0.88 (1) 2.13 (1) 2.973 (3) 160 (1)
C18—H18···O3ii 0.95 (1) 2.40 (1) 3.277 (4) 154 (1)
C6—H6···Cg7iii 0.95 2.80 (1) 3.552 (2) 137 (1)
C7—H7···Cg5iii 0.95 2.99 (1) 3.646 (3) 138 (1)

Symmetry codes: (i) −x+3/2, y−1/2, −z+1/2; (ii) x−1/2, −y+1/2, z−1/2; (iii) −x+1/2, y+1/2, −z+1/2.

Funding Statement

This work was funded by University Grant Commission, India grant .

References

  1. Ahmed, A., Faizi, M. S. H., Ahmad, A., Ahmad, M. & Fritsky, I. O. (2020). Acta Cryst. E76, 62–65. [DOI] [PMC free article] [PubMed]
  2. Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. [DOI] [PMC free article] [PubMed]
  3. Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bu, J. H., Zheng, Q. Y., Chen, C. F. & Huang, Z. T. (2004). Org. Lett. 6, 3301–3303. [DOI] [PubMed]
  5. Dianu, L. M., Kriza, A., Stanica, N. & Musuc, M. A. (2010). J. Serb. Chem. Soc. 75, 1515–1531.
  6. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  7. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  8. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  9. Obali, A. Y. & Ucan, H. I. (2012). J. Fluoresc. 22, 1357–1370. [DOI] [PubMed]
  10. Pavitha, P., Prashanth, J., Ramu, G., Ramesh, G., Mamatha, K. & Reddy, B. V. (2017). J. Mol. Struct. 1147, 406–426.
  11. Singh, R., Mrozinski, J. & Bharadwaj, P. K. (2014). Cryst. Growth Des. 14, 3623–3633.
  12. Spackman, A. M. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  13. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface. net
  14. Vidya, V. G. (2016). Res. J. Recent Sci, 5, 41–43.
  15. Yan, Y., Chen, J., Zhang, N. N., Wang, M. S., Sun, C., Xing, X. S., Li, R., Xu, J. G., Zheng, F. K. & Guo, G. C. (2016). Dalton Trans. 45, 18074–18078. [DOI] [PubMed]
  16. Zhou, Y., Zhou, H., Zhang, J., Zhang, L. & Niu, J. (2012). Spectrochim. Acta A, 98, 14–17. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989020005393/wm5548sup1.cif

e-76-00728-sup1.cif (689.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020005393/wm5548Isup2.hkl

e-76-00728-Isup2.hkl (136.4KB, hkl)

CCDC reference: 1982147

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES