Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Apr 30;76(Pt 5):752–755. doi: 10.1107/S2056989020005757

Crystal structure of lutetium aluminate (LUAM), Lu4Al2O9

Rayko Simura a,*, Hisanori Yamane a
PMCID: PMC7199276  PMID: 32431946

Single-crystal X-ray structure analysis revealed that Lu4Al2O9 is isostructural with Eu4Al2O9 and contains Lu atoms in six- and sevenfold coordination, together with tetra­hedral Al atoms.

Keywords: crystal structure, Lu4Al2O9, lutetium aluminate monoclinic (LUAM), rare-earth aluminate, Lu2O3-Al2O3 system, single-crystal X-ray diffraction

Abstract

The crystal structure of the title compound containing lutetium, the last element in the lanthanide series, was determined using a single crystal prepared by heating a pressed pellet of a 2:1 molar ratio mixture of Lu2O3 and Al2O3 powders in an Ar atmosphere at 2173 K for 4 h. Lu4Al2O9 is isostructural with Eu4Al2O9 and composed of Al2O7 di­tetra­hedra and Lu-centered six- and sevenfold oxygen polyhedra. The unit-cell volume, 787.3 (3) Å3, is the smallest among the volumes of the rare-earth (RE) aluminates, RE 4Al2O9. The crystal studied was refined as a two-component pseudo-merohedric twin.

Chemical context  

In the Al2O3-Lu2O3 system, where Lu has the largest atomic number among the rare-earth elements (RE), the following three phases have been reported: Lu3Al5O12, LuAlO3, and Lu4Al2O9. These phases have been actively investigated as host materials, not only for phosphors (Ding et al., 2011; Xiang et al., 2016; Wang et al., 2018), but also for scintillators, owing to their large radiation absorption cross sections arising from the presence of Lu. Various scintillation properties of Ce- and Pr-doped Lu3Al5O12 and LuAlO3 crystals have been characterized (Wojtowicz, 1999; Nikl, 2000; Wojtowicz et al., 2006; Nikl et al., 2013), and the luminescence properties of Ce- and Pr-doped Lu4Al2O9 evaluated (Lempicki et al., 1996; Zhang et al., 1997, Zhang et al., 1998; Drozdowski et al., 2005). The crystal structures of the lutetium aluminates Lu3Al5O12 (Euler & Bruce, 1965) and LuAlO3 (Dernier & Maines, 1971; Shishido et al., 1995) have been determined as garnet-type (LUAG) and perovskite-type (LUAP), respectively. However, to date, there have been no reports of the lattice constants of Lu4Al2O9, although Shirvinskaya & Popova (1977) treated it as isotypic with Y4Al2O9 and have reported the d-spacings and relative peak intensities in the powder X-ray diffraction pattern (PDF#00-033-0844).

Many REAl2O9 compounds have been investigated in detail. After Warshaw & Roy (1959) first reported the existence of Y4Al2O9, Reed & Chase (1962) determined the space group of this material as P21/c using X-ray Weissenberg and precession photography. Christensen & Hazell (1991) later determined the crystal structure of Y4Al2O9 using powder synchrotron X-ray and neutron diffraction. Brandle & Steinfink (1969) also prepared crystals of REAl2O9 (RE = Sm, Gd, Eu, Dy, Ho) and determined the crystal structure of Eu4Al2O9 using X-ray diffraction.

The lattice parameters of RE 4Al2O9 have previously been reported for RE = Y (Lehmann et al., 1987; Reed & Chase, 1962; Christensen & Hazell, 1991; Yamane et al., 1995b ; Talik et al., 2016), La (Dohrup et al., 1996), Pr (Dohrup et al., 1996), Nd (Dohrup et al., 1996), Sm (Brandle & Steinfink, 1969; Mizuno et al., 1977a ; Yamane et al., 1995a ), Eu (Brandle & Steinfink, 1969; Mizuno et al., 1977b ; Yamane et al., 1995a ), Gd (Brandle & Steinfink, 1969; Mizuno et al., 1977b ; Yamane et al., 1995a ; Dohrup et al., 1996; Martín-Sedeño et al., 2006), Tb (Jero & Kriven, 1988; Yamane et al., 1995a ; Dohrup et al., 1996; Li et al., 2009), Dy (Brandle & Steinfink, 1969; Mizuno et al., 1978; Yamane et al., 1995a ), Ho (Brandle & Steinfink, 1969; Mizuno, 1979; Yamane et al., 1995a ), Er (Mizuno, 1979; Yamane et al., 1995a ), Tm (Yamane et al., 1995a ), and Yb (Mizuno & Noguchi, 1980; Yamane et al., 1995a ).

Wu & Pelton (1992) investigated the phase diagram of the Lu2O3–Al2O3 system and showed that Lu4Al2O9 melted congruently at 2313 K under an inert atmosphere. Petrosyan et al. (2006) studied the same system under a reducing atmosphere and reported that Lu4Al2O9 could be formed by reaction of Lu2O3 and Lu3Al5O12 at 1923 K, but decomposed into Lu2O3 and a melt at 2273 K. Subsequently, Petrosyan et al. (2013) observed incongruent melting of Lu4Al2O9 at 2123 K under an Ar / 2% H2 atmosphere using differential thermal analysis (DTA). Klimm (2010) employed DTA to investigate LuAlO3 melting behavior in a 5 N pure Ar flow and concluded that the congruent and incongruent melting of LuAlO3 depended on the atmospheric conditions. The author also concluded that the phase diagram at around Lu:Al = 1:1 under an inert atmosphere, previously reported by Wu & Pelton (1992), is correct. Yamane et al. (1995a ) reported that only a very small amount of Lu4Al2O9 can be obtained by reactions in air at 1673–2073 K, even though RE 4Al2O9 (RE = Y, Sm–Yb) can be synthesized under the same conditions.

Following these reports, the present authors also attempted to synthesize Lu4Al2O9 by heating a 2:1 molar ratio powder mixture of Lu2O3 and Al2O3 at 2073 K for 2 h in air, but the sample obtained was a mixture of LuAlO3 and Lu2O3 (see Fig. S1a in the supporting information). The method used to prepare the single crystals of Lu4Al2O9 used for the present diffraction study is described below.

