Summary
Pattern recognition receptors (PRRs) on host cells detect pathogens to activate innate immunity which, in turn, initiates inflammatory and adaptive immune responses. Successful activation of PRRs is, therefore, critical to controlling infections and driving pathogen‐specific adaptive immunity, but overactivity of PRRs causes systemic inflammation, which is detrimental to the host. Here we review the PRR literature as it relates to horses and speculate on the role PRRs may play in sepsis and endotoxaemia.
Keywords: horse, endotoxaemia, sepsis, innate immunity, pathogen recognition receptor, pathogen‐associated molecular pattern
Introduction
Sepsis and/or endotoxic shock commonly accompanies conditions such as neonatal bacterial sepsis, infectious or proximal enteritis, metritis, retained placenta, colitis, strangulating gastrointestinal lesions and bacterial pneumonia [1]. Sepsis is a systemic illness caused by microbial invasion, whereas endotoxaemia occurs when endotoxin, such as lipopolysaccharide (LPS) from Gram‐negative bacteria, is present in the systemic circulation [2]. Sepsis presents more challenges than endotoxaemia because bacteria express many cell surface molecules or pathogen‐associated molecular patterns (PAMPs), including LPS, bacterial lipoproteins, lipoteichoic acid, peptidoglycan and bacterial DNA, many of which may be present in the circulation at one time. Traditionally, Gram‐negative bacteria have been associated with sepsis; however, in humans, Gram‐positive bacteria may be equally important in disease pathogenesis [3, 4, 5]. In equine neonatal sepsis, both Gram‐negative and Gram‐positive bacterial isolates have been identified as causative agents [6, 7, 8, 9], and Gram‐positive bacteria are increasingly being isolated from neonatal and adult animals [8, 9, 10, 11].
Pathogens and PAMPs are recognised by an extensive group of pattern recognition receptors (PRRs), each detecting specific ligands (Table 1). Activation of PRRs by PAMPs triggers the production of pro‐ and anti‐inflammatory mediators, as well as initiating adaptive immune responses. Pattern recognition receptors include Toll‐like receptors (TLRs), lectin receptors, Retinoic acid inducible gene I‐like receptors and nucleotide‐binding oligomerisation domain (NOD)‐like receptors (NLRs) and may reside on the cell surface, in the endoplasmic reticulum, in endosomes, lysosomes, endolysosomes or the cytosol [12]. Successful activation of PRRs is critical in order for bacterial infections to be cleared successfully by the host, but overactivation of these receptors can lead to systemic inflammation and shock‐like syndromes. Antagonism of PRRs therefore represents an exciting new therapeutic target for clinical syndromes such as sepsis and endotoxaemia [13].
Table 1.
Ligands for Toll‐like receptors (TLRs) and NOD‐like receptors (NLRs)
| PRR | Ligands | Origin of the ligand | Reference (equine reference in bold) |
|---|---|---|---|
| TLR1/2 | Triacyl lipopeptides (Pam3CSK4) | Gram‐positive bacteria, mycobacteria | [112], [113] |
| OspA | Borrelia burgdorferi | [114] | |
| Soluble factors | Neisseria meningiditis | [115] | |
| Porin porB | Neisseria meningiditis | [116] | |
| TLR2 | Lipoprotein/lipopeptides | Gram‐positive bacteria, Mycoplasma, Mycobacteria, Spirochetes | [117], [118], [113] |
| Lipoteichoic acid | Gram‐positive bacteria | [118] | |
| Treponema maltophilum | [119] | ||
| Peptidoglycan | Gram‐positive bacteria | [120] | |
| Lipoarabinomannan | Mycobacteria | [121], [122] | |
| NapA | Borrelia burgdorferi | [123] | |
| Glycoinositolphospholipids | Trypanosoma cruzi | [124] | |
| Phenol‐soluble modulin | Staphylococcus epidermidis | [125] | |
| Glycolipids | Treponema maltophilum | [119] | |
| Porins | Neisseria meningitidis | [116] | |
| Zymosan | Saccharomyces cerevisiae | [126] | |
| Phospholipomannan | Candida albicans | [127] | |
| Atypical LPS | Leptospira interogans, Porphyromonas gingivalis | [128], [129] | |
| Heat shock protein 60 (Hsp60) | Host, Chlamydia | [130] | |
| Hsp70 | Host | [131] | |
| Hsp96 | Host | [132] | |
| High‐mobility group protein‐1 (HMGP1) | Host | [133] | |
| Hyaluronic acid | Host | [134] | |
| Low‐molecular weight hyaluronic acid | Host | [135] | |
| Haemagglutinin | Measles virus | [136] | |
| Structural viral proteins | Herpes simplex virus | [137] | |
| Cytomegalovirus | [138] | ||
| Respiratory syncytial virus | [139] | ||
| Lymphocytic choriomengitis virus | [140] | ||
| Outer membrane protein A | Klebsiella pneumoniae | [141] | |
| Heat‐killed bacteria | Listeria monocytogenes | [142] | |
| S‐protein | SARS virus | [143] | |
| TLR4 | LPS | Gram‐negative bacteria | [17] |
| Mannan | Saccharomyces cerevisiae, Candida albicans | [144] | |
| Glucuronoxylomannan | Cryptococcus neoformans | [145] | |
| Hsp60 | Host, Chlamydia pneumonia | [130] | |
| Hsp70 | Host | [131] | |
| HMGP1 | Host | [133] | |
| Low‐molecular weight hyaluronic acid | Host | [135] | |
| Oligosaccharides of hyaluronic acid | Host | [146] | |
| Haemagglutinin B | Porphyromonas gingivalis | [147] | |
| Flavolipin | Flavobacterium meningosepticum | [148] | |
| ER‐112022, E5531, E5564, E6020 | Synthetic compounds | [96], [149] | |
| Taxol | Plant product | [150] | |
| Fusion protein | Respiratory syncytial virus | [151] | |
| Envelope proteins | Mouse mammary tumour virus, Moloney murine leukaemia virus | [152] | |
| Type III repeat extra domain A of fibronectin | Host | [153] | |
| Polysaccharide fragments of heparan sulfate | Host | [154] | |
| Fibrinogen | Host | [155] | |
| αA crystallin and HSPB8 (Hsp22) | Host (recombinant Escherichia coli produced) | [156] | |
| β‐Defensin 2 | Host | [157] | |
| TLR5 | Flagellin | Gram‐positive and Gram‐negative bacteria | [43], [158], [52] |
| TLR6/2 | Zymosan | Saccharomyces cerevisiae | [126] |
| Diacyl lipopeptides (mycoplasmal macrophage‐activating lipopeptide‐2) | Mycoplasma | [159] | |
| Heat‐labile soluble factor (GBS‐F) | Group B streptococcus | [160] | |
| TLR9 | Purified HSV‐2 DNA | HSV‐2 | [161] |
| Unmethylated CpG DNA | Bacteria, virus, yeast, insects | [162] | |
| Chromatin–IgG complexes | Host | [163] | |
| Haemozoin | Plasmodium falciparum | [164] | |
| NOD1 | γ‐d‐Glu‐DAP (iE‐DAP) dipeptide structure in peptidoglycan | Gram‐negative bacteria | [165] |
| GM tripeptide | Gram‐negative bacteria | [72] | |
| d‐lactyl‐l‐Ala‐γ‐Glu‐meso‐DAP‐Gly (FK156) | Gram‐negative bacteria | [166] | |
| Heptanolyl‐γ‐Glu‐meso‐DAP‐Ala (FK565) | Gram‐negative bacteria | [166] | |
| NOD2 | Muramyl dipeptide (MDP) structure in peptidoglycan | Gram‐positive and Gram‐negative bacteria | [165] |
| MurNAc‐l‐Ala‐g‐G‐Glu‐l‐Lys (M‐TRILys) | Gram‐positive bacteria | [165] | |
| NLRP3 | Encephalomyocarditis virus | [167] | |
| Vesicular stomatitis virus | [167] | ||
| Influenza virus | [168] | ||
| Hyphae | Candida albicans | [169] | |
| Hyphae | Aspergillus fumigatus | [170] | |
| Saccharomyces cerevisiae | [171] | ||
| β‐Glucan | Fungi | [171] | |
| Muramyl dipeptide (MDP) | Gram‐positive and Gram‐negative bacteria | [172] | |
| Nigericin | Streptomyces hygroscopicus | [173] | |
| Maitotoxin | Marine dinoflagellates dinoflagellates | [173] | |
| Gramicidin | Bacillus brevis | [174] | |
| Aerolysin | Aeromonas hydrophilia | [175] | |
| α‐Toxin | Staphylococcus aureus | [174] | |
| Haemozoin | Plasmodium falciparum | [176] | |
| Listeria monocytogenes | [177] | ||
| Sendai virus | [178] | ||
| ATP | Host | [173] | |
| Uric acid crystals | Host (e.g. gout associated) | [179] | |
| Silica | Airborne pollutants | [180] | |
| Asbestos | Airborne pollutants | [180] | |
| Alum | Vaccine adjuvant | [181] | |
| β‐Amyloid | Host | [182] | |
| NLRC4 | Flagellin | Salmonella, Legionella, Listeria, Pseudomonas | [84], [177] |
| Candida albicans | [183] | ||
| Shigella flexneri | [184] | ||
| AIM2 | dsDNA | Bacterial, viral and host | [91] |
OspA, outer surface protein A; NapA, neutrophil activating protein A; HSV‐2, Herpes Simplex Virus‐2; γ‐D‐Glu‐DAP, γ‐D‐glutamyl‐meso‐diaminopimelic acid; MurNAc‐L‐Ala‐g‐G‐Glu‐L‐Lys, N‐acetylmuramic acid‐L‐Alanine‐g‐Glutamyl‐L‐Lysine.
Toll‐like receptors
Toll‐like receptors are the best characterised of the PRRs. The extracellular domain of all TLRs is constructed of 19–25 leucine‐rich repeats that contain hydrophobic residues at distinctive intervals to form a horseshoe structure [14, 15]. The exact structure and alignment of the different components of the leucine‐rich repeats determines how ligands bind. The shapes of the binding pockets vary between species, which results in differential responses to PAMPs [16]. There are at least 10 TLRs, but in this review we will focus on only the TLRs that recognise bacteria.
Toll‐like receptor 4
Toll‐like receptor 4 (TLR4), the first fully characterised mammalian PRR, recognises the lipid A component of LPS and is the receptor activated during endotoxaemia [17]. Mice without TLR4 are more susceptible to Gram‐negative bacterial infections [18]. The structure of LPS bound to TLR4 and its co‐receptor myeloid differentiation protein‐2 (MD2) has been solved [19]. First LPS is extracted from plasma by lipopolysaccharide binding protein [20]; the lipid A is then transferred to CD14 [21], which then transfers it to TLR4 and MD2 [22]. Each bacterial species produces a structurally unique lipid A, which affects its efficacy at TLR4 [15]. Variant lipid A structures are recognised in a mammalian species‐specific manner. Lipid As from Salmonella entericia serovar Typhimurium (S. Typhimurium) or Escherichia coli are agonists in all species; the E. coli partial structure lipid IVa is an antagonist in humans [23], a partial agonist in horses [24] and a full agonist in mice [25]. Rhodobacter sphaeroides lipid A is an antagonist in humans and mice [26], but is an agonist in horse cells [18]. The species specificity in TLR4 ligand recognition, particularly in the horse, is becoming increasingly well understood and is dependent on subtle structural differences in MD2 and TLR4 [24]. Also, TLR4 recognises a number of other ligands, including respiratory syncytial virus fusions proteins, mouse mammary tumour virus envelope proteins, Streptococcus pneumoniae pneumolysin and the plant‐derived cytostatic drug paclitaxel [27], although precisely how these PAMPs bind to the receptor is unclear. The importance of LPS in equine diseases such as acute abdominal disease [28, 29], adynamic post operative ileus [30], laminitis [31], exertion [32], neonatal sepsis [33, 34] and recurrent airway obstruction [35, 36, 37, 38] has been the subject of extensive research efforts, particularly with respect to colic. This makes the TLR4–MD2 receptor complex an attractive therapeutic target for a number of equine diseases.
Toll‐like receptor 2
Toll‐like receptor 2 (TLR2) recognises mycobacterial products, Gram‐positive bacteria and their associated PAMPs, including lipopeptides, peptidogylcan, lipoteichoic acid and lipoarabinomannan [13]. Ligands bind to heterodimers of TLR2 with either TLR1 or TLR6 [16, 39]. The TLR1/2 heterodimer recognises triacylated lipopeptides, whereas the TLR2/6 complex recognises diacylated lipopeptides [13]. Toll‐like receptor 2 knockout mice are hypersusceptible to Gram‐positive bacterial infections, including sepsis and meningitis [40], and people with mutations in the TLR2 gene have an increased susceptibility to infection with Gram‐positive organisms [41]. TLR2 mRNA is present in the normal lung of horses and is increased after LPS challenge [38, 42]. Currently, there is no evidence for TLR2 playing a role in equine sepsis, although if Gram‐positive organisms are isolated from a clinical case, it is highly likely that this PRR will be at least partly responsible for driving any inflammatory response.
Toll‐like receptor 5
Toll‐like receptor 5 (TLR5) recognises flagellin, which forms the protein backbone of bacterial flagella [43]. Flagella are important for bacterial motility and for cellular invasion [44]. A wide variety of flagellated bacteria, such as E. coli and Salmonella spp., cause disease in the horse [45]. An evolutionarily conserved region of flagellin, D1, interacts with the leucine‐rich repeats of TLR5 on the cell surface of diverse cell types, including neutrophils, monocytes, macrophages and epithelial cells [46, 47, 48, 49, 50, 51, 52]. Human peripheral blood monocytes express moderate amounts of TLR5, and activation by flagellin results in a strong expression of proinflammatory cytokines [50, 53]. In mice, TLR5 mRNA expression is found in dendritic cells, but is not detected in neutrophils [49]. In the horse, both monocytes and neutrophils express TLR5 mRNA, but show differential expression of TLR5 proteins on the cell surface [52]. Toll‐like receptor 5 agonists activate equine neutrophils, but not monocytes, alveolar macrophages or peritoneal macrophages despite the fact that these cell types contain TLR5 mRNA transcripts. Cytokine gene expression induced by flagellin in neutrophils was comparable with that stimulated by LPS or Pam3CSK4 (a synthetic TLR2 agonist) [52]. What role, if any, TLR5 may play in infectious diseases in the horse is unclear, but it may be important in shock, sepsis, acute respiratory diseases and gastrointestinal infection [54].
Toll‐like receptor 9
Toll‐like receptor 9 (TLR9), unlike TLRs 1, 2, 4, 5 and 6, which are all present in the cell membrane, primarily resides in the endoplasmic reticulum. It recognises unmethylated CpG containing DNA motifs from both bacteria and viruses [55]. The Cytosine‐phosphate‐Guanine (CpG) DNA activates dendritic cells and is important in initiating adaptive immune responses [56]. Toll‐like receptor 9 forms homodimers before ligand binding [57], then undergoes multiple cleavage steps on or after ligand binding prior to signalling [58, 59]. The precise order and timing of dimerisation and cleavage/activation remain to be established. Toll‐like receptor 9 shows differential expression among normal and inflamed tissues [60, 61, 62, 63]. Equine TLR9 is found in lymphocytes, polymorphonuclear cells, bronchial epithelial cells, type II cells in the equine lung [64, 65], and the cornea, limbus and the conjunctiva of the equine eye [66]. Age has little influence on TLR9 expression in neutrophils [67], macrophages or dentritic cells [68]. The role of TLR9 in equine disease remains to be elucidated.
NOD‐like receptors
Nucleotide‐binding oligomerisation domains (NODs) form a specific family of cytosolic receptors (NLRs), which consists of over 20 structurally related proteins [69]. There are 2 distinct families of NLRs; the NLRP proteins contain a pyrin domain, and the NLRC proteins, such as NOD1, NOD2, NLRC3 and NLRC4 contain a caspase recruitment domain [70]. NLRP3, NLRP1 and NLRC4 form protein complexes called inflammasomes such that upon ligand binding a change in NLR confirmation leads to recruitment of an adaptor molecule (apoptosis‐related speck‐like protein [ASC]) and an effector molecule (pro‐caspase‐1) in an oligomeric complex. This complex activates a proteolytic cascade resulting in the maturation and release of, amongst others, proinflammatory cytokines of the interleukin‐1 family [71]. The NLRs are emerging as very important therapeutic targets in many inflammatory diseases in humans.
Both NOD1 and NOD2 recognise bacterial ligands [72, 73]. Whereas NOD1 is ubiquitously expressed, NOD2 is expressed only in monocytes, macrophages, dendritic cells and intestinal epithelial cells [74]. A peptidoglycan derivative (l‐Ala‐d‐Glu‐meso‐DAP [diaminopimelic acid]), present in almost all Gram‐negative bacteria, is recognised by NOD1 [75, 76]. However, NOD2 detects M‐dipeptide and GM‐dipeptide, both of which are degradation products of peptidoglycans. GM‐dipeptide is found in all bacteria, hence NOD2 can be regarded as a general sensor of peptidoglycan degradation products [72]. There are limited data on equine NOD1 and NOD2, but horses with Recurrent Airway Obstruction show upregulation of NOD2‐induced nuclear factor‐κB activation [77].
The receptor NLRC4 (also known as IPAF) is expressed in myeloid cells [78, 79]. It recognises a variety of pathogens, including S. Typhimurium [80], Pseudomonas aeruginosa [81], Shigella [82], Legionella pneomophila [83], bacterial flagellin [84, 85] and a basal rod component of some bacterial type III secretion systems [86]. This receptor is present in the equine genome, but it is unclear what role it might play in equine bacterial diseases.
Many ‘danger signals’ are recognised by NLRP3 (cryopyrin or NALP3), both infectious (for example recognising Staphylococcus aureus [87], Staphylococcus pneumoniae [88] and S. Typhmuium [89]) as well as noninfectious, endogenous or exogenous molecules. The wide variety and diverse nature of these ligands suggest it is unlikely that they interact directly with NLRP3, but trigger inflammasome formation indirectly [90]. It is important in many chronic inflammatory syndromes in humans, and it is present in the equine genome.
A fourth inflammasome complex is formed by association of a pyrin and HIN200 domain containing protein family member (absent in melanoma 2 [AIM2]) with ASC and caspase‐1 [90]. A cytosolic receptor, AIM2, recognises double‐stranded DNA [91, 92, 93] and is an important sensor for bacterial double‐stranded DNA from both Listeria monocytogenes and Francisella tularensis[94, 95]. It is present in a limited number of mammalian species, of which the horse is one, and therefore this PRR is also potentially important in horses.
Antagonists of PRRs
Pattern recognition receptor agonists (for adjuvants) and antagonists are under development. Some antagonists at other PRRs have been described, but antagonists of TLR4 and TLR2 are likely to be most useful in equine endotoxaemia and sepsis.
Toll‐like receptor 4 antagonists
Antagonism at TLR4 is the most obvious therapeutic target for equine endotoxaemia and sepsis. Development of TLR4 antagonists is challenging because many of the drugs developed are derived from bacterial lipid As that are antagonists in humans and mice, but this does not mean they will necessarily be antagonists in the horse. Lipopolysaccharide from Rhodobacter sphaeroides, for example, is a TLR4 antagonist in humans and mice, but it is an agonist in the horse and hamster [96, 97]. E5531, a synthetic compound based on the lipid A structure of Rhodobacter capsulatus, is an antagonist in mice and humans, an antagonist in equine cell models, but an agonist in an equine whole‐blood model [98, 99, 100]. A second‐generation compound based on E5531, eritoran (E5564), is a potent antagonist of LPS in humans [101, 102] and in horses [103], but in phase III clinical trials [104] it did not meet its primary end‐point in humans with severe sepsis [105]. Several other TLR4 antagonists are currently being investigated in humans and mice for the treatment of different acute and chronic inflammatory diseases [13, 106].
Toll‐like receptor 2 antagonists
Antagonistic phospolipids for TLR2 have been synthesised, but currently there is little information available beyond their initial description [107]. Toll‐like receptor 2 antibodies protect mice from lethal septic shock syndrome [108], and anti‐TLR2 antibodies that prevent trafficking of the receptor from the endoplasmic reticulum to the cell surface were shown to inhibit in vitro and ex vivo ligand‐driven cell activation [109]. Anti‐TLR2 antibodies also show beneficial effects in arthritis and ischaemia‐reperfusion injury models [110, 111], but it is unlikely that commercial equine‐specific TLR‐blocking antibodies will be developed for horses. It is likely, however, that TLR2 antagonists may be useful for a range of equine conditions, for example, neonatal diarrhoea‐associated sepsis, should these compounds become available for use in horses.
Conclusions
In conclusion, PRRs that recognise bacteria are likely to be useful therapeutic targets for treating equine sepsis and endotoxaemia. However, PRR antagonists will need careful clinical evaluation because of the controversial results emerging from human clinical trials due to the complex, multifactorial pathogenesis of these diseases. Use of TLR4 antagonists in endotoxic horses is likely to be successful, but whether PRR antagonists will be useful in septic foals is less clear. Infections with mixed bacterial species will potentially involve multiple PRRs, suggesting that combination therapy simultaneously inhibiting several PRRs may be necessary. Complete inhibition of PRRs is potentially detrimental, particularly in sepsis, because TLR4 and TLR2 knockout mice show increased mortality in response to Gram‐negative or Gram‐positive bacteria, respectively. Specific equine drugs will need to be developed to achieve a safe treatment that blocks systemic inflammation whilst retaining the protective immune responses against bacterial infection.
Authors' declaration of interests
No conflicts of interest have been declared.
Source of funding
CEB's work on equine Toll‐like receptors and endotoxaemia is funded by the Horse Betting Levy Board.
Acknowledgements
The authors would like to thank the Horserace Betting Levy Board (HBLB) for their support of CEBs research.
References
- 1. Roy, M.F. (2004) Sepsis in adults and foals. Vet. Clin. N. Am.: Equine Pract. 20, 41‐61. [DOI] [PubMed] [Google Scholar]
- 2. Lever, A. and Mackenzie, I. (2007) Sepsis: definition, epidemiology, and diagnosis. BMJ 335, 879‐883. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3. Cohen, J. and Abraham, E. (1999) Microbiologic findings and correlations with serum tumor necrosis factor‐α in patients with severe sepsis and septic shock. J. Infect. Dis. 180, 116‐121. [DOI] [PubMed] [Google Scholar]
- 4. Martin, G.S. , Mannino, D.M. , Eaton, S. and Moss, M. (2003) The epidemiology of sepsis in the United States from 1979 through 2000. N. Engl. J. Med. 348, 1546‐1554. [DOI] [PubMed] [Google Scholar]
- 5. Myhre, A.E. , Aasen, A.O. , Thiemermann, C. and Wang, J.E. (2006) Peptidoglycan – an endotoxin in its own right? Shock 25, 227‐235. [DOI] [PubMed] [Google Scholar]
- 6. Sanchez, L.C. (2005) Equine neonatal sepsis. Vet. Clin. N. Am.: Equine Pract. 21, 273‐293. [DOI] [PubMed] [Google Scholar]
- 7. Pusterla, N. , Mapes, S. , Byrne, B.A. and Magdesian, K.G. (2009) Detection of bloodstream infection in neonatal foals with suspected sepsis using real‐time PCR. Vet. Rec. 165, 114‐117. [DOI] [PubMed] [Google Scholar]
- 8. Russell, C.M. , Axon, J.E. , Blishen, A. and Begg, A.P. (2008) Blood culture isolates and antimicrobial sensitivities from 427 critically ill neonatal foals. Aust. Vet. J. 86, 266‐271. [DOI] [PubMed] [Google Scholar]
- 9. Corley, K.T.T. , Pearce, G. , Magdesian, K.G. and Wilson, W.D. (2007) Bacteraemia in neonatal foals: clinicopathological differences between Gram‐positive and Gram‐negative infections, and single organism and mixed infections. Equine Vet. J. 39, 84‐89. [DOI] [PubMed] [Google Scholar]
- 10. Johns, I. , Tennent‐Brown, B. , Schaer, B.D. , Southwood, L. , Boston, R. and Wilkins, P. (2009) Blood culture status in mature horses with diarrhoea: a possible association with survival. Equine Vet. J. 41, 160‐164. [DOI] [PubMed] [Google Scholar]
- 11. Hollis, A.R. , Wilkins, P.A. , Palmer, J.E. and Boston, R.C. (2008) Bacteremia in equine neonatal diarrhea: a retrospective study (1990–2007). J. Vet. Intern. Med. 22, 1203‐1209. [DOI] [PubMed] [Google Scholar]
- 12. Monie, T.P. , Bryant, C.E. and Gay, N.J. (2009) Activating immunity: lessons from the TLRs and NLRs. Trends Biochem. Sci. 34, 553‐561. [DOI] [PubMed] [Google Scholar]
- 13. O'Neill, L. , Bryant, C. and Doyle, S. (2009) Therapeutic targeting of Toll‐like receptors for infectious and inflammatory diseases and cancer. Pharmacol. Rev. 61, 177‐197. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14. Gay, N.J. and Gangloff, M. (2007) Structure and function of Toll receptors and their ligands. Annu. Rev. Biochem. 76, 141‐165. [DOI] [PubMed] [Google Scholar]
- 15. Bryant, C.E. , Spring, D.R. , Gangloff, M. and Gay, N.J. (2010) The molecular basis of the host response to lipopolysaccharide. Nat. Rev. Microbiol. 8, 8‐14. [DOI] [PubMed] [Google Scholar]
- 16. Jin, M.S. , Kim, S.E. , Heo, J.Y. , Lee, M.E. , Kim, H.M. , Paik, S.G. , Lee, H. and Lee, J.O. (2007) Crystal structure of the TLR1‐TLR2 heterodimer induced by binding of a tri‐acylated lipopeptide. Cell 130, 1071‐1082. [DOI] [PubMed] [Google Scholar]
- 17. Poltorak, A. , He, X. , Smirnova, I. , Liu, M.‐Y. , Huffel, C.V. , Du, X. , Birdwell, D. , Alejos, E. , Silva, M. , Galanos, C. , Freudenberg, M. , Ricciardi‐Castagnoli, P. , Layton, B. and Beutler, B. (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085‐2088. [DOI] [PubMed] [Google Scholar]
- 18. Lohmann, K.L. , Vandenplas, M.L. , Barton, M.H. , Bryant, C.E. and Moore, J.N. (2007) The equine TLR4/MD‐2 complex mediates recognition of lipopolysaccharide from Rhodobacter sphaeroides as an agonist. J. Endotoxin Res. 13, 235‐242. [DOI] [PubMed] [Google Scholar]
- 19. Park, B.S. , Song, D.H. , Kim, H.M. , Choi, B.S. , Lee, H. and Lee, J.O. (2009) The structural basis of lipopolysaccharide recognition by the TLR4–MD‐2 complex. Nature 458, 1191‐1195. [DOI] [PubMed] [Google Scholar]
- 20. Tobias, P.S. , Soldau, K. and Ulevitch, R.J. (1986) Isolation of a lipopolysaccharide‐binding acute phase reactant from rabbit serum. J. Exp. Med. 164, 777‐793. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21. Wright, S.D. , Ramos, R.A. , Tobias, P.S. , Ulevitch, R.J. and Mathison, J.C. (1990) CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249, 1431‐1433. [DOI] [PubMed] [Google Scholar]
- 22. Shimazu, R. , Akashi, S. , Ogata, H. , Nagai, Y. , Fukudome, K. , Miyake, K. and Kimoto, M. (1999) MD‐2, a molecule that confers lipopolysaccharide responsiveness on Toll‐like receptor 4. J. Exp. Med. 189, 1777‐1782. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23. Kovach, N.L. , Yee, E. , Munford, R.S. , Raetz, C.R. and Harlan, J.M. (1990) Lipid IVA inhibits synthesis and release of tumor necrosis factor induced by lipopolysaccharide in human whole blood ex vivo. J. Exp. Med. 172, 77‐84. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24. Walsh, C. , Gangloff, M. , Monie, T. , Smyth, T. , Wei, B. , McKinley, T.J. , Maskell, D. , Gay, N. and Bryant, C. (2008) Elucidation of the MD‐2/TLR4 interface required for signaling by lipid IVa. J. Immunol. 181, 1245‐1254. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25. Vogel, S.N. , Madonna, G.S. , Wahl, L.M. and Rick, P.D. (1984) In vitro stimulation of C3H/HeJ spleen cells and macrophages by a lipid A precursor molecule derived from Salmonella typhimurium. J. Immunol. 132, 347‐353. [PubMed] [Google Scholar]
- 26. Golenbock, D.T. , Hampton, R.Y. , Qureshi, N. , Takayama, K. and Raetz, C.R. (1991) Lipid A‐like molecules that antagonize the effects of endotoxins on human monocytes. J. Biol. Chem. 266, 19490‐19498. [PubMed] [Google Scholar]
- 27. Akira, S. , Uematsu, S. and Takeuchi, O. (2006) Pathogen recognition and innate immunity. Cell 124, 783‐801. [DOI] [PubMed] [Google Scholar]
- 28. Senior, J.M. , Proudman, C.J. , Leuwer, M. and Carter, S.D. (2011) Plasma endotoxin in horses presented to an equine referral hospital: correlation to selected clinical parameters and outcomes. Equine Vet. J. 43, 585‐591. [DOI] [PubMed] [Google Scholar]
- 29. Steverink, P.J. , Sturk, A. , Rutten, V.P. , Wagenaar‐Hilbers, J.P. , Klein, W.R. , van der Velden, M.A. and Nemeth, F. (1995) Endotoxin, interleukin‐6 and tumor necrosis factor concentrations in equine acute abdominal disease: relation to clinical outcome. J. Endotoxin Res. 2, 289‐299. [Google Scholar]
- 30. Hunt, J.M. , Edwards, G.B. and Clarke, K.W. (1986) Incidence, diagnosis and treatment of postoperative complications in colic cases. Equine Vet. J. 18, 264‐270. [DOI] [PubMed] [Google Scholar]
- 31. Bailey, S.R. , Adair, H.S. , Reinemeyer, C.R. , Morgan, S.J. , Brooks, A.C. , Longhofer, S.L. and Elliott, J. (2009) Plasma concentrations of endotoxin and platelet activation in the developmental stage of oligofructose‐induced laminitis. Vet. Immunol. Immunopathol. 129, 167‐173. [DOI] [PubMed] [Google Scholar]
- 32. Barton, M.H. , Williamson, L. , Jacks, S. and Norton, N. (2003) Effects on plasma endotoxin and eicosanoid concentrations and serum cytokine activities in horses competing in a 48‐, 83‐, or 159‐km endurance ride under similar terrain and weather conditions. Am. J. Vet. Res. 64, 754‐761. [DOI] [PubMed] [Google Scholar]
- 33. Barton, M.H. , Morris, D.D. , Norton, N. and Prasse, K.W. (1998) Hemostatic and fibrinolytic indices in neonatal foals with presumed septicemia. J. Vet. Intern. Med. 12, 26‐35. [DOI] [PubMed] [Google Scholar]
- 34. Peek, S.F. , Semrad, S. , McGuirk, S.M. , Riseberg, A. , Ann Slack, J. , Marques, F. , Coombs, D. , Lien, L. , Keuler, N. and Darien, B.J. (2006) Prognostic value of clinicopathologic variables obtained at admission and effect of antiendotoxin plasma on survival in septic and critically ill foals. J. Vet. Intern. Med. 20, 569‐574. [DOI] [PubMed] [Google Scholar]
- 35. Pirie, R.S. , Collie, D.D.S. , Dixon, P.M. and McGorum, B.C. (2003) Inhaled endotoxin and organic dust particulates have synergistic proinflammatory effects in equine heaves (organic dust‐induced asthma). Clin. Exp. Allergy 33, 676‐683. [DOI] [PubMed] [Google Scholar]
- 36. Simonen‐Jokinen, T. , Pirie, R.S. , McGorum, B. and Maisi, P. (2005) Dose responses to inhalation of endotoxin, hay dust suspension and Aspergillus fumigatus extract in horses as measured by levels and activation of matrix metalloproteinase‐9. Equine Vet. J. 37, 155‐160. [DOI] [PubMed] [Google Scholar]
- 37. Berndt, A. , Derksen, F.J. , Venta, P.J. , Ewart, S. , Yuzbasiyan‐Gurkan, V. and Robinson, N.E. (2007) Elevated amount of Toll‐like receptor 4 mRNA in bronchial epithelial cells is associated with airway inflammation in horses with recurrent airway obstruction. Am. J. Physiol. Lung Cell. Mol. Physiol. 292, L936‐L943. [DOI] [PubMed] [Google Scholar]
- 38. Singh Suri, S. , Janardhan, K.S. , Parbhakar, O. , Caldwell, S. , Appleyard, G. and Singh, B. (2006) Expression of toll‐like receptor 4 and 2 in horse lungs. Vet. Res. 37, 541‐551. [DOI] [PubMed] [Google Scholar]
- 39. Kang, J.Y. , Nan, X. , Jin, M.S. , Youn, S.J. , Ryu, Y.H. , Mah, S. , Han, S.H. , Lee, H. , Paik, S.G. and Lee, J.O. (2009) Recognition of lipopeptide patterns by Toll‐like receptor 2‐Toll‐like receptor 6 heterodimer. Immunity 31, 873‐884. [DOI] [PubMed] [Google Scholar]
- 40. Takeuchi, O. , Hoshino, K. , Kawai, T. , Sanjo, H. , Takada, H. , Ogawa, T. , Takeda, K. and Akira, S. (1999) Differential roles of TLR2 and TLR4 in recognition of gram‐negative and gram‐positive bacterial cell wall components. Immunity 11, 443‐451. [DOI] [PubMed] [Google Scholar]
- 41. Lorenz, E. , Mira, J.P. , Cornish, K.L. , Arbour, N.C. and Schwartz, D.A. (2000) A novel polymorphism in the toll‐like receptor 2 gene and its potential association with staphylococcal infection. Infect. Immun. 68, 6398‐6401. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42. Fan, J. , Frey, R.S. and Malik, A.B. (2003) TLR4 signaling induces TLR2 expression in endothelial cells via neutrophil NADPH oxidase. J. Clin. Invest. 112, 1234‐1243. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43. Hayashi, F. , Smith, K.D. , Ozinsky, A. , Hawn, T.R. , Yi, E.C. , Goodlett, D.R. , Eng, J.K. , Akira, S. , Underhill, D.M. and Aderem, A. (2001) The innate immune response to bacterial flagellin is mediated by Toll‐like receptor 5. Nature 410, 1099‐1103. [DOI] [PubMed] [Google Scholar]
- 44. Van Asten, F.J. , Hendriks, H.G. , Koninkx, J.F. , Van der Zeijst, B.A. and Gaastra, W. (2000) Inactivation of the flagellin gene of Salmonella enterica serotype enteritidis strongly reduces invasion into differentiated Caco‐2 cells. FEMS Microbiol. Lett. 185, 175‐179. [DOI] [PubMed] [Google Scholar]
- 45. Feary, D.J. and Hassel, D.M. (2006) Enteritis and colitis in horses. Vet. Clin. N. Am.: Equine Pract. 22, 437‐479, ix. [DOI] [PubMed] [Google Scholar]
- 46. Bell, J.K. , Mullen, G.E. , Leifer, C.A. , Mazzoni, A. , Davies, D.R. and Segal, D.M. (2003) Leucine‐rich repeats and pathogen recognition in Toll‐like receptors. Trends Immunol. 24, 528‐533. [DOI] [PubMed] [Google Scholar]
- 47. Andersen‐Nissen, E. , Smith, K.D. , Strobe, K.L. , Barrett, S.L. , Cookson, B.T. , Logan, S.M. and Aderem, A. (2005) Evasion of Toll‐like receptor 5 by flagellated bacteria. Proc. Natl. Acad. Sci. U.S.A. 102, 9247‐9252. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48. Smith, K.D. , Andersen‐Nissen, E. , Hayashi, F. , Strobe, K. , Bergman, M.A. , Barrett, S.L. , Cookson, B.T. and Aderem, A. (2003) Toll‐like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility. Nat. Immunol. 4, 1247‐1253. [DOI] [PubMed] [Google Scholar]
- 49. Applequist, S.E. , Wallin, R.P. and Ljunggren, H.G. (2002) Variable expression of Toll‐like receptor in murine innate and adaptive immune cell lines. Int. Immunol. 14, 1065‐1074. [DOI] [PubMed] [Google Scholar]
- 50. Hornung, V. , Rothenfusser, S. , Britsch, S. , Krug, A. , Jahrsdörfer, B. , Giese, T. , Endres, S. and Hartmann, G. (2002) Quantitative expression of toll‐like receptor 1–10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J. Immunol. 168, 4531‐4537. [DOI] [PubMed] [Google Scholar]
- 51. Keestra, A.M. , de Zoete, M.R. , van Aubel, R.A. and van Putten, J.P. (2008) Functional characterization of chicken TLR5 reveals species‐specific recognition of flagellin. Mol. Immunol. 45, 1298‐1307. [DOI] [PubMed] [Google Scholar]
- 52. Kwon, S. , Gewirtz, A.T. , Hurley, D.J. , Robertson, T.P. , Moore, J.N. and Vandenplas, M.L. (2011) Disparities in TLR5 expression and responsiveness to flagellin in equine neutrophils and mononuclear phagocytes. J. Immunol. 186, 6263‐6270. [DOI] [PubMed] [Google Scholar]
- 53. Lun, S.W. , Wong, C.K. , Ko, F.W. , Hui, D.S. and Lam, C.W. (2009) Expression and functional analysis of toll‐like receptors of peripheral blood cells in asthmatic patients: implication for immunopathological mechanism in asthma. J. Clin. Immunol. 29, 330‐342. [DOI] [PubMed] [Google Scholar]
- 54. Liaudet, L. , Deb, A. , Pacher, P. , Mabley, J.G. , Murthy, K.G. , Salzman, A.L. and Szabo, C. (2002) The flagellin‐TLR5 axis: therapeutic opportunities. Drug News Perspect. 15, 397‐409. [DOI] [PubMed] [Google Scholar]
- 55. Hemmi, H. , Takeuchi, O. , Kawai, T. , Kaisho, T. , Sato, S. , Sanjo, H. , Matsumoto, M. , Hoshino, K. , Wagner, H. , Takeda, K. and Akira, S. (2000) A Toll‐like receptor recognizes bacterial DNA. Nature 408, 740‐745. [DOI] [PubMed] [Google Scholar]
- 56. Banchereau, J. and Steinman, R.M. (1998) Dendritic cells and the control of immunity. Nature 392, 245‐252. [DOI] [PubMed] [Google Scholar]
- 57. Chen, J. , Nag, S. , Vidi, P.A. and Irudayaraj, J. (2011) Single molecule in vivo analysis of Toll‐like receptor 9 and CpG DNA interaction. PLoS One 6, e17991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 58. Ewald, S.E. , Engel, A. , Lee, J. , Wang, M. , Bogyo, M. and Barton, G.M. (2011) Nucleic acid recognition by Toll‐like receptors is coupled to stepwise processing by cathepsins and asparagine endopeptidase. J. Exp. Med. 208, 643‐651. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 59. Avalos, A.M. and Ploegh, H.L. (2011) Competition by inhibitory oligonucleotides prevents binding of CpG to C‐terminal TLR9. Eur. J. Immunol. 41, 2820‐2827. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 60. Chuang, T.H. and Ulevitch, R.J. (2000) Cloning and characterization of a sub‐family of human toll‐like receptors: hTLR7, hTLR8 and hTLR9. Eur. Cytokine Netw. 11, 372‐378. [PubMed] [Google Scholar]
- 61. Franch, R. , Cardazzo, B. , Antonello, J. , Castagnaro, M. , Patarnello, T. and Bargelloni, L. (2006) Full‐length sequence and expression analysis of Toll‐like receptor 9 in the gilthead seabream (Sparus aurata L.). Gene 378, 42‐51. [DOI] [PubMed] [Google Scholar]
- 62. Yao, C.L. , Kong, P. , Wang, Z.Y. , Ji, P.F. , Cai, M.Y. , Liu, X.D. and Han, X.Z. (2008) Cloning and expression analysis of two alternative splicing toll‐like receptor 9 isoforms A and B in large yellow croaker, Pseudosciaena crocea . Fish Shellfish Immunol. 25, 648‐656. [DOI] [PubMed] [Google Scholar]
- 63. McKelvey, K.J. , Highton, J. and Hessian, P.A. (2011) Cell‐specific expression of TLR9 isoforms in inflammation. J. Autoimmun. 36, 76‐86. [DOI] [PubMed] [Google Scholar]
- 64. Schneberger, D. , Caldwell, S. , Suri, S.S. and Singh, B. (2009) Expression of toll‐like receptor 9 in horse lungs. Anat. Rec. (Hoboken) 292, 1068‐1077. [DOI] [PubMed] [Google Scholar]
- 65. Zhang, Y.W. , Davis, E.G. , Blecha, F. and Wilkerson, M.J. (2008) Molecular cloning and characterization of equine Toll‐like receptor 9. Vet. Immunol. Immunopathol. 124, 209‐219. [DOI] [PubMed] [Google Scholar]
- 66. Gornik, K. , Moore, P. and Figueiredo, M. (2011) Expression of Toll‐like receptors 2, 3, 4, 6, 9, and MD‐2 in the normal equine cornea, limbus, and conjunctiva. Vet. Ophthalmol. 14, 80‐85. [DOI] [PubMed] [Google Scholar]
- 67. Liu, M. , Liu, T. , Bordin, A. , Nerren, J. and Cohen, N. (2009) Activation of foal neutrophils at different ages by CpG oligodeoxynucleotides and Rhodococcus equi . Cytokine 48, 280‐289. [DOI] [PubMed] [Google Scholar]
- 68. Flaminio, M.J.B. , Borges, A.S. , Nydam, D.V. , Horohov, D.W. , Hecker, R. and Matychak, M.B. (2007) The effect of CpG‐ODN on antigen presenting cells of the foal. J. Immune Based Ther. Vaccines 5, 1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 69. Rietdijk, S.T. , Burwell, T. , Bertin, J. and Coyle, A.J. (2008) Sensing intracellular pathogens – NOD‐like receptors. Curr. Opin. Pharmacol. 8, 261‐266. [DOI] [PubMed] [Google Scholar]
- 70. Horvath, G.L. , Schrum, J.E. , De Nardo, C.M. and Latz, E. (2011) Intracellular sensing of microbes and danger signals by the inflammasomes. Immunol. Rev. 243, 119‐135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 71. Martinon, F. , Burns, K. and Tschopp, J. (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL‐β. Mol. Cell 10, 417‐426. [DOI] [PubMed] [Google Scholar]
- 72. Girardin, S.E. , Boneca, I.G. , Carneiro, L.A. , Antignac, A. , Jéhanno, M. , Viala, J. , Tedin, K. , Taha, M.K. , Labigne, A. , Zähringer, U. , Coyle, A.J. , DiStefano, P.S. , Bertin, J. , Sansonetti, P.J. and Philpott, D.J. (2003) Nod1 detects a unique muropeptide from gram‐negative bacterial peptidoglycan. Science 300, 1584‐1587. [DOI] [PubMed] [Google Scholar]
- 73. Kanneganti, T.D. , Lamkanfi, M. and Núñez, G. (2007) Intracellular NOD‐like receptors in host defense and disease. Immunity 27, 549‐559. [DOI] [PubMed] [Google Scholar]
- 74. Ogura, Y. , Inohara, N. , Benito, A. , Chen, F.F. , Yamaoka, S. and Nunez, G. (2001) Nod2, a Nod1/Apaf‐1 family member that is restricted to monocytes and activates NF‐κB. J. Biol. Chem. 276, 4812‐4818. [DOI] [PubMed] [Google Scholar]
- 75. Chamaillard, M. , Hashimoto, M. , Horie, Y. , Masumoto, J. , Qiu, S. , Saab, L. , Ogura, Y. , Kawasaki, A. , Fukase, K. , Kusumoto, S. , Valvano, M.A. , Foster, S.J. , Mak, T.W. , Nuñez, G. and Inohara, N. (2003) An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat. Immunol. 4, 702‐707. [DOI] [PubMed] [Google Scholar]
- 76. Clarke, T.B. , Davis, K.M. , Lysenko, E.S. , Zhou, A.Y. , Yu, Y. and Weiser, J.N. (2010) Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat. Med. 16, 228‐231. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 77. Racine, J. , Gerber, V. , Miskovic Feutz, M. , Riley, C.P. , Adamec, J. , Swinburne, J.E. and Couetil, L.L. (2011) Comparison of genomic and proteomic data in recurrent airway obstruction affected horses using ingenuity pathway analysis®. BMC Vet. Res. 7, 48. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 78. Sutterwala, F.S. and Flavell, R. (2009) NLRC4/IPAF: a CARD carrying member of the NLR family. Clin. Immunol. 130, 2‐6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 79. Poyet, J.L. , Srinivasula, S.M. , Tnani, M. , Razmara, M. , Fernandes‐Alnemri, T. and Alnemri, E.S. (2001) Identification of Ipaf, a human caspase‐1‐activating protein related to Apaf‐1. J. Biol. Chem. 276, 28309‐28313. [DOI] [PubMed] [Google Scholar]
- 80. Mariathasan, S. , Newton, K. , Monack, D.M. , Vucic, D. , French, D.M. , Lee, W.P. , Roose‐Girma, M. , Erickson, S. and Dixit, V. (2004) Differential activation of the inflammasome by caspase‐1 adaptors ASC and Ipaf. Nature 430, 213‐218. [DOI] [PubMed] [Google Scholar]
- 81. Miao, E.A. , Ernst, R.K. , Dors, M. , Mao, D.P. and Aderem, A. (2008) Pseudomonas aeruginosa activates caspase 1 through Ipaf. Proc. Natl. Acad. Sci. U.S.A. 105, 2562‐2567. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 82. Hilbi, H. , Moss, J.E. , Hersh, D. , Chen, Y. , Arondel, J. , Banerjee, S. , Flavell, R. , Yuan, J. , Sansonetti, P.J. and Zychlinsky, A. (1998) Shigella‐induced apoptosis is dependent on caspase‐1 which binds to IpaB. J. Biol. Chem. 273, 32895‐32900. [DOI] [PubMed] [Google Scholar]
- 83. Amer, A. , Franchi, L. , Kanneganti, T.D. , Body‐Malapel, M. , Özören, N. , Brady, G. , Meshinchi, S. , Jagirdar, R. , Gewirtz, A. , Akira, S. and Núñez, G. (2006) Regulation of Legionella phagosome maturation and infection through flagellin and host Ipaf. J. Biol. Chem. 281, 35217‐35223. [DOI] [PubMed] [Google Scholar]
- 84. Miao, E.A. , Alpuche‐Aranda, C.M. , Dors, M. , Clark, A.E. , Bader, M.W. , Miller, S.I. and Aderem, A. (2006) Cytoplasmic flagellin activates caspase‐1 and secretion of interleukin 1β via Ipaf. Nat. Immunol. 7, 569‐575. [DOI] [PubMed] [Google Scholar]
- 85. Franchi, L. , Amer, A. , Body‐Malapel, M. , Kanneganti, T.D. , Özören, N. , Jagirdar, R. , Inohara, N. , Vandenabeele, P. , Bertin, J. , Coyle, A. , Grant, E.P. and Núñez, G. (2006) Cytosolic flagellin requires Ipaf for activation of caspase‐1 and interleukin 1β in salmonella‐infected macrophages. Nat. Immunol. 7, 576‐582. [DOI] [PubMed] [Google Scholar]
- 86. Miao, E.A. , Mao, D.P. , Yudkovsky, N. , Bonneau, R. , Lorang, C.G. , Warren, S.E. , Leaf, I.A. and Aderem, A. (2010) Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. Proc. Natl. Acad. Sci. U.S.A. 107, 3076‐3080. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 87. Craven, R.R. , Gao, X. , Allen, I.C. , Gris, D. , Bubeck Wardenburg, J. , McElvania‐Tekippe, E. , Ting, J.P. and Duncan, J.A. (2009) Staphylococcus aureus α‐hemolysin activates the NLRP3‐inflammasome in human and mouse monocytic cells. PLoS One 4, e7446. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 88. McNeela, E.A. , Burke, A. , Neill, D.R. , Baxter, C. , Fernandes, V.E. , Ferreira, D. , Smeaton, S. , El‐Rachkidy, R. , McLoughlin, R.M. , Mori, A. , Moran, B. , Fitzgerald, K.A. , Tschopp, J. , Petrilli, V. , Andrew, P.W. , Kadioglu, A. and Lavelle, E. (2010) Pneumolysin activates the NLRP3 inflammasome and promotes proinflammatory cytokines independently of TLR4. PLoS Pathog. 6, e1001191. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 89. Broz, P. , Newton, K. , Lamkanfi, M. , Mariathasan, S. , Dixit, V.M. and Monack, D.M. (2010) Redundant roles for inflammasome receptors NLRP3 and NLRC4 in host defense against Salmonella. J. Exp. Med. 207, 1745‐1755. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 90. Bryant, C. and Fitzgerald, K.A. (2009) Molecular mechanisms involved in inflammasome activation. Trends Cell Biol. 19, 455‐464. [DOI] [PubMed] [Google Scholar]
- 91. Hornung, V. , Ablasser, A. , Charrel‐Dennis, M. , Bauernfeind, F. , Horvath, G. , Caffrey, D.R. , Latz, E. and Fitzgerald, K. (2009) AIM2 recognizes cytosolic dsDNA and forms a caspase‐1‐activating inflammasome with ASC. Nature 458, 514‐518. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 92. Burckstummer, T. , Baumann, C. , Bluml, S. , Dixit, E. , Durnberger, G. , Jahn, H. , Planyavsky, M. , Bilban, M. , Colinge, J. , Bennett, K.L. and Superti‐Furga, G. (2009) An orthogonal proteomic‐genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat. Immunol. 10, 266‐272. [DOI] [PubMed] [Google Scholar]
- 93. Choubey, D. , Walter, S. , Geng, Y. and Xin, H. (2000) Cytoplasmic localization of the interferon‐inducible protein that is encoded by the AIM2 (absent in melanoma) gene from the 200‐gene family. FEBS Lett. 474, 38‐42. [DOI] [PubMed] [Google Scholar]
- 94. Rathinam, V.A.K. , Jiang, Z. , Waggoner, S.N. , Sharma, S. , Cole, L.E. , Waggoner, L. , Vanaja, S.K. , Monks, B.G. , Ganesan, S. , Latz, E. , Hornung, V. , Vogel, S.N. , Szomolanyi‐Tsuda, E. and Fitzgerald, K. (2010) The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat. Immunol. 11, 395‐402. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 95. Warren, S.E. , Armstrong, A. , Hamilton, M.K. , Mao, D.P. , Leaf, I. , Miao, E. and Aderem, A. (2010) Cutting edge: cytosolic bacterial DNA activates the inflammasome via Aim2. J. Immunol. 185, 818‐821. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 96. Lien, E. , Means, T.K. , Heine, H. , Yoshimura, A. , Kusumoto, S. , Fukase, K. , Fenton, M.J. , Oikawa, M. , Qureshi, N. , Monks, B. , Finberg, R.W. , Ingalls, R.R. and Golenbock, D.T. (2000) Toll‐like receptor 4 imparts ligand‐specific recognition of bacterial lipopolysaccharide. J. Clin. Invest. 105, 497‐504. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 97. Lohmann, K.L. , Vandenplas, M. , Barton, M.H. and Moore, J.N. (2003) Lipopolysaccharide from Rhodobacter sphaeroides is an agonist in equine cells. J. Endotoxin Res. 9, 33‐37. [DOI] [PubMed] [Google Scholar]
- 98. Bryant, C.E. , Ouellette, A. , Lohmann, K. , Vandenplas, M. , Moore, J.N. , Maskell, D.J. and Farnfield, B.A. (2007) The cellular Toll‐like receptor 4 antagonist E5531 can act as an agonist in horse whole blood. Vet. Immunol. Immunopathol. 116, 182‐189. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 99. Bunnell, E. , Lynn, M. , Habet, K. , Neumann, A. , Perdomo, C.A. , Friedhoff, L.T. , Rogers, S.L. and Parrillo, J.E. (2000) A lipid A analog, E5531, blocks the endotoxin response in human volunteers with experimental endotoxemia. Crit. Care Med. 28, 2713‐2720. [DOI] [PubMed] [Google Scholar]
- 100. Kawata, T. , Bristol, J.R. , Rossignol, D.P. , Rose, J.R. , Kobayashi, S. , Yokohama, H. , Ishibashi, A. , Christ, W.J. , Katayama, K. , Yamatsu, I. and Kishi, Y. (1999) E5531, a synthetic non‐toxic lipid A derivative blocks the immunobiological activities of lipopolysaccharide. Br. J. Pharmacol. 127, 853‐862. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 101. Rossignol, D.P. and Lynn, M. (2002) Antagonism of in vivo and ex vivo response to endotoxin by E5564, a synthetic lipid A analogue. J. Endotoxin Res. 8, 483‐488. [DOI] [PubMed] [Google Scholar]
- 102. Lynn, M. , Wong, Y.N. , Wheeler, J.L. , Kao, R.J. , Perdomo, C.A. , Noveck, R. , Vargas, R. , D'Angelo, T. , Gotzkowsky, S. , McMahon, F.G. , Wasan, K.M. and Rossignol, D.P. (2004) Extended in vivo pharmacodynamic activity of E5564 in normal volunteers with experimental endotoxemia [corrected]. J. Pharmacol. Exp. Ther. 308, 175‐181. [DOI] [PubMed] [Google Scholar]
- 103. Figueiredo, M.D. , Moore, J.N. , Vandenplas, M.L. , Sun, W. and Murray, T.F. (2008) Effects of the second‐generation synthetic lipid A analogue E5564 on responses to endotoxin in [corrected] equine whole blood and monocytes. Am. J. Vet. Res. 69, 796‐803. [DOI] [PubMed] [Google Scholar]
- 104. Kalil, A.C. , LaRosa, S.P. , Gogate, J. , Lynn, M. and Opal, S.M. (2011) Influence of severity of illness on the effects of eritoran tetrasodium (E5564) and on other therapies for severe sepsis. Shock 36, 327‐331. [DOI] [PubMed] [Google Scholar]
- 105. Opal, S.M. (2011) Eritoran trial reaches unfortunate conclusion In: ISICEM News, Ed: Davenport L., MediFore Limited, Brussels. pp 8‐9. [Google Scholar]
- 106. Hennessy, E.J. , Parker, A.E. and O'Neill, L.A. (2010) Targeting Toll‐like receptors: emerging therapeutics? Nat. Rev. Drug Discov. 9, 293‐307. [DOI] [PubMed] [Google Scholar]
- 107. Spyvee, M.R. , Zhang, H. , Hawkins, L.D. and Chow, J.C. (2005) Toll‐like receptor 2 antagonists. Part 1: preliminary SAR investigation of novel synthetic phospholipids. Bioorg. Med. Chem. Lett. 15, 5494‐5498. [DOI] [PubMed] [Google Scholar]
- 108. Meng, G. , Rutz, M. , Schiemann, M. , Metzger, J. , Grabiec, A. , Schwandner, R. , Luppa, P.B. , Ebel, F. , Busch, D.H. , Bauer, S. , Wagner, H. and Kirschning, C.J. (2004) Antagonistic antibody prevents toll‐like receptor 2‐driven lethal shock‐like syndromes. J. Clin. Invest. 113, 1473‐1481. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 109. Kirschning, C.J. , Dreher, S. , Maass, B. , Fichte, S. , Schade, J. , Koster, M. , Noack, A. , Lindenmaier, W. , Wagner, H. and Boldicke, T. (2010) Generation of anti‐TLR2 intrabody mediating inhibition of macrophage surface TLR2 expression and TLR2‐driven cell activation. BMC Biotechnol. 10, 31. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 110. Nic An Ultaigh, S. , Saber, T.P. , McCormick, J. , Connolly, M. , Dellacasagrande, J. , Keogh, B. , McCormack, W. , Reilly, M. , O'Neill, L.A. , McGuirk, P. , Fearon, U. and Veale, D.J. (2011) Blockade of Toll‐like receptor 2 prevents spontaneous cytokine release from rheumatoid arthritis ex vivo synovial explant cultures. Arthritis Res. Ther. 13, R33. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 111. Arslan, F. , Smeets, M.B. , O'Neill, L.A. , Keogh, B. , McGuirk, P. , Timmers, L. , Tersteeg, C. , Hoefer, I.E. , Doevendans, P.A. , Pasterkamp, G. and de Kleijn, D.P. (2010) Myocardial ischemia/reperfusion injury is mediated by leukocytic toll‐like receptor‐2 and reduced by systemic administration of a novel anti‐toll‐like receptor‐2 antibody. Circulation 121, 80‐90. [DOI] [PubMed] [Google Scholar]
- 112. Takeuchi, O. , Sato, S. , Horiuchi, T. , Hoshino, K. , Takeda, K. , Dong, Z. , Modlin, R.L. and Akira, S. (2002) Cutting edge: role of Toll‐like receptor 1 in mediating immune response to microbial lipoproteins. J. Immunol. 169, 10‐14. [DOI] [PubMed] [Google Scholar]
- 113. Kwon, S. , Vandenplas, M.L. , Figueiredo, M.D. , Salter, C.E. , Andrietti, A.L. , Robertson, T.P. , Moore, J.N. and Hurley, D.J. (2010) Differential induction of Toll‐like receptor gene expression in equine monocytes activated by Toll‐like receptor ligands or TNF‐α. Vet. Immunol. Immunopathol. 138, 213‐217. [DOI] [PubMed] [Google Scholar]
- 114. Alexopoulou, L. , Thomas, V. , Schnare, M. , Lobet, Y. , Anguita, J. , Schoen, R.T. , Medzhitov, R. , Fikrig, E. and Flavell, R.A. (2002) Hyporesponsiveness to vaccination with Borrelia burgdorferi OspA in humans and in TLR1‐ and TLR2‐deficient mice. Nat. Med. 8, 878‐884. [DOI] [PubMed] [Google Scholar]
- 115. Wyllie, D.H. , Kiss‐Toth, E. , Visintin, A. , Smith, S.C. , Boussouf, S. , Segal, D.M. , Duff, G.W. and Dower, S.K. (2000) Evidence for an accessory protein function for Toll‐like receptor 1 in anti‐bacterial responses. J. Immunol. 165, 7125‐7132. [DOI] [PubMed] [Google Scholar]
- 116. Massari, P. , Henneke, P. , Ho, Y. , Latz, E. , Golenbock, D.T. and Wetzler, L.M. (2002) Cutting edge: immune stimulation by neisserial porins is toll‐like receptor 2 and MyD88 dependent. J. Immunol. 168, 1533‐1537. [DOI] [PubMed] [Google Scholar]
- 117. Aliprantis, A.O. , Yang, R.B. , Mark, M.R. , Suggett, S. , Devaux, B. , Radolf, J.D. , Klimpel, G.R. , Godowski, P. and Zychlinsky, A. (1999) Cell activation and apoptosis by bacterial lipoproteins through toll‐like receptor‐2. Science 285, 736‐739. [DOI] [PubMed] [Google Scholar]
- 118. Brightbill, H.D. , Libraty, D.H. , Krutzik, S.R. , Yang, R.B. , Belisle, J.T. , Bleharski, J.R. , Maitland, M. , Norgard, M.V. , Plevy, S.E. , Smale, S.T. , Brennan, P.J. , Bloom, B.R. , Godowski, P.J. and Modlin, R.L. (1999) Host defense mechanisms triggered by microbial lipoproteins through toll‐like receptors. Science 285, 732‐736. [DOI] [PubMed] [Google Scholar]
- 119. Opitz, B. , Schröder, N.W. , Spreitzer, I. , Michelsen, K.S. , Kirschning, C.J. , Hallatschek, W. , Zähringer, U. , Hartung, T. , Göbel, U.B. and Schumann, R.R. (2001) Toll‐like receptor‐2 mediates Treponema glycolipid and lipoteichoic acid‐induced NF‐κB translocation. J. Biol. Chem. 276, 22041‐22047. [DOI] [PubMed] [Google Scholar]
- 120. Schwandner, R. , Dziarski, R. , Wesche, H. , Rothe, M. and Kirschning, C.J. (1999) Peptidoglycan‐ and lipoteichoic acid‐induced cell activation is mediated by toll‐like receptor 2. J. Biol. Chem. 274, 17406‐17409. [DOI] [PubMed] [Google Scholar]
- 121. Underhill, D.M. , Ozinsky, A. , Smith, K.D. and Aderem, A. (1999) Toll‐like receptor‐2 mediates mycobacteria‐induced proinflammatory signaling in macrophages. Proc. Natl. Acad. Sci. U.S.A. 96, 14459‐14463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 122. Garton, N.J. , Gilleron, M. , Brando, T. , Dan, H.H. , Giguere, S. , Puzo, G. , Prescott, J.F. and Sutcliffe, I.C. (2002) A novel lipoarabinomannan from the equine pathogen Rhodococcus equi. Structure and effect on macrophage cytokine production. J. Biol. Chem. 277, 31722‐31733. [DOI] [PubMed] [Google Scholar]
- 123. Codolo, G. , Papinutto, E. , Polenghi, A. , D'Elios, M.M. , Zanotti, G. and de Bernard, M. (2010) Structure and immunomodulatory property relationship in NapA of Borrelia burgdorferi . Biochim. Biophys. Acta 1804, 2191‐2197. [DOI] [PubMed] [Google Scholar]
- 124. Campos, M.A. , Almeida, I.C. , Takeuchi, O. , Akira, S. , Valente, E.P. , Procopio, D.O. , Travassos, L.R. , Smith, J.A. , Golenbock, D.T. and Gazzinelli, R.T. (2001) Activation of Toll‐like receptor‐2 by glycosylphosphatidylinositol anchors from a protozoan parasite. J. Immunol. 167, 416‐423. [DOI] [PubMed] [Google Scholar]
- 125. Hajjar, A.M. , O'Mahony, D.S. , Ozinsky, A. , Underhill, D.M. , Aderem, A. , Klebanoff, S.J. and Wilson, C.B. (2001) Cutting edge: functional interactions between toll‐like receptor (TLR) 2 and TLR1 or TLR6 in response to phenol‐soluble modulin. J. Immunol. 166, 15‐19. [DOI] [PubMed] [Google Scholar]
- 126. Ozinsky, A. , Underhill, D.M. , Fontenot, J.D. , Hajjar, A.M. , Smith, K.D. , Wilson, C.B. , Schroeder, L. and Aderem, A. (2000) The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll‐like receptors. Proc. Natl. Acad. Sci. U.S.A. 97, 13766‐13771. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 127. Jouault, T. , Ibata‐Ombetta, S. , Takeuchi, O. , Trinel, P.A. , Sacchetti, P. , Lefebvre, P. , Akira, S. and Poulain, D. (2003) Candida albicans phospholipomannan is sensed through toll‐like receptors. J. Infect. Dis. 188, 165‐172. [DOI] [PubMed] [Google Scholar]
- 128. Werts, C. , Tapping, R.I. , Mathison, J.C. , Chuang, T.H. , Kravchenko, V. , Saint Girons, I. , Haake, D.A. , Godowski, P.J. , Hayashi, F. , Ozinsky, A. , Underhill, D.M. , Kirschning, C.J. , Wagner, H. , Aderem, A. , Tobias, P.S. and Ulevitch, R.J. (2001) Leptospiral lipopolysaccharide activates cells through a TLR2‐dependent mechanism. Nat. Immunol. 2, 346‐352. [DOI] [PubMed] [Google Scholar]
- 129. Hirschfeld, M. , Weis, J.J. , Toshchakov, V. , Salkowski, C.A. , Cody, M.J. , Ward, D.C. , Qureshi, N. , Michalek, S.M. and Vogel, S.N. (2001) Signaling by toll‐like receptor 2 and 4 agonists results in differential gene expression in murine macrophages. Infect. Immun. 69, 1477‐1482. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 130. Vabulas, R.M. , Ahmad‐Nejad, P. , da Costa, C. , Miethke, T. , Kirschning, C.J. , Hacker, H. and Wagner, H. (2001) Endocytosed HSP60s use toll‐like receptor 2 (TLR2) and TLR4 to activate the toll/interleukin‐1 receptor signaling pathway in innate immune cells. J. Biol. Chem. 276, 31332‐31339. [DOI] [PubMed] [Google Scholar]
- 131. Asea, A. , Rehli, M. , Kabingu, E. , Boch, J.A. , Bare, O. , Auron, P.E. , Stevenson, M.A. and Calderwood, S.K. (2002) Novel signal transduction pathway utilized by extracellular HSP70: role of toll‐like receptor (TLR) 2 and TLR4. J. Biol. Chem. 277, 15028‐15034. [DOI] [PubMed] [Google Scholar]
- 132. Huang, Q.Q. , Sobkoviak, R. , Jockheck‐Clark, A.R. , Shi, B. , Mandelin, A.M., 2nd , Tak, P.P. , Haines, G.K., 3rd , Nicchitta, C.V. and Pope, R.M. (2009) Heat shock protein 96 is elevated in rheumatoid arthritis and activates macrophages primarily via TLR2 signaling. J. Immunol. 182, 4965‐4973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 133. Yu, M. , Wang, H. , Ding, A. , Golenbock, D.T. , Latz, E. , Czura, C.J. , Fenton, M.J. , Tracey, K.J. and Yang, H. (2006) HMGB1 signals through toll‐like receptor (TLR) 4 and TLR2. Shock 26, 174‐179. [DOI] [PubMed] [Google Scholar]
- 134. Scheibner, K.A. , Lutz, M.A. , Boodoo, S. , Fenton, M.J. , Powell, J.D. and Horton, M.R. (2006) Hyaluronan fragments act as an endogenous danger signal by engaging TLR2. J. Immunol. 177, 1272‐1281. [DOI] [PubMed] [Google Scholar]
- 135. Gariboldi, S. , Palazzo, M. , Zanobbio, L. , Selleri, S. , Sommariva, M. , Sfondrini, L. , Cavicchini, S. , Balsari, A. and Rumio, C. (2008) Low molecular weight hyaluronic acid increases the self‐defense of skin epithelium by induction of β‐defensin 2 via TLR2 and TLR4. J. Immunol. 181, 2103‐2110. [DOI] [PubMed] [Google Scholar]
- 136. Bieback, K. , Lien, E. , Klagge, I.M. , Avota, E. , Schneider‐Schaulies, J. , Duprex, W.P. , Wagner, H. , Kirschning, C.J. , Ter Meulen, V. and Schneider‐Schaulies, S. (2002) Hemagglutinin protein of wild‐type measles virus activates toll‐like receptor 2 signaling. J. Virol. 76, 8729‐8736. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 137. Kurt‐Jones, E.A. , Chan, M. , Zhou, S. , Wang, J. , Reed, G. , Bronson, R. , Arnold, M.M. , Knipe, D.M. and Finberg, R.W. (2004) Herpes simplex virus 1 interaction with Toll‐like receptor 2 contributes to lethal encephalitis. Proc. Natl. Acad. Sci. U.S.A. 101, 1315‐1320. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 138. Compton, T. , Kurt‐Jones, E.A. , Boehme, K.W. , Belko, J. , Latz, E. , Golenbock, D.T. and Finberg, R.W. (2003) Human cytomegalovirus activates inflammatory cytokine responses via CD14 and Toll‐like receptor 2. J. Virol. 77, 4588‐4596. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 139. Murawski, M.R. , Bowen, G.N. , Cerny, A.M. , Anderson, L.J. , Haynes, L.M. , Tripp, R.A. , Kurt‐Jones, E.A. and Finberg, R.W. (2009) Respiratory syncytial virus activates innate immunity through Toll‐like receptor 2. J. Virol. 83, 1492‐1500. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 140. Zhou, S. , Kurt‐Jones, E.A. , Mandell, L. , Cerny, A. , Chan, M. , Golenbock, D.T. and Finberg, R.W. (2005) MyD88 is critical for the development of innate and adaptive immunity during acute lymphocytic choriomeningitis virus infection. Eur. J. Immunol. 35, 822‐830. [DOI] [PubMed] [Google Scholar]
- 141. Jeannin, P. , Bottazzi, B. , Sironi, M. , Doni, A. , Rusnati, M. , Presta, M. , Maina, V. , Magistrelli, G. , Haeuw, J.F. , Hoeffel, G. , Thieblemont, N. , Corvaia, N. , Garlanda, C. , Delneste, Y. and Mantovani, A. (2005) Complexity and complementarity of outer membrane protein A recognition by cellular and humoral innate immunity receptors. Immunity 22, 551‐560. [DOI] [PubMed] [Google Scholar]
- 142. Flo, T.H. , Halaas, O. , Lien, E. , Ryan, L. , Teti, G. , Golenbock, D.T. , Sundan, A. and Espevik, T. (2000) Human Toll‐like receptor 2 mediates monocyte activation by Listeria monocytogenes, but not by group B streptococci or lipopolysaccharide. J. Immunol. 164, 2064‐2069. [DOI] [PubMed] [Google Scholar]
- 143. Dosch, S.F. , Mahajan, S.D. and Collins, A.R. (2009) SARS coronavirus spike protein‐induced innate immune response occurs via activation of the NF‐κB pathway in human monocyte macrophages in vitro. Virus Res. 142, 19‐27. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 144. Tada, H. , Nemoto, E. , Shimauchi, H. , Watanabe, T. , Mikami, T. , Matsumoto, T. , Ohno, N. , Tamura, H. , Shibata, K. , Akashi, S. , Miyake, K. , Sugawara, S. and Takada, H. (2002) Saccharomyces cerevisiae‐ and Candida albicans‐derived mannan induced production of tumor necrosis factor alpha by human monocytes in a CD14‐ and Toll‐like receptor 4‐dependent manner. Microbiol. Immunol. 46, 503‐512. [DOI] [PubMed] [Google Scholar]
- 145. Shoham, S. , Huang, C. , Chen, J.M. , Golenbock, D.T. and Levitz, S.M. (2001) Toll‐like receptor 4 mediates intracellular signaling without TNF‐α release in response to Cryptococcus neoformans polysaccharide capsule. J. Immunol. 166, 4620‐4626. [DOI] [PubMed] [Google Scholar]
- 146. Termeer, C. , Benedix, F. , Sleeman, J. , Fieber, C. , Voith, U. , Ahrens, T. , Miyake, K. , Freudenberg, M. , Galanos, C. and Simon, J. (2002) Oligosaccharides of Hyaluronan activate dendritic cells via toll‐like receptor 4. J. Exp. Med. 195, 99‐111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 147. Gaddis, D.E. , Michalek, S.M. and Katz, J. (2009) Requirement of TLR4 and CD14 in dendritic cell activation by Hemagglutinin B from Porphyromonas gingivalis . Mol. Immunol. 46, 2493‐2504. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 148. Gomi, K. , Kawasaki, K. , Kawai, Y. , Shiozaki, M. and Nishijima, M. (2002) Toll‐like receptor 4‐MD‐2 complex mediates the signal transduction induced by flavolipin, an amino acid‐containing lipid unique to Flavobacterium meningosepticum . J. Immunol. 168, 2939‐2943. [DOI] [PubMed] [Google Scholar]
- 149. Morefield, G.L. , Hawkins, L.D. , Ishizaka, S.T. , Kissner, T.L. and Ulrich, R.G. (2007) Synthetic Toll‐like receptor 4 agonist enhances vaccine efficacy in an experimental model of toxic shock syndrome. Clin. Vaccine Immunol. 14, 1499‐1504. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 150. Kawasaki, K. , Akashi, S. , Shimazu, R. , Yoshida, T. , Miyake, K. and Nishijima, M. (2000) Mouse toll‐like receptor 4.MD‐2 complex mediates lipopolysaccharide‐mimetic signal transduction by Taxol. J. Biol. Chem. 275, 2251‐2254. [DOI] [PubMed] [Google Scholar]
- 151. Kurt‐Jones, E.A. , Popova, L. , Kwinn, L. , Haynes, L.M. , Jones, L.P. , Tripp, R.A. , Walsh, E.E. , Freeman, M.W. , Golenbock, D.T. , Anderson, L.J. and Finberg, R.W. (2000) Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat. Immunol. 1, 398‐401. [DOI] [PubMed] [Google Scholar]
- 152. Rassa, J.C. , Meyers, J.L. , Zhang, Y. , Kudaravalli, R. and Ross, S.R. (2002) Murine retroviruses activate B cells via interaction with toll‐like receptor 4. Proc. Natl. Acad. Sci. U.S.A. 99, 2281‐2286. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 153. Okamura, Y. , Watari, M. , Jerud, E.S. , Young, D.W. , Ishizaka, S.T. , Rose, J. , Chow, J.C. and Strauss, J.F., 3rd (2001) The extra domain A of fibronectin activates Toll‐like receptor 4. J. Biol. Chem. 276, 10229‐10233. [DOI] [PubMed] [Google Scholar]
- 154. Johnson, G.B. , Brunn, G.J. , Kodaira, Y. and Platt, J.L. (2002) Receptor‐mediated monitoring of tissue well‐being via detection of soluble heparan sulfate by Toll‐like receptor 4. J. Immunol. 168, 5233‐5239. [DOI] [PubMed] [Google Scholar]
- 155. Smiley, S.T. , King, J.A. and Hancock, W.W. (2001) Fibrinogen stimulates macrophage chemokine secretion through toll‐like receptor 4. J. Immunol. 167, 2887‐2894. [DOI] [PubMed] [Google Scholar]
- 156. Roelofs, M.F. , Boelens, W.C. , Joosten, L.A. , Abdollahi‐Roodsaz, S. , Geurts, J. , Wunderink, L.U. , Schreurs, B.W. , van den Berg, W.B. and Radstake, T.R. (2006) Identification of small heat shock protein B8 (HSP22) as a novel TLR4 ligand and potential involvement in the pathogenesis of rheumatoid arthritis. J. Immunol. 176, 7021‐7027. [DOI] [PubMed] [Google Scholar]
- 157. Biragyn, A. , Ruffini, P.A. , Leifer, C.A. , Klyushnenkova, E. , Shakhov, A. , Chertov, O. , Shirakawa, A.K. , Farber, J.M. , Segal, D.M. , Oppenheim, J.J. and Kwak, L.W. (2002) Toll‐like receptor 4‐dependent activation of dendritic cells by beta‐defensin 2. Science 298, 1025‐1029. [DOI] [PubMed] [Google Scholar]
- 158. Eaves‐Pyles, T.D. , Wong, H.R. , Odoms, K. and Pyles, R.B. (2001) Salmonella flagellin‐dependent proinflammatory responses are localized to the conserved amino and carboxyl regions of the protein. J. Immunol. 167, 7009‐7016. [DOI] [PubMed] [Google Scholar]
- 159. Takeuchi, O. , Kawai, T. , Muhlradt, P.F. , Morr, M. , Radolf, J.D. , Zychlinsky, A. , Takeda, K. and Akira, S. (2001) Discrimination of bacterial lipoproteins by Toll‐like receptor 6. Int. Immunol. 13, 933‐940. [DOI] [PubMed] [Google Scholar]
- 160. Henneke, P. , Takeuchi, O. , van Strijp, J.A. , Guttormsen, H.K. , Smith, J.A. , Schromm, A.B. , Espevik, T.A. , Akira, S. , Nizet, V. , Kasper, D.L. and Golenbock, D.T. (2001) Novel engagement of CD14 and multiple toll‐like receptors by group B streptococci. J. Immunol. 167, 7069‐7076. [DOI] [PubMed] [Google Scholar]
- 161. Lund, J. , Sato, A. , Akira, S. , Medzhitov, R. and Iwasaki, A. (2003) Toll‐like receptor 9‐mediated recognition of Herpes simplex virus‐2 by plasmacytoid dendritic cells. J. Exp. Med. 198, 513‐520. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 162. Akira, S. and Hemmi, H. (2003) Recognition of pathogen‐associated molecular patterns by TLR family. Immunol. Lett. 85, 85‐95. [DOI] [PubMed] [Google Scholar]
- 163. Leadbetter, E.A. , Rifkin, I.R. , Hohlbaum, A.M. , Beaudette, B.C. , Shlomchik, M.J. and Marshak‐Rothstein, A. (2002) Chromatin‐IgG complexes activate B cells by dual engagement of IgM and Toll‐like receptors. Nature 416, 603‐607. [DOI] [PubMed] [Google Scholar]
- 164. Coban, C. , Ishii, K.J. , Kawai, T. , Hemmi, H. , Sato, S. , Uematsu, S. , Yamamoto, M. , Takeuchi, O. , Itagaki, S. , Kumar, N. , Horii, T. and Akira, S. (2005) Toll‐like receptor 9 mediates innate immune activation by the malaria pigment hemozoin. J. Exp. Med. 201, 19‐25. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 165. Girardin, S.E. , Travassos, L.H. , Hervé, M. , Blanot, D. , Boneca, I.G. , Philpott, D.J. , Sansonetti, P.J. and Mengin‐Lecreulx, D. (2003) Peptidoglycan molecular requirements allowing detection by Nod1 and Nod2. J. Biol. Chem. 278, 41702‐41708. [DOI] [PubMed] [Google Scholar]
- 166. Tada, H. , Aiba, S. , Shibata, K. , Ohteki, T. and Takada, H. (2005) Synergistic effect of Nod1 and Nod2 agonists with toll‐like receptor agonists on human dendritic cells to generate interleukin‐12 and T helper type 1 cells. Infect. Immun. 73, 7967‐7976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 167. Rajan, J.V. , Rodriguez, D. , Miao, E.A. and Aderem, A. (2011) The NLRP3 inflammasome detects encephalomyocarditis virus and vesicular stomatitis virus infection. J. Virol. 85, 4167‐4172. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 168. Allen, I.C. , Scull, M.A. , Moore, C.B. , Holl, E.K. , McElvania‐TeKippe, E. , Taxman, D.J. , Guthrie, E.H. , Pickles, R.J. and Ting, J.P. (2009) The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA. Immunity 30, 556‐565. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 169. Hise, A.G. , Tomalka, J. , Ganesan, S. , Patel, K. , Hall, B.A. , Brown, G.D. and Fitzgerald, K.A. (2009) An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen Candida albicans . Cell Host Microbe 5, 487‐497. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 170. Said‐Sadier, N. , Padilla, E. , Langsley, G. and Ojcius, D.M. (2010) Aspergillus fumigatus stimulates the NLRP3 inflammasome through a pathway requiring ROS production and the Syk tyrosine kinase. PLoS One 5, e10008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 171. Kumar, H. , Kumagai, Y. , Tsuchida, T. , Koenig, P.A. , Satoh, T. , Guo, Z. , Jang, M.H. , Saitoh, T. , Akira, S. and Kawai, T. (2009) Involvement of the NLRP3 inflammasome in innate and humoral adaptive immune responses to fungal β‐glucan. J. Immunol. 183, 8061‐8067. [DOI] [PubMed] [Google Scholar]
- 172. Martinon, F. , Agostini, L. , Meylan, E. and Tschopp, J. (2004) Identification of bacterial muramyl dipeptide as activator of the NALP3/cryopyrin inflammasome. Curr. Biol. 14, 1929‐1934. [DOI] [PubMed] [Google Scholar]
- 173. Mariathasan, S. , Weiss, D.S. , Newton, K. , McBride, J. , O'Rourke, K. , Roose‐Girma, M. , Lee, W.P. , Weinrauch, Y. , Monack, D.M. and Dixit, V.M. (2006) Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440, 228‐232. [DOI] [PubMed] [Google Scholar]
- 174. Walev, I. , Reske, K. , Palmer, M. , Valeva, A. and Bhakdi, S. (1995) Potassium‐inhibited processing of IL‐1 beta in human monocytes. EMBO J. 14, 1607‐1614. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 175. Gurcel, L. , Abrami, L. , Girardin, S. , Tschopp, J. and van der Goot, F.G. (2006) Caspase‐1 activation of lipid metabolic pathways in response to bacterial pore‐forming toxins promotes cell survival. Cell 126, 1135‐1145. [DOI] [PubMed] [Google Scholar]
- 176. Dostert, C. , Guarda, G. , Romero, J.F. , Menu, P. , Gross, O. , Tardivel, A. , Suva, M.L. , Stehle, J.C. , Kopf, M. , Stamenkovic, I. , Corradin, G. and Tschopp, J. (2009) Malarial hemozoin is a Nalp3 inflammasome activating danger signal. PLoS One 4, e6510. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 177. Warren, S.E. , Mao, D.P. , Rodriguez, A.E. , Miao, E.A. and Aderem, A. (2008) Multiple Nod‐like receptors activate caspase 1 during Listeria monocytogenes infection. J. Immunol. 180, 7558‐7564. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 178. Kanneganti, T.D. , Body‐Malapel, M. , Amer, A. , Park, J.H. , Whitfield, J. , Franchi, L. , Taraporewala, Z.F. , Miller, D. , Patton, J.T. , Inohara, N. and Núñez, G. (2006) Critical role for Cryopyrin/Nalp3 in activation of caspase‐1 in response to viral infection and double‐stranded RNA. J. Biol. Chem. 281, 36560‐36568. [DOI] [PubMed] [Google Scholar]
- 179. Martinon, F. , Petrilli, V. , Mayor, A. , Tardivel, A. and Tschopp, J. (2006) Gout‐associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237‐241. [DOI] [PubMed] [Google Scholar]
- 180. Dostert, C. , Petrilli, V. , Van Bruggen, R. , Steele, C. , Mossman, B.T. and Tschopp, J. (2008) Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320, 674‐677. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 181. Kool, M. , Petrilli, V. , De Smedt, T. , Rolaz, A. , Hammad, H. , van Nimwegen, M. , Bergen, I.M. , Castillo, R. , Lambrecht, B.N. and Tschopp, J. (2008) Cutting edge: alum adjuvant stimulates inflammatory dendritic cells through activation of the NALP3 inflammasome. J. Immunol. 181, 3755‐3759. [DOI] [PubMed] [Google Scholar]
- 182. Halle, A. , Hornung, V. , Petzold, G.C. , Stewart, C.R. , Monks, B.G. , Reinheckel, T. , Fitzgerald, K.A. , Latz, E. , Moore, K.J. and Golenbock, D.T. (2008) The NALP3 inflammasome is involved in the innate immune response to amyloid‐β. Nat. Immunol. 9, 857‐865. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 183. Tomalka, J. , Ganesan, S. , Azodi, E. , Patel, K. , Majmudar, P. , Hall, B.A. , Fitzgerald, K.A. and Hise, A.G. (2011) A novel role for the NLRC4 inflammasome in mucosal defenses against the fungal pathogen Candida albicans . PLoS Pathog. 7, e1002379. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 184. Suzuki, T. , Franchi, L. , Toma, C. , Ashida, H. , Ogawa, M. , Yoshikawa, Y. , Mimuro, H. , Inohara, N. , Sasakawa, C. and Nunez, G. (2007) Differential regulation of caspase‐1 activation, pyroptosis, and autophagy via Ipaf and ASC in Shigella‐infected macrophages. PLoS Pathog. 3, e111. [DOI] [PMC free article] [PubMed] [Google Scholar]