Structural commentary  

X-ray diffraction spots from the Lu4Al2O9 single crystal were indexed on the basis of a monoclinic unit cell with lattice parameters: a = 7.236 (2) Å, b = 10.333 (2) Å, c = 11.096 (3) Å, and β = 108.38 (2)°. As shown in Fig. 1, the unit-cell volume of Lu4Al2O9 calculated from these parameters lies on the extrapolated line of RE 4Al2O9 volumes plotted against the effective ionic radii for sixfold coordination of the trivalent rare-earth anions (RE 3+) (Shannon, 1976). In other words, Lu4Al2O9 containing Lu, which has the smallest effective ionic radius of the RE atoms, has the smallest unit-cell volume in the RE 4Al2O9 series, in line with predictions arising from the lanthanide contraction.

Figure 1.

Figure 1

Unit-cell volume of RE 4Al2O9 versus effective ionic radius for the trivalent rare-earth anion (RE 3+) with sixfold coordination.

The crystal structure of Lu4Al2O9 (space group P21/c), determined using Eu4Al2O9 (Brandle & Steinfink, 1969) as the starting model, contains two crystallographically distinct Al sites, four Lu sites, and nine O sites. The two Al sites are tetra­hedrally coordinated by oxygen atoms. The two Al tetra­hedra are connected through a shared O5 atom, forming an Al2O7 di­tetra­hedral oxy-aluminate group (Fig. 2). The Al2O7 dimers lie parallel to the a axis, and are related by the c glide symmetry operation (Fig. 3). The average Al1—O and Al2—O distances in Lu4Al2O9 are 1.744 and 1.756 Å, respectively, which are comparable to values found in Eu4Al2O9 (1.741 and 1.755 Å, Brandle & Steinfink, 1969) and Y4Al2O9 (1.739 and 1.769 Å, Lehmann et al., 1987). The bond-valence sums (BVS; Brown & Altermatt, 1985) calculated using the Al—O distances and bond-valence parameters recently reported by Gagne & Hawthorne (2015) (r 0 =1.634 Å, b = 0.39) are 3.02 and 2.93 for Al1 and Al2, respectively. These BVS values are close to those expected for trivalent Al. The Al1—O5—Al2 angle of the Al2O7 dimer is 134.9 (3)°, which is smaller than the corresponding angles in Eu4Al2O9 (141.9°; Brandle & Steinfink, 1969) and Y4Al2O9 (137.6°; Lehmann et al., 1987).

Figure 2.

Figure 2

The atomic arrangement of Lu4Al2O9 depicted with displacement ellipsoids at the 99% probability level. [Symmetry codes: (i) 1 − x, −y, 1 − z; (ii) −x, −y, 1 − z; (iii) x − 1, y, z; (iv) 1 + x, −y + Inline graphic, z − Inline graphic; (v) x + 1, y, z; (vi) x, −y + Inline graphic, z − Inline graphic; (vii) x, −y + Inline graphic, z + Inline graphic; (viii) x, y, z − 1.]

Figure 3.

Figure 3

The crystal structure of Lu4Al2O9 highlighting the Al2O7 di­tetra­hedra viewed down the b axis (upper), and the Al2O7 di­tetra­hedra and Lu-centered polyhedra viewed down the a axis (lower).

Of the four crystallographically distinct Lu atoms, Lu1 and Lu3 are coordinated by seven oxygen atoms with five Lu—O distances in the range 2.219 (5)–2.344 (5) Å and two in the range 2.461 (6)–2.573 (6) Å. The remaining Lu atoms, Lu2 and Lu4, are coordinated by six oxygen atoms in distorted octa­hedra with Lu—O distances in the range 2.172 (6)–2.337 (6) Å.

The averages Lu—O distances for the six-fold coordinated Lu atoms in Lu4Al2O9 are 2.250 and 2.260 Å for Lu2 and Lu4, respectively. These values are 0.02–0.10 Å shorter than those for the LuO6 octa­hedra found in Lu3Al5O12 (2.352 Å; Euler & Bruce, 1965) and LuAlO3 (2.330 Å; Shishido et al., 1995).

The average values for the Eu—O and Y—O distances in Eu4Al2O9 and Y4Al2O9 lie in the ranges 2.328–2.439 Å (Brandle & Steinfink, 1969) and 2.286–2.387 Å (Lehmann et al., 1987), respectively. The differences between the RE—O lengths in RE 4Al2O9 when RE = Eu and Lu (0.07–0.09 Å), and when RE = Y and Lu (0.02–0.05 Å) correspond to the differences between VI r Eu − VI r Lu (0.086 Å) and VI r Y − VI r Lu (0.039 Å), where VI r Eu, VI r Lu, and VI r Lu are the effective ionic radii in sixfold coordination of Lu3+ (0.861 Å), Eu3+ (0.947 Å), and Y3+ (0.900 Å), respectively (Shannon, 1976). The BVS for Lu1, Lu2, Lu3, and Lu4, calculated using the bond-valence parameters (r 0 = 1.939 Å, b = 0.403) of Gagné & Hawthorne (2015), are 2.766, 2.796, 2.642, and 2.714, respectively, which are smaller than the expected valence value of +3 for the Lu atoms. The polyhedral volumes of Lu1O7 (18.18 Å3), Lu2O6 (14.29 Å3), Lu3O7 (18.56 Å3), and Lu4O6 (14.24 Å3) are 1.1–1.7 Å3 and 0.5–0.8 Å3 smaller than those for Eu4Al2O9 (Eu1O7:19.85 Å3, Eu2O6:15.38 Å3, Eu3O7:20.14 Å3, and Eu4O6:15.71 Å3) and for Y4Al2O9 (Y1O7:18.66 Å3, Y2O6:14.77 Å3, Y3O7:19.33 Å3, and Y4O6:14.98 Å3), respectively. These differences in polyhedral volumes correlate with the differences in ionic radii of the lanthanides.

Synthesis and crystallization  

The starting powders Al2O3 (Sumitomo Chemicals, AKP20, 99.99%) and Lu2O3 (Nippon Yttrium, 99.999%) were mixed in a molar ratio of Lu:Al = 2:1, ground with ethanol in an agate mortar, and pressed into a pellet. The pellet was placed in a BN crucible with an inner diameter of 18 mm and a height of 20 mm. The BN crucible was covered with a BN lid, and heated in a chamber with a carbon heater (Shimadzu Mectem, Inc., VESTA). The pellet was heated slowly under vacuum (∼10 −2 Pa) from room temperature to 1273 K. During the 5 min. hold at 1273 K, the chamber was filled with Ar (99.9995%) up to 0.15 MPa. The temperature was then raised to 2173 K at a heating rate of 300 Kh−1. After being held at 2173 K for 4 h, the sample was cooled to 1473 K at a rate of 20 Kh−1, and then to room temperature by shutting off the heater. A part of the obtained sample was pulverized in the agate mortar, and powder X-ray diffraction measurements (Bruker D2 Phaser, Cu radiation) confirmed that the major crystalline phase present in the sample was Lu4Al2O9, together with small amounts of LuAlO3 and unreacted Lu2O3 (Fig. S1a). Colorless crystals of Lu4Al2O9 were selected for single-crystal X-ray diffraction studies.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 1. The Eu atoms in the rare-earth metal sites in the structural model of Eu4Al2O9 (Brandle & Steinfink, 1969) were replaced by Lu atoms to generate the initial model. Several iterations of refinement yielded an R value of 10.07% and a residual electron density of ∼10 e Å−3. A subsequent refinement, performed by implementing the (100) twin plane observed in a study of Y4Al2O9 (Yamane et al., 1995b ), yielded an R(F 2 > 2σ(F 2)) value of 1.92% with an approximate volume ratio of 6:4 for the twin domains.

Table 1. Experimental details.

Crystal data
Chemical formula Lu4Al2O9
M r 897.84
Crystal system, space group Monoclinic, P21/c
Temperature (K) 301
a, b, c (Å) 7.2360 (11), 10.3330 (19), 11.096 (3)
β (°) 108.381 (11)
V3) 787.3 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 49.97
Crystal size (mm) 0.12 × 0.05 × 0.04
 
Data collection
Diffractometer Bruker D8 QUEST
Absorption correction Multi-scan (SADABS; Bruker, 2016)
T min, T max 0.451, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 32672, 2795, 2719
R int 0.035
(sin θ/λ)max−1) 0.748
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.019, 0.043, 1.17
No. of reflections 2795
No. of parameters 138
Δρmax, Δρmin (e Å−3) 1.49, −1.81

Computer programs: APEX3 (Bruker, 2018), SAINT (Bruker, 2017), SHELXL2014/7 (Sheldrick, 2015), VESTA (Momma & Izumi, 2011) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989020005757/cq2036sup1.cif

e-76-00752-sup1.cif (955KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020005757/cq2036Isup2.hkl

e-76-00752-Isup2.hkl (223.6KB, hkl)

Figure S1. Powder XRD patterns of samples prepared (a) under air and (b) under Ar. DOI: 10.1107/S2056989020005757/cq2036sup3.tif

CCDC reference: 1999289

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to Ms Yuko Suzuki and Ms Mitsuyo Takaishi for their assistance with the high-temperature synthesis.

supplementary crystallographic information

Crystal data

Lu4Al2O9 F(000) = 1528
Mr = 897.84 Dx = 7.575 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 7.2360 (11) Å Cell parameters from 1294 reflections
b = 10.3330 (19) Å θ = 2.8–38.5°
c = 11.096 (3) Å µ = 49.97 mm1
β = 108.381 (11)° T = 301 K
V = 787.3 (3) Å3 Chip, colourless
Z = 4 0.12 × 0.05 × 0.04 mm

Data collection

Bruker D8 QUEST diffractometer 2719 reflections with I > 2σ(I)
Detector resolution: 7.3910 pixels mm-1 Rint = 0.035
ω and σcans θmax = 32.1°, θmin = 2.8°
Absorption correction: multi-scan (SADABS; Bruker, 2016) h = −10→10
Tmin = 0.451, Tmax = 0.746 k = −15→15
32672 measured reflections l = −16→16
2795 independent reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + 17.273P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.019 (Δ/σ)max = 0.001
wR(F2) = 0.043 Δρmax = 1.49 e Å3
S = 1.17 Δρmin = −1.81 e Å3
2795 reflections Extinction correction: SHELXL2014/7 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
138 parameters Extinction coefficient: 0.00026 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a two-component inversion twin

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Al1 0.2142 (4) 0.1742 (2) 0.1270 (2) 0.0058 (4)
Al2 0.6551 (4) 0.1717 (2) 0.1108 (2) 0.0059 (4)
Lu1 0.52225 (7) 0.11375 (3) 0.78409 (2) 0.00572 (6)
Lu2 0.02236 (6) 0.10027 (3) 0.80405 (2) 0.00574 (6)
Lu3 0.34172 (7) 0.12783 (3) 0.44005 (2) 0.00605 (6)
Lu4 0.83940 (6) 0.12082 (3) 0.41774 (3) 0.00610 (6)
O1 0.7934 (8) 0.2450 (6) 0.7469 (5) 0.0102 (11)
O2 0.2314 (8) 0.2439 (5) 0.7699 (5) 0.0072 (11)
O3 0.2106 (13) 0.0095 (5) 0.1516 (5) 0.0102 (10)
O4 0.0720 (8) 0.2340 (6) 0.9813 (6) 0.0092 (11)
O5 0.4326 (10) 0.2381 (4) 0.1156 (5) 0.0085 (8)
O6 0.6371 (8) 0.2328 (5) 0.9599 (5) 0.0072 (11)
O7 0.6926 (13) 0.0084 (5) 0.1529 (5) 0.0111 (10)
O8 0.0764 (12) −0.0082 (5) 0.3927 (5) 0.0072 (9)
O9 0.5643 (13) 0.0063 (5) 0.3906 (5) 0.0069 (9)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Al1 0.0071 (12) 0.0044 (8) 0.0067 (9) 0.0012 (8) 0.0032 (8) 0.0005 (7)
Al2 0.0074 (12) 0.0050 (8) 0.0055 (8) 0.0010 (8) 0.0021 (8) 0.0012 (7)
Lu1 0.00622 (14) 0.00463 (12) 0.00594 (10) 0.00019 (12) 0.00140 (14) −0.00101 (8)
Lu2 0.00566 (13) 0.00433 (12) 0.00733 (10) −0.00031 (13) 0.00218 (14) −0.00058 (8)
Lu3 0.00647 (13) 0.00518 (11) 0.00625 (10) 0.00024 (13) 0.00165 (13) 0.00101 (9)
Lu4 0.00538 (14) 0.00435 (10) 0.00863 (10) 0.00048 (13) 0.00231 (15) 0.00137 (9)
O1 0.008 (3) 0.013 (3) 0.008 (2) 0.0039 (19) 0.0002 (18) 0.002 (2)
O2 0.009 (3) 0.006 (2) 0.007 (2) 0.0012 (18) 0.0030 (19) 0.0010 (17)
O3 0.011 (3) 0.006 (2) 0.015 (2) 0.000 (3) 0.007 (3) 0.0006 (17)
O4 0.009 (3) 0.007 (2) 0.009 (2) 0.0039 (18) −0.0009 (18) −0.0003 (19)
O5 0.008 (2) 0.0064 (18) 0.012 (2) −0.003 (2) 0.004 (2) −0.0003 (15)
O6 0.008 (3) 0.007 (2) 0.007 (2) 0.0017 (18) 0.0018 (18) 0.0009 (17)
O7 0.013 (3) 0.008 (2) 0.016 (2) 0.003 (3) 0.009 (3) 0.0059 (18)
O8 0.005 (3) 0.006 (2) 0.009 (2) −0.003 (2) 0.000 (3) −0.0002 (16)
O9 0.010 (3) 0.0042 (19) 0.007 (2) 0.001 (3) 0.003 (3) 0.0001 (16)

Geometric parameters (Å, º)

Al1—O3 1.724 (6) Lu3—O5iv 2.310 (5)
Al1—O4i 1.733 (6) Lu3—O6ii 2.529 (5)
Al1—O5 1.754 (7) Lu3—O4ii 2.573 (6)
Al1—O2ii 1.767 (6) Lu3—Al2iv 3.211 (2)
Al1—Lu1ii 3.219 (2) Lu3—Al1iv 3.247 (2)
Al1—Lu3ii 3.247 (2) Lu3—Lu3iii 3.4748 (8)
Al1—Lu3 3.336 (2) Lu3—Lu4iii 3.4803 (7)
Al2—O7 1.749 (6) Lu4—O4ix 2.198 (6)
Al2—O1ii 1.753 (6) Lu4—O9 2.253 (8)
Al2—O6i 1.755 (6) Lu4—O6ii 2.255 (6)
Al2—O5 1.767 (7) Lu4—O8v 2.257 (8)
Al2—Lu3ii 3.211 (2) Lu4—O1ii 2.287 (6)
Al2—Lu1ii 3.272 (2) Lu4—O8iii 2.311 (5)
Al2—Lu4 3.285 (2) Lu4—Lu3iii 3.4804 (7)
Lu1—O9iii 2.219 (5) Lu4—Lu4x 3.5061 (8)
Lu1—O6 2.233 (5) Lu4—Lu2ix 3.5641 (7)
Lu1—O3iii 2.236 (8) Lu4—Lu3v 3.5652 (7)
Lu1—O7iii 2.277 (8) Lu4—Lu1ii 3.5836 (7)
Lu1—O5iv 2.344 (5) O1—Al2iv 1.753 (6)
Lu1—O2 2.461 (6) O1—Lu2v 2.172 (6)
Lu1—O1 2.524 (6) O1—Lu4iv 2.287 (6)
Lu1—Al1iv 3.219 (2) O2—Al1iv 1.767 (6)
Lu1—Al2iv 3.272 (2) O2—Lu3iv 2.238 (5)
Lu1—Lu2v 3.5579 (7) O3—Lu2vii 2.213 (8)
Lu1—Lu4iv 3.5836 (7) O3—Lu1iii 2.236 (8)
Lu1—Lu3 3.6270 (9) O4—Al1xi 1.733 (6)
Lu2—O1vi 2.172 (6) O4—Lu4viii 2.198 (6)
Lu2—O3vii 2.213 (8) O4—Lu3iv 2.573 (6)
Lu2—O2 2.235 (6) O5—Lu3ii 2.310 (5)
Lu2—O7iii 2.263 (8) O5—Lu1ii 2.344 (5)
Lu2—O8vii 2.280 (5) O6—Al2xi 1.754 (6)
Lu2—O4 2.337 (6) O6—Lu4iv 2.255 (6)
Lu2—Lu1vi 3.5579 (7) O6—Lu3iv 2.529 (5)
Lu2—Lu4viii 3.5641 (7) O7—Lu2iii 2.263 (8)
Lu2—Lu3iv 3.6485 (7) O7—Lu1iii 2.277 (8)
Lu2—Lu4iii 3.7187 (7) O8—Lu4vi 2.257 (8)
Lu2—Lu3vii 3.9156 (7) O8—Lu2vii 2.280 (5)
Lu3—O2ii 2.238 (5) O8—Lu4iii 2.311 (5)
Lu3—O9 2.242 (8) O9—Lu1iii 2.219 (5)
Lu3—O9iii 2.260 (5) O9—Lu3iii 2.260 (5)
Lu3—O8 2.302 (7)
O3—Al1—O4i 117.7 (3) O2ii—Lu3—O8 96.84 (19)
O3—Al1—O5 116.2 (4) O9—Lu3—O8 102.35 (18)
O4i—Al1—O5 94.7 (3) O9iii—Lu3—O8 80.0 (2)
O3—Al1—O2ii 109.3 (3) O2ii—Lu3—O5iv 106.69 (18)
O4i—Al1—O2ii 121.3 (3) O9—Lu3—O5iv 120.4 (2)
O5—Al1—O2ii 94.3 (3) O9iii—Lu3—O5iv 74.68 (16)
O3—Al1—Lu1ii 128.9 (3) O8—Lu3—O5iv 123.6 (2)
O4i—Al1—Lu1ii 111.6 (2) O2ii—Lu3—O6ii 78.65 (19)
O5—Al1—Lu1ii 45.30 (17) O9—Lu3—O6ii 71.8 (2)
O2ii—Al1—Lu1ii 49.24 (19) O9iii—Lu3—O6ii 104.6 (2)
O3—Al1—Lu3ii 138.1 (3) O8—Lu3—O6ii 171.4 (2)
O4i—Al1—Lu3ii 52.0 (2) O5iv—Lu3—O6ii 65.0 (2)
O5—Al1—Lu3ii 43.34 (18) O2ii—Lu3—O4ii 74.48 (19)
O2ii—Al1—Lu3ii 108.5 (2) O9—Lu3—O4ii 176.2 (2)
Lu1ii—Al1—Lu3ii 68.24 (5) O9iii—Lu3—O4ii 103.8 (2)
O3—Al1—Lu3 72.9 (2) O8—Lu3—O4ii 75.8 (2)
O4i—Al1—Lu3 155.5 (2) O5iv—Lu3—O4ii 63.1 (2)
O5—Al1—Lu3 99.75 (19) O6ii—Lu3—O4ii 109.64 (15)
O2ii—Al1—Lu3 38.37 (18) O2ii—Lu3—Al2iv 96.50 (15)
Lu1ii—Al1—Lu3 67.47 (5) O9—Lu3—Al2iv 94.44 (18)
Lu3ii—Al1—Lu3 135.61 (8) O9iii—Lu3—Al2iv 86.21 (17)
O7—Al2—O1ii 104.2 (3) O8—Lu3—Al2iv 155.68 (16)
O7—Al2—O6i 124.1 (3) O5iv—Lu3—Al2iv 32.39 (17)
O1ii—Al2—O6i 119.7 (3) O6ii—Lu3—Al2iv 32.95 (13)
O7—Al2—O5 115.6 (4) O4ii—Lu3—Al2iv 88.36 (14)
O1ii—Al2—O5 93.5 (3) O2ii—Lu3—Al1iv 93.90 (15)
O6i—Al2—O5 95.4 (3) O9—Lu3—Al1iv 151.60 (17)
O7—Al2—Lu3ii 143.2 (3) O9iii—Lu3—Al1iv 85.82 (16)
O1ii—Al2—Lu3ii 107.2 (2) O8—Lu3—Al1iv 98.38 (18)
O6i—Al2—Lu3ii 51.62 (19) O5iv—Lu3—Al1iv 31.41 (17)
O5—Al2—Lu3ii 44.47 (16) O6ii—Lu3—Al1iv 89.32 (13)
O7—Al2—Lu1ii 123.1 (2) O4ii—Lu3—Al1iv 32.07 (14)
O1ii—Al2—Lu1ii 49.8 (2) Al2iv—Lu3—Al1iv 60.46 (5)
O6i—Al2—Lu1ii 111.7 (2) O2ii—Lu3—Al1 29.36 (15)
O5—Al2—Lu1ii 43.89 (17) O9—Lu3—Al1 79.05 (14)
Lu3ii—Al2—Lu1ii 68.03 (5) O9iii—Lu3—Al1 149.97 (14)
O7—Al2—Lu4 65.8 (2) O8—Lu3—Al1 85.02 (13)
O1ii—Al2—Lu4 41.4 (2) O5iv—Lu3—Al1 134.72 (12)
O6i—Al2—Lu4 158.5 (2) O6ii—Lu3—Al1 87.58 (13)
O5—Al2—Lu4 96.12 (18) O4ii—Lu3—Al1 97.42 (14)
Lu3ii—Al2—Lu4 134.03 (8) Al2iv—Lu3—Al1 115.70 (7)
Lu1ii—Al2—Lu4 66.26 (5) Al1iv—Lu3—Al1 122.25 (5)
O9iii—Lu1—O6 174.8 (3) O2ii—Lu3—Lu3iii 142.19 (14)
O9iii—Lu1—O3iii 86.4 (2) O9—Lu3—Lu3iii 39.67 (13)
O6—Lu1—O3iii 89.4 (2) O9iii—Lu3—Lu3iii 39.30 (19)
O9iii—Lu1—O7iii 85.8 (2) O8—Lu3—Lu3iii 91.43 (16)
O6—Lu1—O7iii 98.0 (2) O5iv—Lu3—Lu3iii 98.91 (14)
O3iii—Lu1—O7iii 101.03 (18) O6ii—Lu3—Lu3iii 87.86 (13)
O9iii—Lu1—O5iv 74.76 (17) O4ii—Lu3—Lu3iii 143.06 (13)
O6—Lu1—O5iv 105.69 (19) Al2iv—Lu3—Lu3iii 90.40 (5)
O3iii—Lu1—O5iv 128.4 (2) Al1iv—Lu3—Lu3iii 121.35 (4)
O7iii—Lu1—O5iv 124.3 (2) Al1—Lu3—Lu3iii 116.13 (4)
O9iii—Lu1—O2 104.5 (2) O2ii—Lu3—Lu4iii 137.27 (15)
O6—Lu1—O2 80.21 (19) O9—Lu3—Lu4iii 95.71 (15)
O3iii—Lu1—O2 165.4 (2) O9iii—Lu3—Lu4iii 39.5 (2)
O7iii—Lu1—O2 70.7 (2) O8—Lu3—Lu4iii 41.12 (12)
O5iv—Lu1—O2 64.9 (2) O5iv—Lu3—Lu4iii 96.21 (14)
O9iii—Lu1—O1 100.2 (2) O6ii—Lu3—Lu4iii 144.07 (12)
O6—Lu1—O1 75.68 (19) O4ii—Lu3—Lu4iii 85.06 (13)
O3iii—Lu1—O1 73.7 (2) Al2iv—Lu3—Lu4iii 120.37 (4)
O7iii—Lu1—O1 171.6 (2) Al1iv—Lu3—Lu4iii 87.25 (5)
O5iv—Lu1—O1 63.4 (2) Al1—Lu3—Lu4iii 123.92 (4)
O2—Lu1—O1 112.92 (16) Lu3iii—Lu3—Lu4iii 64.036 (14)
O9iii—Lu1—Al1iv 87.18 (17) O4ix—Lu4—O9 163.0 (2)
O6—Lu1—Al1iv 95.83 (15) O4ix—Lu4—O6ii 87.53 (18)
O3iii—Lu1—Al1iv 160.44 (18) O9—Lu4—O6ii 77.1 (2)
O7iii—Lu1—Al1iv 96.91 (18) O4ix—Lu4—O8v 84.7 (2)
O5iv—Lu1—Al1iv 32.14 (17) O9—Lu4—O8v 110.30 (17)
O2—Lu1—Al1iv 32.95 (13) O6ii—Lu4—O8v 171.9 (2)
O1—Lu1—Al1iv 89.26 (14) O4ix—Lu4—O1ii 75.4 (2)
O9iii—Lu1—Al2iv 85.38 (16) O9—Lu4—O1ii 108.45 (19)
O6—Lu1—Al2iv 92.47 (15) O6ii—Lu4—O1ii 80.3 (2)
O3iii—Lu1—Al2iv 100.91 (19) O8v—Lu4—O1ii 100.0 (2)
O7iii—Lu1—Al2iv 155.76 (18) O4ix—Lu4—O8iii 95.5 (2)
O5iv—Lu1—Al2iv 31.50 (17) O9—Lu4—O8iii 79.9 (2)
O2—Lu1—Al2iv 89.77 (14) O6ii—Lu4—O8iii 98.7 (2)
O1—Lu1—Al2iv 32.02 (14) O8v—Lu4—O8iii 79.7 (3)
Al1iv—Lu1—Al2iv 60.13 (5) O1ii—Lu4—O8iii 170.9 (2)
O9iii—Lu1—Lu2v 91.9 (2) O4ix—Lu4—Al2 104.05 (15)
O6—Lu1—Lu2v 82.89 (14) O9—Lu4—Al2 83.86 (13)
O3iii—Lu1—Lu2v 36.67 (18) O6ii—Lu4—Al2 91.72 (14)
O7iii—Lu1—Lu2v 137.63 (18) O8v—Lu4—Al2 92.45 (14)
O5iv—Lu1—Lu2v 95.47 (17) O1ii—Lu4—Al2 30.48 (15)
O2—Lu1—Lu2v 149.10 (13) O8iii—Lu4—Al2 158.20 (14)
O1—Lu1—Lu2v 37.17 (13) O4ix—Lu4—Lu3iii 135.90 (15)
Al1iv—Lu1—Lu2v 125.28 (5) O9—Lu4—Lu3iii 39.61 (13)
Al2iv—Lu1—Lu2v 65.26 (5) O6ii—Lu4—Lu3iii 92.25 (14)
O9iii—Lu1—Lu4iv 139.2 (2) O8v—Lu4—Lu3iii 91.67 (16)
O6—Lu1—Lu4iv 37.22 (14) O1ii—Lu4—Lu3iii 147.82 (15)
O3iii—Lu1—Lu4iv 85.85 (17) O8iii—Lu4—Lu3iii 40.93 (18)
O7iii—Lu1—Lu4iv 135.01 (15) Al2—Lu4—Lu3iii 120.03 (4)
O5iv—Lu1—Lu4iv 79.07 (14) O4ix—Lu4—Lu4x 90.25 (15)
O2—Lu1—Lu4iv 91.80 (13) O9—Lu4—Lu4x 96.21 (15)
O1—Lu1—Lu4iv 39.37 (13) O6ii—Lu4—Lu4x 137.47 (14)
Al1iv—Lu1—Lu4iv 86.95 (5) O8v—Lu4—Lu4x 40.44 (13)
Al2iv—Lu1—Lu4iv 57.05 (4) O1ii—Lu4—Lu4x 139.71 (15)
Lu2v—Lu1—Lu4iv 59.875 (14) O8iii—Lu4—Lu4x 39.3 (2)
O9iii—Lu1—Lu3 36.30 (13) Al2—Lu4—Lu4x 129.75 (4)
O6—Lu1—Lu3 143.97 (15) Lu3iii—Lu4—Lu4x 61.365 (15)
O3iii—Lu1—Lu3 110.32 (15) O4ix—Lu4—Lu2ix 39.59 (15)
O7iii—Lu1—Lu3 106.94 (16) O9—Lu4—Lu2ix 142.06 (14)
O5iv—Lu1—Lu3 38.47 (12) O6ii—Lu4—Lu2ix 82.47 (14)
O2—Lu1—Lu3 83.91 (13) O8v—Lu4—Lu2ix 93.01 (16)
O1—Lu1—Lu3 81.20 (13) O1ii—Lu4—Lu2ix 35.84 (15)
Al1iv—Lu1—Lu3 56.26 (4) O8iii—Lu4—Lu2ix 135.12 (17)
Al2iv—Lu1—Lu3 55.19 (4) Al2—Lu4—Lu2ix 65.06 (4)
Lu2v—Lu1—Lu3 95.095 (18) Lu3iii—Lu4—Lu2ix 172.933 (13)
Lu4iv—Lu1—Lu3 112.083 (15) Lu4x—Lu4—Lu2ix 120.06 (2)
O1vi—Lu2—O3vii 81.6 (2) O4ix—Lu4—Lu3v 45.83 (16)
O1vi—Lu2—O2 89.32 (19) O9—Lu4—Lu3v 149.15 (16)
O3vii—Lu2—O2 169.1 (2) O6ii—Lu4—Lu3v 133.35 (14)
O1vi—Lu2—O7iii 164.5 (2) O8v—Lu4—Lu3v 39.02 (17)
O3vii—Lu2—O7iii 113.97 (17) O1ii—Lu4—Lu3v 85.63 (15)
O2—Lu2—O7iii 75.2 (2) O8iii—Lu4—Lu3v 88.7 (2)
O1vi—Lu2—O8vii 91.6 (2) Al2—Lu4—Lu3v 98.07 (5)
O3vii—Lu2—O8vii 88.2 (2) Lu3iii—Lu4—Lu3v 120.326 (15)
O2—Lu2—O8vii 98.0 (2) Lu4x—Lu4—Lu3v 58.961 (16)
O7iii—Lu2—O8vii 89.1 (3) Lu2ix—Lu4—Lu3v 61.562 (13)
O1vi—Lu2—O4 74.9 (2) O4ix—Lu4—Lu1ii 86.32 (15)
O3vii—Lu2—O4 92.4 (2) O9—Lu4—Lu1ii 85.60 (15)
O2—Lu2—O4 79.5 (2) O6ii—Lu4—Lu1ii 36.81 (14)
O7iii—Lu2—O4 103.2 (2) O8v—Lu4—Lu1ii 144.42 (14)
O8vii—Lu2—O4 166.2 (2) O1ii—Lu4—Lu1ii 44.44 (15)
O1vi—Lu2—Lu1vi 44.59 (16) O8iii—Lu4—Lu1ii 135.46 (19)
O3vii—Lu2—Lu1vi 37.11 (17) Al2—Lu4—Lu1ii 56.69 (4)
O2—Lu2—Lu1vi 133.86 (14) Lu3iii—Lu4—Lu1ii 117.97 (2)
O7iii—Lu2—Lu1vi 150.92 (17) Lu4x—Lu4—Lu1ii 173.404 (16)
O8vii—Lu2—Lu1vi 87.2 (2) Lu2ix—Lu4—Lu1ii 59.705 (14)
O4—Lu2—Lu1vi 84.98 (14) Lu3v—Lu4—Lu1ii 121.266 (15)
O1vi—Lu2—Lu4viii 38.06 (15) Al2iv—O1—Lu2v 139.9 (3)
O3vii—Lu2—Lu4viii 86.66 (16) Al2iv—O1—Lu4iv 108.1 (3)
O2—Lu2—Lu4viii 82.52 (14) Lu2v—O1—Lu4iv 106.1 (2)
O7iii—Lu2—Lu4viii 137.89 (15) Al2iv—O1—Lu1 98.2 (3)
O8vii—Lu2—Lu4viii 129.58 (17) Lu2v—O1—Lu1 98.2 (2)
O4—Lu2—Lu4viii 36.84 (14) Lu4iv—O1—Lu1 96.2 (2)
Lu1vi—Lu2—Lu4viii 60.420 (13) Al1iv—O2—Lu2 127.6 (3)
O1vi—Lu2—Lu3iv 85.18 (17) Al1iv—O2—Lu3iv 112.3 (3)
O3vii—Lu2—Lu3iv 136.93 (14) Lu2—O2—Lu3iv 109.3 (2)
O2—Lu2—Lu3iv 35.36 (14) Al1iv—O2—Lu1 97.8 (2)
O7iii—Lu2—Lu3iv 83.02 (17) Lu2—O2—Lu1 103.7 (2)
O8vii—Lu2—Lu3iv 133.14 (18) Lu3iv—O2—Lu1 101.5 (2)
O4—Lu2—Lu3iv 44.56 (15) Al1—O3—Lu2vii 126.3 (5)
Lu1vi—Lu2—Lu3iv 119.653 (15) Al1—O3—Lu1iii 123.9 (5)
Lu4viii—Lu2—Lu3iv 59.233 (14) Lu2vii—O3—Lu1iii 106.2 (2)
O1vi—Lu2—Lu1 128.85 (16) Al1xi—O4—Lu4viii 135.4 (3)
O3vii—Lu2—Lu1 149.48 (17) Al1xi—O4—Lu2 117.6 (3)
O2—Lu2—Lu1 40.30 (14) Lu4viii—O4—Lu2 103.6 (2)
O7iii—Lu2—Lu1 35.63 (17) Al1xi—O4—Lu3iv 95.9 (3)
O8vii—Lu2—Lu1 88.6 (2) Lu4viii—O4—Lu3iv 96.4 (2)
O4—Lu2—Lu1 97.74 (14) Lu2—O4—Lu3iv 95.9 (2)
Lu1vi—Lu2—Lu1 172.025 (12) Al1—O5—Al2 134.9 (3)
Lu4viii—Lu2—Lu1 118.072 (14) Al1—O5—Lu3ii 105.3 (3)
Lu3iv—Lu2—Lu1 59.438 (13) Al2—O5—Lu3ii 103.1 (3)
O1vi—Lu2—Lu4iii 124.70 (15) Al1—O5—Lu1ii 102.6 (3)
O3vii—Lu2—Lu4iii 102.42 (15) Al2—O5—Lu1ii 104.6 (3)
O2—Lu2—Lu4iii 87.60 (14) Lu3ii—O5—Lu1ii 102.39 (18)
O7iii—Lu2—Lu4iii 54.38 (15) Al2xi—O6—Lu1 122.0 (3)
O8vii—Lu2—Lu4iii 34.8 (2) Al2xi—O6—Lu4iv 125.6 (3)
O4—Lu2—Lu4iii 156.67 (14) Lu1—O6—Lu4iv 106.0 (2)
Lu1vi—Lu2—Lu4iii 117.607 (14) Al2xi—O6—Lu3iv 95.4 (2)
Lu4viii—Lu2—Lu4iii 159.792 (10) Lu1—O6—Lu3iv 99.6 (2)
Lu3iv—Lu2—Lu4iii 118.642 (17) Lu4iv—O6—Lu3iv 100.7 (2)
Lu1—Lu2—Lu4iii 60.716 (12) Al2—O7—Lu2iii 126.1 (5)
O1vi—Lu2—Lu3vii 85.85 (16) Al2—O7—Lu1iii 123.6 (5)
O3vii—Lu2—Lu3vii 56.75 (14) Lu2iii—O7—Lu1iii 109.0 (2)
O2—Lu2—Lu3vii 128.77 (14) Lu4vi—O8—Lu2vii 110.1 (3)
O7iii—Lu2—Lu3vii 102.54 (16) Lu4vi—O8—Lu3 102.9 (2)
O8vii—Lu2—Lu3vii 31.5 (2) Lu2vii—O8—Lu3 117.4 (3)
O4—Lu2—Lu3vii 146.03 (14) Lu4vi—O8—Lu4iii 100.3 (3)
Lu1vi—Lu2—Lu3vii 62.045 (13) Lu2vii—O8—Lu4iii 125.0 (2)
Lu4viii—Lu2—Lu3vii 119.182 (17) Lu3—O8—Lu4iii 97.9 (2)
Lu3iv—Lu2—Lu3vii 161.782 (11) Lu1iii—O9—Lu3 120.0 (4)
Lu1—Lu2—Lu3vii 116.038 (15) Lu1iii—O9—Lu4 113.8 (3)
Lu4iii—Lu2—Lu3vii 55.607 (13) Lu3—O9—Lu4 110.2 (2)
O2ii—Lu3—O9 102.6 (2) Lu1iii—O9—Lu3iii 108.2 (2)
O2ii—Lu3—O9iii 176.7 (3) Lu3—O9—Lu3iii 101.0 (3)
O9—Lu3—O9iii 79.0 (3) Lu4—O9—Lu3iii 100.9 (3)

Symmetry codes: (i) x, y, z−1; (ii) x, −y+1/2, z−1/2; (iii) −x+1, −y, −z+1; (iv) x, −y+1/2, z+1/2; (v) x+1, y, z; (vi) x−1, y, z; (vii) −x, −y, −z+1; (viii) x−1, −y+1/2, z+1/2; (ix) x+1, −y+1/2, z−1/2; (x) −x+2, −y, −z+1; (xi) x, y, z+1.

Funding Statement

This work was funded by Mitsubishi Chemical Group Science and Technology Research Center, Inc. grant J180002907.

References

  1. Brandle, C. D. & Steinfink, H. (1969). Inorg. Chem. 8, 1320–1324.
  2. Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.
  3. Bruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2017). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Bruker (2018). APEX3 . Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Christensen, A. N. & Hazell, R. G. (1991). Acta Chem. Scand. 45, 226–230.
  7. Dernier, P. D. & Maines, R. G. (1971). Mater. Res. Bull. 6, 433–439.
  8. Ding, L., Zhang, Q., Luo, J., Liu, W., Zhou, W. & Yin, S. (2011). J. Alloys Compd. 509, 10167–10171.
  9. Dohrup, J., Hoyvald, A., Mogensen, G., Jacobsen, C. J. H. & Villadsen, J. (1996). J. Am. Ceram. Soc. 79, 2959–2960.
  10. Drozdowski, W., Lukasiewicz, T., Wojtowicz, A. J., Wisniewski, D. & Kisielewski, J. (2005). J. Cryst. Growth, 275, e709–e714.
  11. Euler, F. & Bruce, J. A. (1965). Acta Cryst. 19, 971–978.
  12. Gagné, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562–578. [DOI] [PMC free article] [PubMed]
  13. Jero, P. D. & Kriven, W. M. (1988). J. Am. Ceram. Soc. 71, C454–C455.
  14. Klimm, D. (2010). J. Cryst. Growth, 312, 730–733.
  15. Lehmann, M. S., Christensen, A. N., Fjellvåg, H., Feidenhans’l, R. & Nielsen, M. (1987). J. Appl. Cryst. 20, 123–129.
  16. Lempicki, A., Brecher, C., Wisniewski, D., Zych, E. & Wojtowicz, A. J. (1996). IEEE Trans. Nucl. Sci. 43, 1316–1320.
  17. Li, Y. Q., Hirosaki, N., Xie, R. J., Takeda, T., Lofland, S. E. & Ramanujachary, K. V. (2009). J. Alloys Compd. 484, 943–948.
  18. Martín-Sedeño, M. C., Marrero-López, D., Losilla, E. R., Bruque, S., Núñez, P. & Aranda, M. A. G. (2006). J. Solid State Chem. 179, 3445–3455.
  19. Mizuno, M. (1979). J. Ceram. Soc. Jpn, 87, 405–412.
  20. Mizuno, M. & Noguchi, T. (1980). J. Ceram. Soc. Jpn, 88, 322–327.
  21. Mizuno, M., Yamada, T. & Noguchi, T. (1977a). J. Ceram. Soc. Jpn, 85, 374–379.
  22. Mizuno, M., Yamada, T. & Noguchi, T. (1977b). J. Ceram. Soc. Jpn, 85, 543–548.
  23. Mizuno, M., Yamada, T. & Noguchi, T. (1978). J. Ceram. Soc. Jpn, 86, 359–364.
  24. Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276.
  25. Nikl, M. (2000). Phys. Status Solidi A, 178, 595-620.
  26. Nikl, M., Yoshikawa, A., Kamada, K., Nejezchleb, K., Stanek, C. R., Mares, J. A. & Blazek, K. (2013). Prog. Cryst. Growth Charact. Mater. 59, 47–72.
  27. Petrosyan, A. G., Popova, V. F., Gusarov, V. V., Shirinyan, G. O., Pedrini, C. & Lecoq, P. (2006). J. Cryst. Growth, 293, 74–77.
  28. Petrosyan, A. G., Popova, V. F., Ugolkov, V. L., Romanov, D. P. & Ovanesyan, K. L. (2013). J. Cryst. Growth, 377, 178–183.
  29. Reed, J. W. & Chase, A. B. (1962). Acta Cryst. 15, 812.
  30. Shannon, R. D. (1976). Acta Cryst. A32, 751–767.
  31. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  32. Shirvinskaya, A. K. & Popova, V. F. (1977). Dokl. Akad. Nauk SSSR, 233, 1110–1113.
  33. Shishido, T., Nojima, S., Tanaka, M., Horiuchi, H. & Fukuda, T. (1995). J. Alloys Compd. 227, 175–179.
  34. Talik, E., Guzik, A., Zajdel, P., Lipifska, L., Baran, M. & Szubka, M. (2016). Mater. Res. Bull. 83, 56–64.
  35. Wang, Z., Zou, J., Zhang, C., Yang, B., Shi, M., Li, Y., Zhou, H., Liu, Y., Li, M. & Liu, Z. (2018). J. Non-Cryst. Solids, 489, 57–63.
  36. Warshaw, I. & Roy, R. (1959). J. Am. Ceram. Soc. 42, 434–438.
  37. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  38. Wojtowicz, A. J. (1999). Acta Phys. Pol. A, 95, 165–178.
  39. Wojtowicz, A. J., Drozdowski, W., Wisniewski, D., Lefaucheur, J.-L., Galazka, Z., Gou, Z., Lukasiewicz, T. & Kisielewski, J. (2006). Opt. Mater. 28, 85–93.
  40. Wu, P. & Pelton, A. D. (1992). J. Alloys Compd. 179, 259–287.
  41. Xiang, R., Liang, X., Li, P., Di, X. & Xiang, W. (2016). Chem. Eng. J. 306, 858–865.
  42. Yamane, H., Ogawara, K., Omori, M. & Hirai, T. (1995a). J. Am. Ceram. Soc. 78, 2385–2390.
  43. Yamane, H., Omori, M. & Hirai, T. (1995b). J. Mater. Sci. Lett. 14, 561–563.
  44. Zhang, L., Madej, C., Pedrini, C., Dujardin, C., Kamenskikh, I., Belsky, A., Shaw, D. A., Mesnard, P. & Fouassier, C. (1998). J. Electrochem. Soc.: Proceedings of the Sixth International Conference on Luminescent materials 97, 342-351.
  45. Zhang, L., Madej, C., Pédrini, C., Moine, B., Dujardin, C., Petrosyan, A. & Belsky, A. N. (1997). Chem. Phys. Lett. 268, 408–412.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989020005757/cq2036sup1.cif

e-76-00752-sup1.cif (955KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020005757/cq2036Isup2.hkl

e-76-00752-Isup2.hkl (223.6KB, hkl)

Figure S1. Powder XRD patterns of samples prepared (a) under air and (b) under Ar. DOI: 10.1107/S2056989020005757/cq2036sup3.tif

CCDC reference: 1999289

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES