Skip to main content
PLOS Genetics logoLink to PLOS Genetics
. 2020 May 5;16(5):e1008682. doi: 10.1371/journal.pgen.1008682

Rare protein-altering variants in ANGPTL7 lower intraocular pressure and protect against glaucoma

Yosuke Tanigawa 1, Michael Wainberg 1, Juha Karjalainen 2,3,4, Tuomo Kiiskinen 4,5, Guhan Venkataraman 1, Susanna Lemmelä 4,5, Joni A Turunen 6,7, Robert R Graham 8, Aki S Havulinna 4,5, Markus Perola 5, Aarno Palotie 2,3,4; FinnGen, Mark J Daly 2,3,4,*,#, Manuel A Rivas 1,*,#
Editor: Jessica N Cooke Bailey9
PMCID: PMC7199928  PMID: 32369491

Abstract

Protein-altering variants that are protective against human disease provide in vivo validation of therapeutic targets. Here we use genotyping data from UK Biobank (n = 337,151 unrelated White British individuals) and FinnGen (n = 176,899) to conduct a search for protein-altering variants conferring lower intraocular pressure (IOP) and protection against glaucoma. Through rare protein-altering variant association analysis, we find a missense variant in ANGPTL7 in UK Biobank (rs28991009, p.Gln175His, MAF = 0.8%, genotyped in 82,253 individuals with measured IOP and an independent set of 4,238 glaucoma patients and 250,660 controls) that significantly lowers IOP (β = -0.53 and -0.67 mmHg for heterozygotes, -3.40 and -2.37 mmHg for homozygotes, P = 5.96 x 10−9 and 1.07 x 10−13 for corneal compensated and Goldman-correlated IOP, respectively) and is associated with 34% reduced risk of glaucoma (P = 0.0062). In FinnGen, we identify an ANGPTL7 missense variant at a greater than 50-fold increased frequency in Finland compared with other populations (rs147660927, p.Arg220Cys, MAF Finland = 4.3%), which was genotyped in 6,537 glaucoma patients and 170,362 controls and is associated with a 29% lower glaucoma risk (P = 1.9 x 10−12 for all glaucoma types and also protection against its subtypes including exfoliation, primary open-angle, and primary angle-closure). We further find three rarer variants in UK Biobank, including a protein-truncating variant, which confer a strong composite lowering of IOP (P = 0.0012 and 0.24 for Goldman-correlated and corneal compensated IOP, respectively), suggesting the protective mechanism likely resides in the loss of interaction or function. Our results support inhibition or down-regulation of ANGPTL7 as a therapeutic strategy for glaucoma.

Author summary

Glaucoma is a common eye disease that damages the optic nerve. Using intraocular pressure, which is a known modifiable risk factor and predictive measure for glaucoma, genome-wide association studies have identified dozens of genetic variants likely affecting disease risk. However, the identification of potential therapeutic targets from those discoveries has been challenging because the functional consequences and the causal variants of the suggested common variant associations are typically unclear. Here, we present a strategy to scan for rare protein-altering variants, which provides direct insights into the functional consequence and the therapeutic effects, using more than 514,000 individuals with European ancestries in two population cohorts in the UK and Finland. We discover an allelic series of multiple rare ANGPTL7 missense and nonsense variants in UK Biobank that lower intraocular pressure and reduces the risk of glaucoma. We further identify an ANGPTL7 missense variant in FinnGen cohort with more than 50-fold enrichment in the Finnish population that provides protection against glaucoma and its subtypes. Our results highlight the benefits of multi-cohort analysis for the discovery of rare protein-altering variants in common diseases and indicate ANGPTL7 as a therapeutic target for glaucoma.

Introduction

Intraocular pressure (IOP) is a modifiable risk factor and predictive measure for glaucoma[14] (S1 Fig). Genome-wide association studies (GWAS) have commonly used this endophenotype that exhibits high genetic correlation (rg = 0.71) to glaucoma, as an approach to prioritize genetic variants likely to contribute to disease risk[5]. More than 68 independent loci have been implicated with intraocular pressure by meeting the GWAS significance threshold of association (P < 5x10-8) [58], and a subset have reached genome-wide significance for glaucoma. For these discoveries, like most GWAS results, it has proven challenging to infer the functional consequences of common variant associations beyond cases where protein-altering variants have been directly implicated. Protein-altering variants, generally the strongest-acting genetic variants in medical genetics, include missense substitutions and protein-truncating variants, and understanding their functional consequences provides insight into the therapeutic effects of inhibiting or down-regulating the gene in which they reside[9]. Thus, identifying protein-altering variants that confer protection from disease holds particular promise for identifying therapeutic targets.

Here we leverage two population cohorts that provide complementarity for glaucoma gene discovery (Fig 1). First, UK Biobank has obtained IOP measurements in approximately 128,000 individuals in addition to case-control status for glaucoma from hospital in-patient and verbal questionnaire data in over 500,000 individuals[1012]. Second, FinnGen has directly genotyped and aggregated disease outcomes in over 176,000 individuals from Finland, an isolated population with recent bottlenecks that offers an unprecedented advantage for studying rare variants in complex diseases[13]. With clinic-based recruitment focused on several areas including ophthalmology, and with 31.1% of the collection above age 70, FinnGen is particularly well-powered for aging-associated endpoints. We, therefore, conduct targeted association analysis with IOP measurements in UK Biobank (N = 82,253, S1 Table) to identify rare protein-altering variants that reduce IOP, and test whether those variants or others in the same genes, also confer protection to glaucoma in FinnGen (6,537 cases and 170,362 controls) and UK Biobank (4,238 cases and 250,660 controls not included in the initial IOP association analysis). The multi-cohort allelic series analysis of protein-altering variants in ANGPTL7 in a total of 10,806 glaucoma patients and over 400,000 controls identifies a significant lowering effect on IOP and protective association with glaucoma. By analyzing putative loss-of-function variants, we find concordant effect directions with the missense substitutions, suggesting that the protective mechanism may reside in the loss of gene function.

Fig 1. The overview of the study based on 514,050 individuals in the UK Biobank and FinnGen cohorts.

Fig 1

We identified the association between ANGPTL7 and intraocular pressure (IOP) phenotypes using the genome-wide association analysis for rare (0.01% < MAF < 1%) protein-altering variants outside of MHC region in UK Biobank and applied burden and dispersion test (Analysis 1). In FinnGen, we discovered a Finnish enriched allele, p.Arg220Cys, in ANGPTL7 and performed association and subtype analysis of glaucoma (Analysis 2). In the UK Biobank, we replicated the associations between ANGPTL7 and glaucoma using the individuals that are not included in Analysis 1 (Analysis 3). OR corresponds to the odds ratio.

Results

We conducted protein-altering variant association analysis with IOP, as measured via corneal-compensated and Goldmann-correlated tonometry, in 82,253 unrelated White British individuals in UK Biobank dataset (S2S4 Figs, Methods) [14]. Across 41,590 rare (0.01% < MAF < 1%) protein-altering variants outside of the MHC region with genotyping array data in UK Biobank, we performed association analysis to scan for variants with IOP-lowering effects. Specifically, we took the median of the left and right eye IOP measurements, applied quantile normalization and used a generalized linear model implemented in PLINK[13] with age, sex, and the first 4 genotype principal components (PCs) as covariates (Methods). We identified one protein-altering variant significantly associated with lower both IOP measurements below the Bonferroni-corrected P value < 1.0x10-6, a missense substitution (p.Gln175His) in ANGPTL7 (P = 5.96x10-9 and 1.07x10-13, β = -0.20 and -0.16 SD 95% CI: [-0.21, -0.10] and [-0.25, -0.15], -0.53 and -0.67 mmHg for heterozygotes, -3.40 and -2.37 mmHg for homozygotes for corneal compensated and Goldman-correlated IOP, respectively, Fig 1, Tables 1 and 2).

Table 1. ANGPTL7 IOP protein-altering variant association in UK Biobank.

The association statistics for corneal compensated IOP and Goldman-correlated IOP are shown. Variant includes chromosome, position, reference, and alternate allele (hg19). rsID—the rs identifier of the genetic variant. HGVSp—the HGVS amino acid nomenclature. MAF—the minor allele frequency in UK Biobank white British population. Beta—estimated regression coefficient with 95% confidence intervals. P—p-value of association.

Variant (rsID) HGVSp MAF (UKB) corneal compensated IOP (INI2005254) Goldman-correlated IOP (INI2005255)
Beta SD
[95% CI]
P Beta SD
[95% CI]
P
1:11252357:A:G
(rs200058074)
p.Gln136Arg .054% 0.012 [-0.20, 0.23] 9.1x10-1 -0.030 [-0.25, 0.19] 7.8x10-1
1:11252369:G:A
(rs28991002)
p.Arg140His .25% -0.071 [-0.17, 0.022] 1.3x10-3 -0.15 [-0.24, -0.055] 1.9x10-3
1:11253684:G:T
(rs28991009)
p.Gln175His .81% -0.16 [-0.21, -0.10] 6.0x10-9 -0.20 [-0.25, -0.15] 1.1x10-13
1:11253688:C:T
(rs143435072)
p.Arg177Ter .041% -0.13 [-0.37, 0.12] 3.0x10-1 -0.29 [-0.53, -0.038] 2.4x10-2

Table 2. ANGPTL7 allelic series association summary in UK Biobank and FinnGen.

Variant: the rs identifier (rsID), the amino acid nomenclature (HGVSp), and genomic coordinate (CHR for chromosome and POS for the position in hg19), as well as reference (REF) and alternate (ALT) alleles, are shown. Dosage—genotype of individuals for protein and nucleotide sequences. Carrier frequency—carrier frequency in UK Biobank (UK) and FinnGen (Finland) for the respective genotype dosage. N with IOP—number of individuals in UK Biobank with intraocular pressure measurements corresponding to the genotype dosage. Effect size estimates—reported effect size estimates. IOP (mmHg) [95% CI]—unstandardized estimates of effect size on corneal-compensated and Goldmann-correlated intraocular pressure measurements (NB: standardized estimated effect sizes may have lower p-values due to normalization procedure). OR for glaucoma—estimate odds ratio on glaucoma risk for the respective genotype dosage. NS non-significant (p > 0.1). Effect sizes always reported with respect to alternate allele dosage.

Variant Dosage Carrier frequency N with IOP in UK Effect size estimates [95% CI]
rsID
HGVSp
CHR:POS:REF:ALT
Protein
nucleotide
UK Finland IOP (mmHg) OR for glaucoma
corneal-
compensated
(INI2005254)
Goldmann-
correlated (INI2005255)
rs200058074
p.Gln136Arg
1:11252357:A:G
Gln/Arg
A/G
0.11% NA 80 -0.051
[-0.89, 0.79]
NS
-0.19
[-0.99, 0.61]
NS
NS
rs28991002
p.Arg140His
1:11252369:G:A
Arg/His
G/A
0.51% 0.35% 427 -0.23
[-0.59, 0.14]
NS
-0.51
[-0.86, -0.17]
**
NS
rs28991009
p.Gln175His
1:11253684:G:T
Gln/His
G/T
1.43% 0.24% 1355 -0.53
[-0.73, -0.32]
***
-0.67
[-0.87, -0.47]
***
0.64
[0.48, 0.87] **
His/His
T/T
0.01% NA 5 -3.40
[-6.8, -0.042*
-2.37
[-5.6, 0.84]
NS
NS
rs143435072
p.Arg177Ter
1:11253688:C:T
Arg/Ter
C/T
0.07% NA 62 -0.46
[-1.4, 0.5]
NS
-0.95
[-1.9, -0.034]
*
NS
rs147660927
p.Arg220Cys
1:11253817C:T
Arg/Cys
C/T
NA 7.82% NA NA NA 0.67 ***
Cys/Cys
T/T
NA 0.21% NA NA NA 0.31 *

Significant codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘NS’ 1

Based on this finding, we assessed whether any additional rare variant associations in ANGPTL7 were present. We found three additional independent rare protein-altering variants in ANGPTL7 (MAF < 0.25%) including a premature stop-gain allele (p.Arg177Ter, MAF = 0.041%, Table 1). Collectively, these three variants showed a marginally significant association with lower one of the IOP measurements (P = 0.24 and 0.0012 for corneal compensated and Goldman-correlated IOP, respectively, Fig 1), with the protein-altering allele p.Arg140His also showing a marginally significant effect on its own (P = 1.3x10-3 and 1.9x10-3 for corneal compensated and Goldman-correlated IOP, respectively, Table 1). Genotyping intensity plots and the concordance of genotype calls from the array and whole-exome sequencing data were manually inspected to ensure high quality and consistent genotyping (S5 Fig, S2 Table, Methods) and alleles were confirmed to be independent (pairwise r2 < 10−4 for each, S3 Table, Methods). The burden and dispersion test showed significant p-values for ANGPTL7 (P = 1.88x10-7 [burden], 1.43x10-8 [dispersion]; and 1.44x10-14 [burden], 2.89x10-15 [dispersion] for corneal compensated and Goldman-correlated IOP, respectively, Fig 1). Collectively, those four alleles explain 0.03% and 0.07% of phenotypic variation for corneal-compensated and Goldmann-correlated tonometry IOP measures (S4 Table). These signals were consistently observed in corneal-compensated and Goldmann-correlated tonometry IOP measures for both left and right eyes (S5 Table), which is expected as the genetic correlation among those range from 0.75 to 1.0 (S6 Table).

In Khawaja et al. the authors identified a significant association in the same genomic region (chr1p36.22), which they label as the UBIAD1 region [6]. The associated region, defined by recombination rates, encompasses a relatively large area around SNP rs143038218 and includes the ANGPTL7 gene. We asked whether this signal could be explained by our allelic series of protein-altering variants in ANGPTL7. Linkage disequilibrium analysis shows that p.Gln175His has an r2 = 0.83 suggesting that the ANGPTL7 protein-altering variant was indeed responsible for the association signal observed in Khawaja et al, whereas p.Arg177Ter, p.Arg140His, and p.Gln136Arg all have r2 of approximately 0 and are under linkage-equilibrium as minor alleles are observed in different haplotypes and contribute independently to the association we observe in ANGPTL7 against IOP.

We next asked whether any of these putative IOP-lowering genetic variants showed effects consistent with reducing glaucoma risk. We focused on unrelated White British individuals that do not have IOP measures (4,238 cases and 250,660 controls, S6 Fig). For p.Gln175His in ANGPTL7, using logistic regression analysis with age, sex, and principal components (PC1-PC4) as covariates, we estimated that the variant lowers glaucoma risk by 34% (P = 0.00543; OR = 0.66 [95% CI: 0.366–0.954], Table 2). The three additional protein-altering variants did not significantly confer protection against glaucoma (burden test P = 0.77). This is consistent with power calculations, using Genetic Power Calculator [15], where our power to detect association for rare variants with a composite allele frequency of 0.345% and a binary trait in 4,238 cases and 250,660 controls at alpha = 0.05, and 0.001, i.e. P < .05 and .001, with OR of 0.7 (30% reduction in risk) is equal to 62% and 15.2%, respectively.

We then sought evidence from the FinnGen dataset that either the same or novel Finnish-enriched protein-altering variants would confirm the association of ANGPTL7 with protection from glaucoma. This additional ANGPTL7 association data, obtained in 6,537 glaucoma patients and 170,362 controls, provided strong support that protein-altering variants in ANGPTL7 protect against glaucoma (case definitions described in S7 Table). Specifically, we found that the p.Gln175His substitution has nominal evidence of association (P = 0.009, OR = 0.47) despite the variant only being present at a minor allele frequency of 0.1% in this Finnish cohort (8-fold depleted compared to UK Biobank). The remaining protein-altering variants in ANGPTL7 tested in UK Biobank were not found in the FinnGen dataset. Confirmation of an ANGPTL7 effect on glaucoma risk was seen in data from an independent Finnish-specific protein-altering missense substitution, p.Arg220Cys, which was strongly associated with protection from glaucoma (P = 2.0x10-12, OR = 0.71 [95% CI: 0.64–0.78], S7 Fig). Of note, this observation is advantaged by the property that p.Arg220Cys is found at a greater than 50-fold increased frequency in Finland compared with other populations [16], reinforcing the value of isolated, bottlenecked populations in which the allele frequency spectrum is intensely concentrated on the minority of variants passing through the bottleneck.

While registry-based diagnoses in FinnGen do not yet contain detailed ophthalmologic records, a subset of 3,375 glaucoma patients had been recorded in special health care as having primary open-angle glaucoma (POAG). In this sub-group, a stronger effect was observed (P = 1.3x10-8, OR = 0.68) versus those glaucoma cases without a definitive record of POAG (OR = 0.77 [95% CI: 0.67–0.88]), reminiscent of the stronger risk effects seen at the myocilin (MYOC) gene and other established genes in the POAG subgroup [17]. Furthermore, we find protective association to exfoliation glaucoma (P = 6.7x10-5, OR = 0.64), primary angle-closure glaucoma (P = 0.0016, OR = 0.59), and normotensive glaucoma (P = 0.07, OR = 0.78, case n = 653, Fig 1).

Given the Finnish enrichment of the known strong glaucoma risk allele, p.Gln368Ter, in MYOC (MAF in Finland = 0.3%, MAF in Non-Finnish European = 0.16%, reference sequence: NM_00026), we next asked whether carriers have risk reduced if they carry ANGPTL7 p.Arg220Cys. In FinnGen, we estimate that 7.0% of carriers for MYOC p.Gln368Ter variant is POAG cases in comparison to 2% for non-carriers. In the presence of ANGPTL7 p.Arg220Cys, only 1.3% of individuals are POAG cases, and only 2 of 86 (2.3%) who carry both MYOC risk and ANGPTL7 protective variants were POAG cases (S8 Table). This suggests ANGPTL7 protection extends to the MYOC risk group but the small counts preclude any definitive statement regarding interaction (P = 0.318, for interaction term in a logistic regression model)—given the limited number of double-carriers, larger case-control series are needed to refine our understanding as to whether ANGPTL7 p.Arg220Cys variant modifies the glaucoma risk conferred by p.Gln368Ter in MYOC.

Access to genotype data in over 330,000 individuals from the UK and 176,000 from the Finnish group enabled us to identify rare protein-altering homozygotes. In UK Biobank, we found 28 individuals homozygous for the p.Gln175His allele, consistent with Hardy-Weinberg expectation (n = 22.6), where we estimated a -3.40 and -2.37 mmHg drop for corneal compensated and Goldman-correlated IOP, respectively, compared to the mean IOP levels. Furthermore, the oldest reached the age of 80 and one of the 28 died (age 65). In FinnGen we found 343 individuals homozygous for the p.Arg220Cys allele, the oldest reached the age of 98, with no depletion of homozygotes compared with Hardy-Weinberg equilibrium expectation. There was no significant association of the homozygous genotype with a decreased lifespan. We did not observe homozygous p.Arg220Cys association across disease endpoints in FinnGen (Bonferroni-corrected p > 0.05, S1 Data). Together this indicates that having two copies with p.Gln175His or p.Arg220Cys in ANGPTL7 is compatible with a normal lifespan. To assess the potential impacts of those protein-truncating variants on reproductive fitness, we assessed the association of p.Gln175His with the number of live births and the number of children fathered and found no significant association (P > 0.05/4, S9 Table). Through phenome-wide association analysis (PheWAS), we did not find any significant association for non-eye phenotypes (P>1.0 x 10−5 for both in UK Biobank and FinnGen, S10 Table, S2 and S3 Data). Hence, we did not find any severe medical consequences that would be of obvious concern in developing a therapeutic to mimic the effect of these alleles.

ANGPTL7, a five-exon protein-coding gene, encodes the Angiopoietin-related protein 7, which is expressed in several human tissues including the trabecular meshwork, cornea, and retina [1820]. We examined proteomics expression data in normal tissues and cell lines from ProteomicsDB and MOPED[21,22] and found vitreous humor tissue-specific expression of ANGPTL7 (log10 ppm = 1, S8 Fig).

Discussion

This study establishes strong genetic evidence for the involvement of ANGPTL7 in glaucoma risk in which a powerful allelic series, including multiple low-frequency missense substitutions and a single premature stop-gain substitution, is conclusively associated with reduced disease risk and endophenotype-lowering effects. Our results highlight the benefit of rare protein-altering variant analysis using multiple large cohorts, especially when the population history of the participating cohort experienced a bottleneck, which enables enrichment of rare alleles as we report with the ANGPTL7 p.Arg220Cyc allele [13]. In Finland, the most common glaucoma subtypes are POAG and the secondary exfoliation glaucoma. The main difference in glaucoma prevalence is that in Finland the exfoliation glaucoma is much more prevalent (31%) than in the UK [23]. The prevalence of POAG is similar in Finland than in other European populations. The prevalence is heavily affected by age. In one Finnish cohort study, among individuals aged 70 years or older, the prevalence of POAG was approximately 7% [24]. Relative similar prevalence for POAG is reported in European populations [25]. Many patients with POAG are undiagnosed so the prevalence is affected by sampling methods (i.e. cohort or diagnosis reported). The population cohorts from founder populations enable future recall studies focusing on individuals homozygous for the allele, which can eventually improve our understanding of the mechanism by which ANGPTL7 disruption leads to protection to glaucoma risk and lowering of IOP. The discovery of two independent protein-altering alleles with directionally consistent effects from the two analyzed populations increases our confidence in the gene’s causal link to glaucoma.

Recent studies have associated ANGPTL proteins with cardiometabolic phenotypes [2630]. Although it has been proposed that ANGPTL7 levels are increased in obesity (and reduced after physical exercise), we do not observe any evidence of genetic association in either UK Biobank or FinnGen to support this hypothesis [31].

ANGPTL7 overexpression in primary human trabecular meshwork cells was found to alter the expression of relevant trabecular meshwork proteins of the extracellular matrix, including fibronectin, collagens type I, IV, and V, myocilin, versican, and MMP1, and ANGPTL7 protein was increased as the disease progressed in POAG beagle dogs [18]. The tissue-specific protein expression data suggest that further work in dissecting the role of ANGPL7 in all possible cell types in the eye is warranted.

When combined with the previously-reported associations with IOP and glaucoma, our results provide compelling genetic evidence of the role of ANGPTL7 in glaucoma and its subtypes including exfoliation, primary open-angle, and primary angle-closure, which may come in contrast to prior findings with lack of overlap between POAG risk and IOP loci [32]. In the context of the other established variants in glaucoma, including the protein-truncating variants in MYOC, p.Gln175His and the 57-fold Finnish-enriched p.Arg220Cys variants in ANGPTL7 exert a comparable protective effect. While our genetic discovery provides compelling evidence of involvement of ANGPTL7 in glaucoma, several important questions remain to be answered before its eventual clinical translation. First, we were not able to assess whether the missense variants are complete loss-of-function, partial loss-of-function variants, dominant negative, or gain of function given the data we have at hand. Although we do have a predicted protein-truncating variant, p.Arg177Ter, with nominal evidence of association to IOP and an estimated effect consistent with the missense substitutions, it is challenging to draw conclusions about its functional consequence from in silico predictions, as we have reported in earlier studies assessing when PTVs trigger degradation pathways like nonsense-mediated decay [33]. Second, it is unclear in which cell types these variants are acting on to confer the protective and IOP lowering effects. We anticipate that ANGPTL7 may be acting in the trabecular meshwork given its high expression in both adult and fetal trabecular meshwork (> 3000 FPKM) [34], we see high expression in both adult and fetal cornea (>200 FPKM), which introduces some challenges as how we interpret its functional role, and we hypothesize that given its high expression in cornea it may be one reason why we see stronger evidence of association in IOP Goldman correlated measures compared to corneal compensated IOP. Additionally, future studies should assess whether ANGPTL7 variants modify the progression of glaucoma, for example, whether ANGPTL7 carriers are less likely to go from glaucoma diagnosis to potential surgery. Although we are aggregating these data, we are thus far unable to draw definitive conclusions.

Because of the strong protective effect associated with the ANGPTL7 protein-altering variants (S9 Fig), further studies of ANGPTL7 inhibition and the specific action of these variant proteins should be useful in understanding the mechanism by which glaucoma protection occurs and whether this reveals a promising therapeutic opportunity similar to that which has been realized from the examples of PCSK9, APOC3 and cardiovascular disease [3537]. Given the rapidly evolving field of gene editing and siRNA, we can only speculate that if the effect is truly loss-of-function and that gene inhibition is an appropriate strategy then these therapeutic modalities will be especially relevant. Therapeutic delivery is also a complicated challenge. Although injection to the eye is currently commonplace in practice, it is unclear whether different therapeutic modalities, e.g. antibody, siRNA, CRISPR, base-editing would be appropriate, and whether the duration of the treatment would be sufficiently durable to be effective to prevent extremely frequent injections or competitive against current therapeutic modalities. New drug delivery technologies are of interest and it is clear that a durable and efficient mode of delivery that mimics the protective effect of these mutations is an attractive strategy. Our genetic data from ANGPTL7 homozygotes with up to a 69% risk reduction for all glaucoma and 80% risk reduction for primary open-angle glaucoma suggest that this is likely to be a safe and effective strategy for therapeutic intervention.

Methods

Compliance with ethical regulations and informed consent

This research has been conducted using the UK Biobank Resource under Application Number 24983, “Generating effective therapeutic hypotheses from genomic and hospital linkage data” (criteriahttp://www.ukbiobank.ac.uk/wp-content/uploads/2017/06/24983-Dr-Manuel-Rivas.pdf). Based on the information provided in Protocol 44532 the Stanford IRB has determined that the research does not involve human subjects as defined in 45 CFR 46.102(f) or 21 CFR 50.3(g). All participants of UK Biobank provided written informed consent (more information is available at https://www.ukbiobank.ac.uk/2018/02/gdpr/). For the Finnish Institute of Health and Welfare (THL) driven FinnGen preparatory project (here called FinnGen), all patients and control subjects had provided informed consent for biobank research, based on the Finnish Biobank Act. Alternatively, older cohorts were based on study specific consents and later transferred to the THL Biobank after approval by Valvira, the National Supervisory Authority for Welfare and Health. Recruitment protocols followed the biobank protocols approved by Valvira. The Ethical Review Board of the Hospital District of Helsinki and Uusimaa approved the FinnGen study protocol Nr HUS/990/2017. The FinnGen preparatory project is approved by THL, approval numbers THL/2031/6.02.00/2017, amendments THL/341/6.02.00/2018, THL/2222/6.02.00/2018 and THL/283/6.02.00/2019. All DNA samples and data in this study were pseudonymized.

Genome-wide association analysis in UK Biobank

Population stratification in UK Biobank

We used genotype data from the UK Biobank dataset release version 2 and the hg19 human genome reference for all analyses in the study. To minimize the variabilities due to population structure in our dataset, we restricted our analyses to include 337,151 White British individuals (S2 Fig) based on the following five criteria [11,38] reported by the UK Biobank in the file “ukb_sqc_v2.txt”:

  1. self- reported white British ancestry (“in_white_British_ancestry_subset” column)

  2. used to compute principal components (“used_in_pca_calculation” column)

  3. not marked as outliers for heterozygosity and missing rates (“het_missing_outliers” column)

  4. do not show putative sex chromosome aneuploidy (“putative_sex_chromo- some_aneuploidy” column)

  5. have at most 10 putative third-degree relatives (“excess_relatives” column).

Of note, we included the entire age range of the UK Biobank cohort for our analysis to maximize the power of association analysis.

Intraocular pressure phenotype definitions in UK Biobank

We focused on Goldmann-correlated and corneal-compensated IOP measurements of left and right eyes from UK Biobank (Field IDs: 5254, 5255, 5262, and 5263, S1 Table). For each field, there were up to two measurements, which corresponds to the initial assessment visit (2006–2010) and the first repeat assessment visit (2012–13). We additionally defined the median Goldmann-correlated and corneal-compensated IOP phenotypes by taking the median of up to 4 measurements for each (Global Biobank Engine phenotype IDs: INI2005254 and INI2005255, S1 Table), combining the left and right eye measurements.

Rare protein-altering variant genome-wide association scan for IOP

For the white British individuals (n = 337,151) in UK Biobank [11], we applied genome-wide association analysis for directly genotyped variants and phenotypes with inverse-normal transformation (--pheno-quantile-normalize option) using generalized linear regression model implemented in PLINK v2.00aLM (12 Nov. 2019) with age, sex, types of genotyping array, and the first 4 genotype principal components, where array is an indicator variable that indicates whether the individual was genotyped using the UK BiLEVE array or the UK Biobank array, as described elsewhere [38,39]. The inverse-normal transformation (--pheno-quantile-normalize option in PLINK2) is a non-parametric phenotype normalization procedure and it forces the phenotype to a standard normal distribution, preserving just the quantiles. For example, if the original phenotype values are 9, 4, 9, and 7 in that order, the quantiles are 0.75, 0.125, 0.75, 0.375, and the transformed phenotype values are the inverse-normal-cdf of each of the quantile value (https://www.cog-genomics.org/plink/2.0/data#quantile_normalize). The genome-wide association summary statistics are available at NIH’s instance of figshare.

Glaucoma association analysis in individuals without IOP measurements

To assess the potential effects of identified putative IOP-lowering genetic variants on glaucoma risk, we applied the genome-wide association analysis for glaucoma (Global Biobank Engine phenotype ID: HC276) focusing on 254,898 individuals (4,238 cases and 250,660 controls) in UK Biobank who do not have any of the IOP measurements (Fig 1). The glaucoma phenotype was previously defined as a part of “high confidence” disease outcome phenotypes by combining disease diagnoses (UK Biobank Field ID 41202, 41204, 40001, and 40002) from the UK National Health Service Hospital Episode Statistics (ICD10 codes: H40.[0–6,8,9], H42.8, and Q15.0) with self-reported non-cancer diagnosis questionnaire (UK Biobank Field ID 20002), as summarized as an UpSet plot in S6 Fig [11,12,40].

We used logistic regression with the firth-fallback option using a generalized linear regression model implemented in PLINK v2.00aLM (12 Nov. 2019) with age, sex, types of genotyping array, and the first 4 genotype principal components. The genome-wide association summary statistics are available at NIH’s instance of figshare[41].

Targeted regression analysis of identified rare variants in ANGPTL7

To assess the impacts of identified rare variants in ANGPTL7 on unnormalized IOP, we performed linear regression for IOP. Specifically, we used the following formula and called the linear model implemented in R.

lm (IOP ~ age + as.factor(sex) + as.factor(Array) + PC1 + PC2 + PC3 + PC4, as.factor(SNV), family = binomial(link = "logit"))

Genotyping quality control in UK Biobank

Manual inspection of intensity plots

For the identified rare (0.01% < MAF < 1%) protein-altering variants in ANGPTL7 (reference sequence: NM_021146), we generated and inspected intensity plots with McCarthy Group’s ScatterShot using “UKB—All Participants” module [42].

Variant-calling consistency analysis

For individuals with whole-exome sequencing data (n = 49,960), we extracted the genotype calls of coding variants in ANGPTL7 using PLINK v2.00aLM (2 April 2019) and compared the consistency between the array-genotyped and whole-exome sequencing dataset [39,43].

Burden and dispersion tests of rare protein-altering variants

To assess associations with rare protein-altering variants, we performed a burden and dispersion test implemented in multiple rare variants and phenotypes (MRP) package with farebrother option (https://github.com/rivas-lab/ANGPTL7/tree/master/gene_based_test) [44,45]. The approach implemented in the MRP package is a generalization of the gene-based test for a single phenotype described in the Supplementary Material of Band et al. [46] Region-based test and subsection labeled calculating p-values. We used the GWAS summary statistics of rare (0.01% < MAF < 1%) protein-altering variants characterized form the procedure above as the input data and performed the genome-wide burden and dispersion tests. The results of the burden and dispersion analysis are publicly available at NIH’s instance of figshare[47].

Independence analysis of alleles

Pairwise r2 computation within British individuals in UK Biobank

We computed pairwise r2 for the identified rare protein-altering variants in ANGPTL7 within British individuals in UK Biobank using PLINK v1.90b6.7 64-bit (2 Dec 2018) with--ld <variant_ID_1> <variant_ID_1> hwe-midp subcommand [39].

Number of individuals with the combination of genotypes in UK Biobank

Using the extracted genotype calls from for the identified rare protein-altering variants in ANGPTL7 (see Variant-calling consistency analysis section), we counted the number of British individuals by the combination of genotypes. We computed the expected number of individuals under Hardy-Weinberg equilibrium model and the independence assumption:

  • The expected frequencies of REF/REF, REF/ALT, and ALT/ALT carriers are (1-AF)2, 2 x AF(1-AF), and AF2, respectively.

  • The expected genotyping rate is independently estimated by the observed genotyping rate for each variant.

  • The expected frequency of the combination of genotypes is computed under the independent assumption among alleles

Local heritability analysis

To estimate the proportion of phenotypic variation explained by the rare protein-altering variants in ANGPTL7, we used Haseman-Elston (HE) regression using the cross product of the phenotypes for pairwise individuals implemented in genome-wide complex trait analysis (GCTA) version 1.92.4beta2 [48,49]. We computed the genetic relationship matrix (GRM) using the 4 rare protein-altering variants in ANGPTL7 and used it for the HE regression analysis [50].

Genetic correlation analysis

To estimate the genetic correlation, we used bivariate-HEreg using the cross product of the phenotypes for pairwise individuals implemented in GCTA version 1.92.4beta2. We computed GRM based on non-rare (MAF > 1%) variants on the genotyping array and used it for the bivariate-HEreg analysis.

PheWAS-analysis in UK Biobank

Using the summary statistics that are previously described and hosted on Global Biobank Engine (GBE) [11,38,51], we performed the phenome-wide association studies for 173 disease outcomes in the UK Biobank (https://github.com/rivas-lab/ANGPTL7/blob/master/notebook/ukbb_phewas/phenotypes_used_for_PheWAS.txt). Briefly, the summary statistics are generated by linear regression (for continuous traits) or logistic regression with the firth-fallback option (for binary outcomes) using the--glm subcommand implemented in PLINK v2.00a with age, sex, and the first 4 genotype PCs as covariates. We summarized the associations with P < 1x10-4 and SE < 0.5 (S10 Table). The full PheWAS association results are available on Global Biobank Engine [51].

PheWAS-analysis in FinnGen

In FinnGen, we performed a phenome-wide association analysis (PheWAS) of the identified variant comprising of 2,264 disease endpoints (S7 Fig, S2 and S3 Data).

Disease endpoint definition in FinnGen

The disease endpoints were defined using nationwide registries for deaths, hospital discharges, outpatient specialist appointments, cancer registry, and drug purchases registry, harmonizing over the International Classification of Diseases (ICD) revisions 8, 9, and 10, cancer-specific ICD-O-3, (NOMESCO) procedure codes, Finnish-specific Social Insurance Institute (KELA) drug reimbursement codes and ATC-codes. These registries spanning decades were electronically linked to the cohort baseline data using the unique national personal identification numbers assigned to all Finnish citizens and residents. A full list of FinnGen endpoints is available online for Freeze 4 (https://www.finngen.fi/en/researchers/clinical-endpoints). The endpoints with fewer than 100 cases, near-duplicate endpoints, and developmental “helper” endpoints were excluded from the final PheWas (column “OMIT”).

Outlier removal and PCA in FinnGen R4

FinnGen data was combined with 1000 genomes data and samples of non-Finnish ancestry (n = 2,880) and duplicates (n = 2035) were removed. King software [52] was used for relationship inference and approximately (> = 3rd degree related) independent set of 131,863 samples and 36,944 good quality (variant filters: remove chromosome X, imputation info< = 0.95, genotype imputed posterior probability<0.95, missingess>0.01) LD-pruned (r2<0.1) common (MAF > = 0.05) variants were used for computing PCA with Plink 1.9 [39]. The remaining 46,916 samples were then projected onto those PCs. Further 1,880 samples were removed due to missing phenotype data or mismatching sex and 176,899 samples were used in the analysis.

Association analysis

SAIGE mixed-model logistic regression was used for association analysis. Age, sex, 10 PCs and genotyping batch were used as covariates [53]. Each genotyping batch was included as a covariate for an endpoint if there were at least 10 cases and 10 controls in that batch to avoid convergence issues. Variants with minimum allele count < = 5 or imputation info < = 0.6 were excluded from the analysis. We report associations with P < 1x10-4 (S7 Fig, S1 and S2 Data).

Interaction analysis of ANGPTL7 and MYOC

To assess whether there is an interaction between ANGPTL7 and MYOC, we performed a logistic regression analysis using R glm() function with binomial response and logit link function with an interaction term, i.e. ANGPTL7 x MYOC. We found no evidence of interaction effect, P = 0.318.

Association analysis with reproductive fitness

Using the number of live births (UK Biobank Field ID: 2734, Global Biobank Engine phenotype ID: INI2734) and the number of children fathered (UK Biobank Field ID: 2405, Global Biobank Engine phenotype ID: INI2405), we performed association analysis for the four identified protein-altering variants using R script with age, types of genotyping array, and the first 4 genotype principal components as covariates. The analysis script is available at the GitHub repository (https://github.com/rivas-lab/ANGPTL7/).

Homozygote analysis

Homozygote in UK Biobank

For UK Biobank British individuals, we extracted the genotype calls with PLINK v2.00aLM (2 April 2019) and identified homozygous carrier of p.Gln175His allele [39]. We examined the year of birth (UK Biobank Field ID 34) and age at death (UK Biobank Field ID 40007) [10].

Homozygote in FinnGen

For Finnish FinnGen individuals, we extracted the genotypes using bcftools v1.9 and identified homozygote carriers of p.Arg220Cys [54]. To examine FinnGen disease endpoints among homozygote variant carriers, we compared the number disease endpoint cases in homozygote individuals to the number of cases of in the FinnGen samples using Fisher’s exact test (S1 Data).

Cascade plot analysis

Cascade plot of IOP association statistics in UK Biobank

Using the genome-wide association summary statistics for the median corneal compensated and Goldman-correlated IOP measurements in UK Biobank, we plotted the minor allele frequency and the BETA (SD) for the LD-pruned variants with P < 5x10-8. The LD pruning was performed using PLINK 1.9 with “--indep 50 5 2” as described before [11,38].

Effect size comparison of glaucoma associations with cascade plot

We collected the previously described association statistics from the following tables in literature.

  • Choquet, et al. 2018 [55], Table 2 and Table 3

  • Khawaja, et al. 2018 [6], Table 1

  • Shiga, et al. 2018 [56], Table 1 and Table 2

  • MacGregor, et al. 2018 [5], Supplementary Table S1

  • Hysi, et al. 2014 [8], Table 1

We plotted the minor allele frequency and odds ratio for variants with P < 5x10-8 for glaucoma.

Supporting information

S1 Text. List of FinnGen members.

FinnGen consists of the people listed in the Supplementary text.

(DOCX)

S1 Fig. Phenotype distributions of intraocular pressure measurements.

Phenotype distributions of the corneal-compensated (A) and Goldman-correlated (B) IOP measurements (the median of left and right eyes) stratified by glaucoma disease status in unrelated White British in UK Biobank displayed as a Tukey’s box plot overlapping on a violin plot. In the box plot, the middle bold horizontal line represents the median, the lower and upper hinges show the first and third quartiles, the lower and upper whiskers represent 1.5 * interquartile range from the hinges. The data points beyond whiskers are plotted individually.

(TIF)

S2 Fig. The identification of unrelated White British individuals in UK Biobank.

The identification of unrelated White British individuals in UK Biobank. The first two genotype principal components (PCs) are shown on the x- and y-axis and the identified unrelated White British individuals (Methods) are shown in red.

(TIF)

S3 Fig. Genome-wide protein-altering variant association analysis of intraocular pressure phenotypes in UK Biobank.

Genome-wide protein-altering variant association analysis of corneal compensated (A) and Goldman-correlated (B) intraocular pressure in UK Biobank. The rare (0.01% < MAF < 1%) protein-altering variants with P < 0.01 are shown. The red dashed horizontal line represents the genome-wide significance threshold (P = 10−6). The variants are shown in red (odd autosomes) or blue (even autosomes). The genomic coordinates of the variants are shown on the x-axis and the statistical significance of univariate analysis is shown on the y-axis.

(TIF)

S4 Fig. The protein-altering variant GWAS QQ plot for intraocular pressure phenotypes.

The protein-altering variant GWAS QQ plot for corneal compensated (A) and Goldman-correlated (B) intraocular pressure. The variants outside of MHC region with 0.01% < MAF < 1% are included in the analysis.

(TIF)

S5 Fig. The intensity plots for ANGPTL7 protein-altering variants with 0.01% < MAF < 1%.

The intensity plots for ANGPTL7 protein-altering variants with 0.01% < MAF < 1%. (A) rs200058074 (p.Gln136Arg). (B) rs28991002 (p.Arg140His). (C) rs28991009 (p.Gln175His). (D) rs143435072 (p.Arg177Ter).

(TIF)

S6 Fig. The breakdown of the data sources used for the definition of glaucoma in UK Biobank.

The breakdown of the data sources used for the definition of glaucoma in UK Biobank. The combination of self-reported glaucoma (coded as "1277" in UKB Data coding ID 6) and ICD-10 codes from hospital inpatient data are used for the glaucoma definition in UK Biobank. The number of individuals in the white British individuals without IOP measurements are shown.

(TIF)

S7 Fig. Phenome-wide association analysis of p.Arg220Cys in FinnGen.

Phenome-wide association analysis of p.Arg220Cys in FinnGen. -log10(P-value) is displayed on the y-axis. Disease endpoints grouped by disease categories are displayed on the x-axis. Highlighted associations with P < 1x10-4 are shown.

(TIF)

S8 Fig. Protein expression in normal tissues and cell lines from ProteomicsDB and MOPED for ANGPTL7.

Protein expression in normal tissues and cell lines from ProteomicsDB and MOPED for ANGPTL7.

(TIF)

S9 Fig. The cascade plots for intraocular pressure and glaucoma.

The cascade plot for corneal compensated (A) and Goldman-correlated (B) intraocular pressure association analysis in UK Biobank. The cascade plot for glaucoma (C) from published genome-wide significant GWAS associations (gray) and the variants highlighted in our paper. The minor allele frequency and the BETA (SD) are plotted for the LD-pruned variants with P < 5x10-8. The odds ratios are included for LD pruned published variants with P < 5x10-8 for glaucoma.

(TIF)

S1 Data. The homozygous carrier analysis results for ANGPTL7 p.Arg220Cys allele in FinnGen.

The homozygous carrier analysis results for ANGPTL7 p.Arg220Cys allele in FinnGen. The phenotype (Phenotype and Phenotype_description), the number of cases and controls and case frequency in homozygous carriers (HOM_case, HOM_cntrl, and HOM_case_%, respectively), the number of cases and controls and case frequency in all individuals (ALL_case, ALL_cntrl, and ALL_case_%, respectively), odds ratio (odds_ratio), and p-value from Fisher’s exact test (Fisher_p-value) are shown for disease endpoints.

(XLSX)

S2 Data. The PheWAS results for ANGPTL7 p.Arg220Cys allele for eye-related phenotypes in FinnGen.

The PheWAS results for ANGPTL7 p.Arg220Cys allele for eye-related phenotypes in FinnGen. The phenotype (phenotype_code and phenotype_string), phenotype category (category), beta value (beta), odds ratio (odds_ratio), and p-value (pval) of the association are shown for each of the eye phenotypes.

(XLSX)

S3 Data. The PheWAS results for ANGPTL7 p.Arg220Cys allele for non-eye related phenotypes in FinnGen.

The PheWAS results for ANGPTL7 p.Arg220Cys allele for non-eye related phenotypes in FinnGen. The phenotype (phenotype_code and phenotype_string), phenotype category (category), beta value (beta), odds ratio (odds_ratio), and p-value (pval) of the association are shown for each of the phenotypes that are not labeled as “Diseases of the eye and adnexa” in phenotype category.

(XLSX)

S1 Table. List of UK Biobank phenotypes analyzed in the study.

List of UK Biobank phenotypes analyzed in the study. Phenotype name, the source field ID in UK Biobank (UKB Field ID), phenotype ID in Global Biobank Engine (GBE ID), the number of individuals (N) are shown.

(XLSX)

S2 Table. Consistency of the genotype calls for four protein-altering variants in ANGPTL7 between genotyping array and exome sequencing data.

Consistency of the genotype calls for four protein-altering variants in ANGPTL7 between genotyping array and exome sequencing data. Variant including chromosome, position, reference, and alternate allele (hg19), the rs identifier of the genetic variant (rsID), amino acid nomenclature (HGVSp), genotype call from the array (Array) and exome data (Exome), and the number of individuals (N). Inconsistent variant calls are highlighted in bold font.

(XLSX)

S3 Table. Number of individuals stratified by genotype of rare (0.01% < MAF < 1%) protein-altering variants in ANGPTL7.

Number of individuals stratified by genotype of rare (0.01% < MAF < 1%) protein-altering variants in ANGPTL7. The combination of genotypes is shown in the first four columns (rs200058074, rs28991002, rs28991009, and rs143435072) as well as the number of British individuals with the genotype combination in UK Biobank (n_observed). The expected number of individuals is computed under the Hardy-Weinberg equilibrium model and the independence assumption (n_expected, Method).

(XLSX)

S4 Table. GCTA estimates of phenotypic variance explained by the 4 rare variants in ANGPTL7 for the IOP measures and glaucoma.

GCTA estimates of phenotypic variance explained by the 4 rare variants in ANGPTL7 for the IOP measures and glaucoma. The phenotype (Phenotype and GBE_ID), the estimated local heritability (V(G)/Vp), standard error (SE), and p-value (P) are shown. The SE and P are estimated based on from Jackknife method.

(XLSX)

S5 Table. ANGPTL7 IOP protein-altering variant association for 6 IOP measurements in UK Biobank.

ANGPTL7 IOP protein-altering variant association for 6 IOP measurements in UK Biobank. The association statistics for 6 IOP traits (corneal compensated IOP [median INI2005254, right: INI5254, and left: INI5262] and Goldman-correlated IOP [median INI2005255, right: INI5255, and left: INI5263]) are shown. The phenotype (GBE_ID), variant (chromosome, position, reference, and alternate allele [hg19]), rsID, the HGVS amino acid nomenclature (HGVSp), and the estimated regression coefficient with 95% confidence intervals (BETA [95% CI]), and p-value of association (P) are shown.

(XLSX)

S6 Table. ANGPTL7 IOP protein-altering variant association for 6 IOP measurements in UK Biobank.

Pairwise genetic correlation of IOP phenotypes. The genetic correlation (rg) for pairs of traits (Trait 1 and Trait 2, shown as GBE ID for 6 IOP traits (corneal compensated IOP [median INI2005254, right: INI5254, and left: INI5262] and Goldman-correlated IOP [median INI2005255, right: INI5255, and left: INI5263]) is shown with the standard error estimates (SE) based on Jackknife.

(XLSX)

S7 Table. Glaucoma definitions in FinnGen.

Glaucoma definitions in FinnGen. ICD-codes are used in the Finnish hospital discharge and cause-of-death registries. ATC-codes are used in the Social Insurance Institution prescription drug purchase registry. All endpoint definitions in the FinnGen phenome-wide association analysis are available online (https://www.finngen.fi/fi/node/68).

(XLSX)

S8 Table. FinnGen summary of MYOC p.Gln168Ter and ANGPTL7 p.Arg220Cys carriers in primary open glaucoma and all glaucoma cases.

FinnGen summary of MYOC p.Gln168Ter and ANGPTL7 p.Arg220Cys carriers in primary open glaucoma cases (A) and all glaucoma (B). The numbers of primary open-angle glaucoma (POAG) cases/controls stratified by genotype are shown. FinnGen summary of genotype counts for ANGPTL7 p.Arg220Cys in unrelated individuals in primary open glaucoma cases (C) and all glaucoma (D).

(XLSX)

S9 Table. ANGPTL7 protein-altering variant association with reproductive fitness.

ANGPTL7 protein-altering variant association with reproductive fitness, (A) the number of live births and (B) the number of children fathered. Variant includes chromosome, position, reference, and alternate allele (hg19). rsID—the rs identifier of the genetic variant. HGVSp—the HGVS protein sequence name. MAF—the minor allele frequency in UK Biobank British population. Beta—estimated regression coefficient with 95% confidence intervals. P—p-value of association.

(XLSX)

S10 Table. The PheWAS results for the four protein-altering variants in ANGPTL7 in UK Biobank.

The PheWAS results for the four protein-altering variants in ANGPTL7 in UK Biobank. The association summary statistics with P < 1.0 x 10−3 and SE < .5 are shown.

(XLSX)

Acknowledgments

This research has been conducted using the UK Biobank Resource under Application Number 24983, “Generating effective therapeutic hypotheses from genomic and hospital linkage data” (http://www.ukbiobank.ac.uk/wp-content/uploads/2017/06/24983-Dr-Manuel-Rivas.pdf). Based on the information provided in Protocol 44532 the Stanford IRB has determined that the research does not involve human subjects as defined in 45 CFR 46.102(f) or 21 CFR 50.3(g). All participants of UK Biobank provided written informed consent (more information is available at https://www.ukbiobank.ac.uk/2018/02/gdpr/). For the Finnish Institute of Health and Welfare (THL) driven FinnGen preparatory project (here called FinnGen), all patients and control subjects had provided informed consent for biobank research, based on the Finnish Biobank Act. Alternatively, older cohorts were based on study specific consents and later transferred to the THL Biobank after approval by Valvira, the National Supervisory Authority for Welfare and Health. Recruitment protocols followed the biobank protocols approved by Valvira. The Ethical Review Board of the Hospital District of Helsinki and Uusimaa approved the FinnGen study protocol Nr HUS/990/2017. The FinnGen preparatory project is approved by THL, approval numbers THL/2031/6.02.00/2017, amendments THL/341/6.02.00/2018, THL/2222/6.02.00/2018 and THL/283/6.02.00/2019. All DNA samples and data in this study were pseudonymized. We thank all the participants in the UK Biobank and Finnish Biobanks used in FinnGen studies. We thank Sirpa Soini, Fatima Rodriguez and David Amar for invaluable feedback on the manuscript.

Data Availability

The genome-wide summary statistics and the results of gene-based burden and dispersion tests are available at NIH’s instance of figshare (https://doi.org/10.35092/yhjc.11368022 and http://doi.org/10.35092/yhjc.11369166, respectively)[41][47]. Analysis scripts and notebooks are available on GitHub (https://github.com/rivas-lab/ANGPTL7/).

Funding Statement

Y.T. is supported by a Funai Overseas Scholarship from the Funai Foundation for Information Technology and the Stanford University School of Medicine. FinnGen is supported by Abbvie, Astra Zeneca, Biogen, Celgene, Genentech, GSK, Merck, Pfizer, and Sanofi. M.A.R. is partially supported by Stanford University and a National Institute of Health center for Multi- and Trans-ethnic Mapping of Mendelian and Complex Diseases grant (5U01 HG009080) and partially supported by the National Human Genome Research Institute (NHGRI) of the National Institutes of Health (NIH) under award R01HG010140. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

  • 1.Cantor LB. Brimonidine in the treatment of glaucoma and ocular hypertension. Therapeutics and Clinical Risk Management. 2006. pp. 337–346. 10.2147/tcrm.2006.2.4.337 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Kass MA, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP, et al. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002;120: 701–13; discussion 829–30. 10.1001/archopht.120.6.701 [DOI] [PubMed] [Google Scholar]
  • 3.Kazemian P, Lavieri MS, Van Oyen MP, Andrews C, Stein JD. Personalized Prediction of Glaucoma Progression Under Different Target Intraocular Pressure Levels Using Filtered Forecasting Methods. Ophthalmology. 2018;125: 569–577. 10.1016/j.ophtha.2017.10.033 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.The Japanese Archive of Multicentral Database in Glaucoma (JAMDIG) construction group. A novel method to predict visual field progression more accurately, using intraocular pressure measurements in glaucoma patients. Scientific Reports. 2016. 10.1038/srep31728 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.MacGregor S, Ong J-S, An J, Han X, Zhou T, Siggs OM, et al. Genome-wide association study of intraocular pressure uncovers new pathways to glaucoma. Nat Genet. 2018;50: 1067–1071. 10.1038/s41588-018-0176-y [DOI] [PubMed] [Google Scholar]
  • 6.Khawaja AP, Cooke Bailey JN, Wareham NJ, Scott RA, Simcoe M, Igo RP Jr, et al. Genome-wide analyses identify 68 new loci associated with intraocular pressure and improve risk prediction for primary open-angle glaucoma. Nat Genet. 2018;50: 778–782. 10.1038/s41588-018-0126-8 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Choquet H, Thai KK, Yin J, Hoffmann TJ, Kvale MN, Banda Y, et al. A large multi-ethnic genome-wide association study identifies novel genetic loci for intraocular pressure. Nat Commun. 2017;8: 2108 10.1038/s41467-017-01913-6 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Hysi PG, Cheng C-Y, Springelkamp H, Macgregor S, Bailey JNC, Wojciechowski R, et al. Genome-wide analysis of multi-ancestry cohorts identifies new loci influencing intraocular pressure and susceptibility to glaucoma. Nat Genet. 2014;46: 1126–1130. 10.1038/ng.3087 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Leshchiner ES, Rush JS, Durney MA, Cao Z, Dančík V, Chittick B, et al. Small-molecule inhibitors directly target CARD9 and mimic its protective variant in inflammatory bowel disease. Proc Natl Acad Sci U S A. 2017;114: 11392–11397. 10.1073/pnas.1705748114 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. 2018;562: 203–209. 10.1038/s41586-018-0579-z [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.DeBoever C, Tanigawa Y, Lindholm ME, McInnes G, Lavertu A, Ingelsson E, et al. Medical relevance of protein-truncating variants across 337,205 individuals in the UK Biobank study. Nat Commun. 2018;9: 1612 10.1038/s41467-018-03910-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.DeBoever C, Tanigawa Y, Aguirre M, McInnes G. Assessing digital phenotyping to enhance genetic studies of human diseases. Am J Hum Genet. 2020; 106: 1–12. 10.1016/j.ajhg.2020.03.007 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Lim ET, Würtz P, Havulinna AS, Palta P, Tukiainen T, Rehnström K, et al. Distribution and medical impact of loss-of-function variants in the Finnish founder population. PLoS Genet. 2014;10: e1004494 10.1371/journal.pgen.1004494 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Chan MPY, Grossi CM, Khawaja AP, Yip JLY, Khaw K-T, Patel PJ, et al. Associations with Intraocular Pressure in a Large Cohort: Results from the UK Biobank. Ophthalmology. 2016;123: 771–782. 10.1016/j.ophtha.2015.11.031 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Purcell S, Cherny SS, Sham PC. Genetic Power Calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics. 2003;19: 149–150. 10.1093/bioinformatics/19.1.149 [DOI] [PubMed] [Google Scholar]
  • 16.Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536: 285–291. 10.1038/nature19057 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Cheng J-W, Cheng S-W, Ma X-Y, Cai J-P, Li Y, Lu G-C, et al. Myocilin polymorphisms and primary open-angle glaucoma: a systematic review and meta-analysis. PLoS One. 2012;7: e46632 10.1371/journal.pone.0046632 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Comes N, Buie LK, Borrás T. Evidence for a role of angiopoietin-like 7 (ANGPTL7) in extracellular matrix formation of the human trabecular meshwork: implications for glaucoma. Genes Cells. 2011;16: 243–259. 10.1111/j.1365-2443.2010.01483.x [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Santulli G. Angiopoietin-like proteins: a comprehensive look. Front Endocrinol. 2014;5: 4 10.3389/fendo.2014.00004 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Kuchtey J, Källberg ME, Gelatt KN, Rinkoski T, Komàromy AM, Kuchtey RW. Angiopoietin-like 7 secretion is induced by glaucoma stimuli and its concentration is elevated in glaucomatous aqueous humor. Invest Ophthalmol Vis Sci. 2008;49: 3438–3448. 10.1167/iovs.07-1347 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Kolker E, Higdon R, Haynes W, Welch D, Broomall W, Lancet D, et al. MOPED: Model Organism Protein Expression Database. Nucleic Acids Res. 2012;40: D1093–9. 10.1093/nar/gkr1177 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Schmidt T, Samaras P, Frejno M, Gessulat S, Barnert M, Kienegger H, et al. ProteomicsDB. Nucleic Acids Res. 2018;46: D1271–D1281. 10.1093/nar/gkx1029 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Tarkkanen A, Reunanen A, Kivelä T. Frequency of systemic vascular diseases in patients with primary open-angle glaucoma and exfoliation glaucoma. Acta Ophthalmol. 2008;86: 598–602. 10.1111/j.1600-0420.2007.01122.x [DOI] [PubMed] [Google Scholar]
  • 24.Hirvelä H, Tuulonen A, Laatikainen L. Intraocular pressure and prevalence of glaucoma in elderly people in Finland: a population-based study. Int Ophthalmol. 1994;18: 299–307. 10.1007/bf00917834 [DOI] [PubMed] [Google Scholar]
  • 25.Tham Y-C, Li X, Wong TY, Quigley HA, Aung T, Cheng C-Y. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014;121: 2081–2090. 10.1016/j.ophtha.2014.05.013 [DOI] [PubMed] [Google Scholar]
  • 26.Musunuru K, Kathiresan S. Cardiovascular endocrinology: Is ANGPTL3 the next PCSK9? Nat Rev Endocrinol. 2017;13: 503–504. 10.1038/nrendo.2017.88 [DOI] [PubMed] [Google Scholar]
  • 27.Musunuru K, Pirruccello JP, Do R, Peloso GM, Guiducci C, Sougnez C, et al. Exome sequencing, ANGPTL3 mutations, and familial combined hypolipidemia. N Engl J Med. 2010;363: 2220–2227. 10.1056/NEJMoa1002926 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Gusarova V, O’Dushlaine C, Teslovich TM, Benotti PN, Mirshahi T, Gottesman O, et al. Genetic inactivation of ANGPTL4 improves glucose homeostasis and is associated with reduced risk of diabetes. Nat Commun. 2018;9: 2252 10.1038/s41467-018-04611-z [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Clapham KR, Chu AY, Wessel J, Natarajan P, Flannick J, Rivas MA, et al. A null mutation in ANGPTL8 does not associate with either plasma glucose or type 2 diabetes in humans. BMC Endocr Disord. 2016;16: 7 10.1186/s12902-016-0088-8 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Peloso GM, Auer PL, Bis JC, Voorman A, Morrison AC, Stitziel NO, et al. Association of low-frequency and rare coding-sequence variants with blood lipids and coronary heart disease in 56,000 whites and blacks. Am J Hum Genet. 2014;94: 223–232. 10.1016/j.ajhg.2014.01.009 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Abu-Farha M, Cherian P, Al-Khairi I, Madhu D, Tiss A, Warsam S, et al. Plasma and adipose tissue level of angiopoietin-like 7 (ANGPTL7) are increased in obesity and reduced after physical exercise. PLoS One. 2017;12: e0173024 10.1371/journal.pone.0173024 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Springelkamp H, Iglesias AI, Mishra A, Höhn R, Wojciechowski R, Khawaja AP, et al. New insights into the genetics of primary open-angle glaucoma based on meta-analyses of intraocular pressure and optic disc characteristics. Hum Mol Genet. 2017;26: 438–453. 10.1093/hmg/ddw399 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Rivas MA, Pirinen M, Conrad DF, Lek M, Tsang EK, Karczewski KJ, et al. Human genomics. Effect of predicted protein-truncating genetic variants on the human transcriptome. Science. 2015;348: 666–669. 10.1126/science.1261877 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Carnes MU, Allingham RR, Ashley-Koch A, Hauser MA. Transcriptome analysis of adult and fetal trabecular meshwork, cornea, and ciliary body tissues by RNA sequencing. Exp Eye Res. 2018;167: 91–99. 10.1016/j.exer.2016.11.021 [DOI] [PubMed] [Google Scholar]
  • 35.Jørgensen AB, Frikke-Schmidt R, Nordestgaard BG, Tybjærg-Hansen A. Loss-of-function mutations in APOC3 and risk of ischemic vascular disease. N Engl J Med. 2014;371: 32–41. 10.1056/NEJMoa1308027 [DOI] [PubMed] [Google Scholar]
  • 36.TG and HDL Working Group of the Exome Sequencing Project, National Heart, Lung, and Blood Institute, Crosby J, Peloso GM, Auer PL, Crosslin DR, Stitziel NO, et al. Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N Engl J Med. 2014;371: 22–31. 10.1056/NEJMoa1307095 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Cohen JC, Boerwinkle E, Mosley TH Jr, Hobbs HH. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med. 2006;354: 1264–1272. 10.1056/NEJMoa054013 [DOI] [PubMed] [Google Scholar]
  • 38.Tanigawa Y, Li J, Justesen JM, Horn H, Aguirre M, DeBoever C, et al. Components of genetic associations across 2,138 phenotypes in the UK Biobank highlight adipocyte biology. Nat Commun. 2019;10: 4064 10.1038/s41467-019-11953-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015;4: 7 10.1186/s13742-015-0047-8 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Conway JR, Lex A, Gehlenborg N. UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics. 2017;33: 2938–2940. 10.1093/bioinformatics/btx364 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Genome-wide summary statistics used for the analysis described in “Rare protein-altering variants in ANGPTL7 lower intraocular pressure and protect against glaucoma.” National Institutes of Health; 14 Dec 2019 [cited 17 Dec 2019]. 10.35092/yhjc.11368022.v1 [DOI]
  • 42.McCarthy M, O’Brien E. McCarthy Group Front page. In: McCarthy Group [Internet]. 8 Oct 2018 [cited 20 May 2019]. http://mccarthy.well.ox.ac.uk/
  • 43.Van Hout CV, Tachmazidou I, Backman JD, Hoffman JX, Ye B, Pandey AK, et al. Whole exome sequencing and characterization of coding variation in 49,960 individuals in the UK Biobank. bioRxiv. 2019. p. 572347 10.1101/572347 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.DeBoever C, Aguirre M, Tanigawa Y, Spencer CCA, Poterba T, Bustamante CD, et al. Bayesian model comparison for rare variant association studies of multiple phenotypes. bioRxiv. 2018; 257162 10.1101/257162 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Moutsianas L, Agarwala V, Fuchsberger C, Flannick J, Rivas MA, Gaulton KJ, et al. The power of gene-based rare variant methods to detect disease-associated variation and test hypotheses about complex disease. PLoS Genet. 2015;11: e1005165 10.1371/journal.pgen.1005165 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Band G, Le QS, Jostins L, Pirinen M, Kivinen K, Jallow M, et al. Imputation-based meta-analysis of severe malaria in three African populations. PLoS Genet. 2013;9: e1003509 10.1371/journal.pgen.1003509 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Gene-based test results used for the analysis described in “Rare protein-altering variants in ANGPTL7 lower intraocular pressure and protect against glaucoma.” National Institutes of Health; 15 Dec 2019 [cited 17 Dec 2019]. 10.35092/yhjc.11369166.v1 [DOI]
  • 48.Yang J, Zeng J, Goddard ME, Wray NR, Visscher PM. Concepts, estimation and interpretation of SNP-based heritability. Nat Genet. 2017;49: 1304–1310. 10.1038/ng.3941 [DOI] [PubMed] [Google Scholar]
  • 49.Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet. 2011;88: 76–82. 10.1016/j.ajhg.2010.11.011 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, et al. Common SNPs explain a large proportion of the heritability for human height. Nat Genet. 2010;42: 565–569. 10.1038/ng.608 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.McInnes G, Tanigawa Y, DeBoever C, Lavertu A, Olivieri JE, Aguirre M, et al. Global Biobank Engine: enabling genotype-phenotype browsing for biobank summary statistics. Bioinformatics. 2019;35: 2495–2497. 10.1093/bioinformatics/bty999 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Manichaikul A, Mychaleckyj JC, Rich SS, Daly K, Sale M, Chen W-M. Robust relationship inference in genome-wide association studies. Bioinformatics. 2010;26: 2867–2873. 10.1093/bioinformatics/btq559 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Zhou W, Nielsen JB, Fritsche LG, Dey R, Gabrielsen ME, Wolford BN, et al. Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies. Nat Genet. 2018;50: 1335–1341. 10.1038/s41588-018-0184-y [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25: 2078–2079. 10.1093/bioinformatics/btp352 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Choquet H, Paylakhi S, Kneeland SC, Thai KK, Hoffmann TJ, Yin J, et al. A multiethnic genome-wide association study of primary open-angle glaucoma identifies novel risk loci. Nat Commun. 2018;9: 2278 10.1038/s41467-018-04555-4 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Shiga Y, Akiyama M, Nishiguchi KM, Sato K, Shimozawa N, Takahashi A, et al. Genome-wide association study identifies seven novel susceptibility loci for primary open-angle glaucoma. Hum Mol Genet. 2018;27: 1486–1496. 10.1093/hmg/ddy053 [DOI] [PMC free article] [PubMed] [Google Scholar]

Decision Letter 0

Scott M Williams, Jessica N Cooke Bailey

15 Oct 2019

Dear Dr Rivas,

Thank you very much for submitting your Research Article entitled 'Rare protein-altering variants in ANGPTL7 lower intraocular pressure and protect against glaucoma' to PLOS Genetics. Your manuscript was fully evaluated at the editorial level and by independent peer reviewers. The reviewers appreciated the attention to an important problem, but raised some substantial concerns about the current manuscript. Based on the reviews, we will not be able to accept this version of the manuscript, but we would be willing to review again a much-revised version. We cannot, of course, promise publication at that time.

Should you decide to revise the manuscript for further consideration here, your revisions should address the specific points made by each reviewer. We will also require a detailed list of your responses to the review comments and a description of the changes you have made in the manuscript.

If you decide to revise the manuscript for further consideration at PLOS Genetics, please aim to resubmit within the next 60 days, unless it will take extra time to address the concerns of the reviewers, in which case we would appreciate an expected resubmission date by email to plosgenetics@plos.org.

If present, accompanying reviewer attachments are included with this email; please notify the journal office if any appear to be missing. They will also be available for download from the link below. You can use this link to log into the system when you are ready to submit a revised version, having first consulted our Submission Checklist.

To enhance the reproducibility of your results, we recommend that you deposit your laboratory protocols in protocols.io, where a protocol can be assigned its own identifier (DOI) such that it can be cited independently in the future. For instructions see our guidelines.

Please be aware that our data availability policy requires that all numerical data underlying graphs or summary statistics are included with the submission, and you will need to provide this upon resubmission if not already present. In addition, we do not permit the inclusion of phrases such as "data not shown" or "unpublished results" in manuscripts. All points should be backed up by data provided with the submission.

While revising your submission, please upload your figure files to the Preflight Analysis and Conversion Engine (PACE) digital diagnostic tool.  PACE helps ensure that figures meet PLOS requirements. To use PACE, you must first register as a user. Then, login and navigate to the UPLOAD tab, where you will find detailed instructions on how to use the tool. If you encounter any issues or have any questions when using PACE, please email us at figures@plos.org.

PLOS has incorporated Similarity Check, powered by iThenticate, into its journal-wide submission system in order to screen submitted content for originality before publication. Each PLOS journal undertakes screening on a proportion of submitted articles. You will be contacted if needed following the screening process.

To resubmit, use the link below and 'Revise Submission' in the 'Submissions Needing Revision' folder.

[LINK]

We are sorry that we cannot be more positive about your manuscript at this stage. Please do not hesitate to contact us if you have any concerns or questions.

Yours sincerely,

Jessica N. Cooke Bailey, Ph.D.

Guest Editor

PLOS Genetics

Scott Williams

Section Editor: Natural Variation

PLOS Genetics

While this manuscript has potential to be high-impact, there are major flaws cited by the reviewers which must be addressed.

Reviewer's Responses to Questions

Comments to the Authors:

Please note here if the review is uploaded as an attachment.

Reviewer #1: Primary open-angle glaucoma (POAG), and its endophenotypes, including intraocular pressure (IOP), are strongly heritable, and numerous risk loci have been identified through genomwide association studies (GWAS). The role of rare genetic variation, on the other hand, has received far less attention. This manuscript addresses the role of rare variants in IOP using two large cohorts, the UK Biobank and FinnGen. A single-variant association analysis of the UK Biobank sample revealed several nonsynonymous coding variants in ANGPTL7 that, on average, lower IOP. An independent missense variant in ANGPTL7 the FinnGen sample also reduces IOP, suggesting a general protective role of ANGPTL7 inactivation in POAG.

This study is of high potential impact, considering the large public health burden of POAG in the elderly and the paucity of knowledge of the contribution of rare genetic variation. A strong point of this article is the large sample size, suitable for studies of rare variants, and meticulous quality control and documentation of the analysis on the UK Biobank cohort. The manuscript is written fairly well, with a few typos and minor grammatical errors.

However, the manuscript is marred by improperly conducted statistical analyses and lack of important information in the Methods and Discussion. Specifically, a meta-analysis is inappropriate for measuring the aggregate effect of multiple genetic variants. A simple burden test would be more appropriate, as well as an estimate of the proportion of phenotypic variation explained by the variants. If the authors feel that a meta-analysis is suitable here, they need to explain their rationale very carefully. Moreover, an analysis of genetic correlation produced an impossible correlation estimate of 1.08, suggesting that some other quantity besides correlation is being measured. These serious errors cast doubt on the reliability of the main findings, even though the primary association analysis seems sound. It is surprising that a genomewide gene-level association analysis of rare variants (e.g., burden test or SKAT), which would increase power to detect rare-variant aggregate effects, was not conducted. Methods for several analyses are missing, including the measurement of genetic correlation (Suppl. Fig 7) and the PheWAS (Suppl. Fig. 8). The PheWAS is only mentioned once in the main text, and only for citing the association result for Glaucoma; the significance of the other results from the PheWAS are not discussed.

The Discussion is perfunctory and is lacking important content. What are the limitations of the study? Specifically, how does the lack of overlap between POAG risk loci and IOP loci (e.g., Springelkamp et al., 2017, PMID 28073927) affect the significance of these results for treating POAG? What are the implications of the differences in allele frequency of IOP-lowering variants in the Finnish and UK populations? How do the new findings for ANGPTL7 fit in with what is already known about its role in POAG and IOP?

Specific comments:

1. Introduction, p. 2: Khawaja et al. (ref. 6) alone identified 68 risk loci for IOP. The total number of risk loci, including previous studies, including is larger. Choquet et al (2018) PMID 29235454 and Hysi et al. (2014) PMID 25173106 should also be cited, The term “unequivocally implicated” should be made clearer: does this mean replicated within one study? between two or more independent studies?

2. Results, p. 3: How was the joint association analysis for the three less significant ANGPTL7 SNPs performed? By a burden test?

3. Results p. 4: The lack of significance in the associations with glaucoma may also be explained by misclassification in the glaucoma phenotype on account of its being based on EHR, and by the likely presence of normal-tension POAG patients within the glaucoma cases.

4. Results, pp. 5-6. The last paragraph of the Results belongs in the Discussion, except for the sentence on tissue-specific expression of ANGPTL7.

5. Discussion: Does the Finnish population have a different prevalence of POAG than the UK?

6. Methods: Was the entire age range of the UK Biobank dataset included? The genetic determinants of IOP before age 40 may well be different than in older individuals. Was the average age of rare-variant carrying individuals much different from that of the entire sample?

7. Methods, p. 8 top: What is the “Array” predictor in the logistic regression model?

8. Suppl. Fig. S1: Considering the very large sample size, a density plot comparing IOP in cases and controls will provide more information than a boxplot. See Fig. 4 of Martin et al. (2017) PMID 28366442 for an example of overlapping density distributions.

9. Suppl. Fig. S7: This information would be much more concisely shown in a table, or even in the text. It is not clear what the correlations are between: the three x-axis labels each mention only one variable.

10. Suppl. Fig. S8: This PheWAS analysis isn’t mentioned anywhere in the text, except to indicate that the association of R220C with glaucoma was highly significant. Can it be omitted from the paper except for the glaucoma-related phenotypes?

11. Suppl. Table S1: The data would be more straightforward to interpret in the form of a small table for each variant with counts for each genotype pair observed (including NA), rather than one large table with the counts in a single column.

12. Suppl. Table S6: This appears to be raw, unformatted output, and should be formatted as a table.

Reviewer #2: This is an interesting study examining rare variant associations with glaucoma and its major endophenotype, IOP. There are several issue that need addressing.

Major comments:

- It is an odd approach to take Goldmann-correlated IOP of the right eye as a primary measure, and then not display results for the left eye measure or the corneal-compensated measures (only show genetic correlations). Are the authors hypothesizing that genetic associations with IOP may only influence one eye and not the author? If not, a better approach is to include both eyes and adjust for the correlation using a random-effects approach, or to simply take the mean of right and left eye measures.

- Why is the primary analysis for Goldmann-correlated IOP? Corneal compensated IOP has been shown to be more reflective of true physiological IOP, and less influenced by corneal artefact. Could ANGPTL7 variation actually be influencing the cornea rather than IOP?

- Were the IOP variables cleaned prior to analysis? If so, how?

- What does the meta-analyzed effect estimate mean when combining effects at multiple different variants (Supp Tables 6 and 9)? Is this the effect you would expect to see if someone had all these variants together? It seems odd to me that you would search for IOP-lowering variants in a gene, and then meta-analyze these selected variant effects together. Surely this is biased and misleading? Unless the authors can make a very strong rationale, I would remove sections on "combined significance".

- The definition of glaucoma in UK Biobank , a major outcome variable in the paper, is not clear. How many were identified using self-report? How many by hospital episode statistics? Why did the authors not limit to POAG HES codes? How were controls defined, given that the glaucoma question was not administered to the whole cohort? Given this is a key outcome variable, I would recommend the authors present a flow chart for derivation of glaucoma status as well as IOP.

- Is it possible that the protein alteration increases function of the gene? What evidence do the authors have that the functional consequence of the identified variants is reduced gene function? Unless strong, the authors should temper the strength of the language they use to describe the effect.

- The discussion is disappointingly short. How does this finding sit with other genetic discoveries for IOP and glaucoma? How does this fit in with what is known about IOP-related anatomy and physiology? What type of treatments might target the gene or its downstream effects, and how would the drug be delivered? Is there a plausible explanation for the hypothesis that the authors suggest regarding modifying the glaucoma risk of patients with MYOC mutations?

Minor comments:

- IOP is not the sole predictive factor for glaucoma

- The statement that there are "total of 68 independent loci have been unequivocally implicated in glaucoma" seems incorrect - the papers the authors cite do not reflect this on deeper reading.

- The text in the 2nd paragraph regarding "signals were consistently observed in left eye IOP measure" is not clear. Were previous analyses only carried on right eyes (if so, this is not clearly stated in the Results)? Are they referring to Goldmann-correlated IOP here? Results should be presented more robustly. Anyway, the authors may change their analytical approach based on the above.

Reviewer #3: This is a well-written paper describes several rare ANGPTL7 protein-coding variants that are associated with lower intraocular pressure (IOP) in participants from the UK Biobank and associated with decreased risk of glaucoma in the FinnGen dataset. Several points to address:

1) The overall beta for intraocular pressure reduction by heterozygous variants is very small and even the homozygous Gln175His would not be expected be within the resolution of clinical measurement or to be clinically relevant. This should be discussed especially in regard to therapeutic development.

2) The authors note that an ANGPTL7 rare variant is likely responsible for the 1p36 signal reported in Khawaja et al. It would be interesting to note if this signal has been observed in other IOP GWAS such as Choquet et al., 2018.

3) While overall the examination of the ANGPTL7 effects on MYOC368ter cases is interesting there are several questions about this result. First, since the FinnGen glaucoma cases are not actually examined, but defined by ICD codes, its possible that some of the MYOC 368ter 'noncases' are actually cases- this is particularly relevant when considering a recent study that has shown that some patients with MYOC 368ter can have glaucoma without intraocular pressure elevation (Fingert et al., JAMA Ophthalmology). Second, was the distribution of ANGPTL7 variant carriers among MYOC 368ter carriers statistically significant?

4) A limitation of the study is that all the glaucoma cases are defined by ICD codes without any clinical validation. These codes used to define case-control status also include 'glaucoma secondary to eye trauma', 'secondary to eye infection or other eye disorders' and 'secondary to drugs'. Eye traumas are not genetic, while drugs causing glaucoma are primarily corticosteroids, which could drive these results considering the potential role of ANGPTL7 in steroid-responsive glaucoma (see point 6 below). Moreover, including all types of glaucoma is concerning as various forms of glaucoma have very different mechanisms and some can be difficult to distinguish without expert evaluation. Given the very high prevalence of exfoliation glaucoma in Finland this would be of special concern in the FinnGen population. Further replication of these findings in a cohort of individuals diagnosed by clinical experts would be helpful.

5) As ANGPTL7 has been shown to be increased in glaucoma secondary to steroid (glucocorticoid) exposure and this type of glaucoma has a specific ICD code is it possible to examine this subgroup among the UK Biobank cases? Even better in patients who have been clinically diagnosed to have this type of glaucoma by glaucoma experts? Is it possible that this subgroup is driving the UKBiobank results? Showing that these variants are protective in POAG patients examined by a clinical expert with knowledge of the history of steroid exposure in the patient would also be helpful.

6) There is very little discussion of any potential protective role for the ANGPTL7 protein or functionally how loss of function variants could impact intraocular pressure and glaucoma. Additionally, while the nonsense variant is likely to be loss of function, this may not actually be the case as the most common MYOC variant (368ter) is actually a gain of function. Its not clear if the missense alleles are loss or gain of function. Again, similar to MYOC the missense alleles are gain of function. This information is very relevant to the development of ANGPTL7 based therapies.

7) This sentence is confusing, “Given these findings, we next asked whether any of these putative IOP-lowering genetic variants showed effects consistent with reducing glaucoma risk in an independent set of unrelated British individuals that do not have IOP measures (4,269 cases and 251,355 controls).” Are these glaucoma cases not included in the set of UK Biobank individuals with eye phenotype data?

**********

Have all data underlying the figures and results presented in the manuscript been provided?

Large-scale datasets should be made available via a public repository as described in the PLOS Genetics data availability policy, and numerical data that underlies graphs or summary statistics should be provided in spreadsheet form as supporting information.

Reviewer #1: Yes

Reviewer #2: Yes

Reviewer #3: Yes

**********

PLOS authors have the option to publish the peer review history of their article (what does this mean?). If published, this will include your full peer review and any attached files.

If you choose “no”, your identity will remain anonymous but your review may still be made public.

Do you want your identity to be public for this peer review? For information about this choice, including consent withdrawal, please see our Privacy Policy.

Reviewer #1: No

Reviewer #2: No

Reviewer #3: No

Decision Letter 1

Scott M Williams, Jessica N Cooke Bailey

18 Feb 2020

Dear Dr Rivas,

We are pleased to inform you that your manuscript entitled "Rare protein-altering variants in ANGPTL7 lower intraocular pressure and protect against glaucoma" has been editorially accepted for publication in PLOS Genetics. Congratulations!

Before your submission can be formally accepted and sent to production you will need to complete our formatting changes, which you will receive in a follow up email. Please be aware that it may take several days for you to receive this email; during this time no action is required by you. Please note: the accept date on your published article will reflect the date of this provisional accept, but your manuscript will not be scheduled for publication until the required changes have been made.

Once your paper is formally accepted, an uncorrected proof of your manuscript will be published online ahead of the final version, unless you’ve already opted out via the online submission form. If, for any reason, you do not want an earlier version of your manuscript published online or are unsure if you have already indicated as such, please let the journal staff know immediately at plosgenetics@plos.org.

In the meantime, please log into Editorial Manager at https://www.editorialmanager.com/pgenetics/, click the "Update My Information" link at the top of the page, and update your user information to ensure an efficient production and billing process. Note that PLOS requires an ORCID iD for all corresponding authors. Therefore, please ensure that you have an ORCID iD and that it is validated in Editorial Manager. To do this, go to ‘Update my Information’ (in the upper left-hand corner of the main menu), and click on the Fetch/Validate link next to the ORCID field.  This will take you to the ORCID site and allow you to create a new iD or authenticate a pre-existing iD in Editorial Manager.

If you have a press-related query, or would like to know about one way to make your underlying data available (as you will be aware, this is required for publication), please see the end of this email. If your institution or institutions have a press office, please notify them about your upcoming article at this point, to enable them to help maximise its impact. Inform journal staff as soon as possible if you are preparing a press release for your article and need a publication date.

Thank you again for supporting open-access publishing; we are looking forward to publishing your work in PLOS Genetics!

Yours sincerely,

Jessica N. Cooke Bailey, Ph.D.

Guest Editor

PLOS Genetics

Scott Williams

Section Editor: Natural Variation

PLOS Genetics

www.plosgenetics.org

Twitter: @PLOSGenetics

----------------------------------------------------

Comments from the reviewers (if applicable):

Reviewer's Responses to Questions

Comments to the Authors:

Please note here if the review is uploaded as an attachment.

Reviewer #1: The manuscript has been greatly improved and is acceptable for publication.

Reviewer #2: The revision has adequately addressed my concerns.

Reviewer #3: In this revised manuscript and response to reviewers the authors have addressed the concerns raised by the review.

**********

Have all data underlying the figures and results presented in the manuscript been provided?

Large-scale datasets should be made available via a public repository as described in the PLOS Genetics data availability policy, and numerical data that underlies graphs or summary statistics should be provided in spreadsheet form as supporting information.

Reviewer #1: Yes

Reviewer #2: Yes

Reviewer #3: Yes

**********

PLOS authors have the option to publish the peer review history of their article (what does this mean?). If published, this will include your full peer review and any attached files.

If you choose “no”, your identity will remain anonymous but your review may still be made public.

Do you want your identity to be public for this peer review? For information about this choice, including consent withdrawal, please see our Privacy Policy.

Reviewer #1: No

Reviewer #2: No

Reviewer #3: No

----------------------------------------------------

Data Deposition

If you have submitted a Research Article or Front Matter that has associated data that are not suitable for deposition in a subject-specific public repository (such as GenBank or ArrayExpress), one way to make that data available is to deposit it in the Dryad Digital Repository. As you may recall, we ask all authors to agree to make data available; this is one way to achieve that. A full list of recommended repositories can be found on our website.

The following link will take you to the Dryad record for your article, so you won't have to re‐enter its bibliographic information, and can upload your files directly: 

http://datadryad.org/submit?journalID=pgenetics&manu=PGENETICS-D-19-01516R1

More information about depositing data in Dryad is available at http://www.datadryad.org/depositing. If you experience any difficulties in submitting your data, please contact help@datadryad.org for support.

Additionally, please be aware that our data availability policy requires that all numerical data underlying display items are included with the submission, and you will need to provide this before we can formally accept your manuscript, if not already present.

----------------------------------------------------

Press Queries

If you or your institution will be preparing press materials for this manuscript, or if you need to know your paper's publication date for media purposes, please inform the journal staff as soon as possible so that your submission can be scheduled accordingly. Your manuscript will remain under a strict press embargo until the publication date and time. This means an early version of your manuscript will not be published ahead of your final version. PLOS Genetics may also choose to issue a press release for your article. If there's anything the journal should know or you'd like more information, please get in touch via plosgenetics@plos.org.

Acceptance letter

Scott M Williams, Jessica N Cooke Bailey

17 Apr 2020

PGENETICS-D-19-01516R1

Rare protein-altering variants in ANGPTL7 lower intraocular pressure and protect against glaucoma

Dear Dr Rivas,

We are pleased to inform you that your manuscript entitled "Rare protein-altering variants in ANGPTL7 lower intraocular pressure and protect against glaucoma" has been formally accepted for publication in PLOS Genetics! Your manuscript is now with our production department and you will be notified of the publication date in due course.

The corresponding author will soon be receiving a typeset proof for review, to ensure errors have not been introduced during production. Please review the PDF proof of your manuscript carefully, as this is the last chance to correct any errors. Please note that major changes, or those which affect the scientific understanding of the work, will likely cause delays to the publication date of your manuscript.

Soon after your final files are uploaded, unless you have opted out or your manuscript is a front-matter piece, the early version of your manuscript will be published online. The date of the early version will be your article's publication date. The final article will be published to the same URL, and all versions of the paper will be accessible to readers.

Thank you again for supporting PLOS Genetics and open-access publishing. We are looking forward to publishing your work!

With kind regards,

Kaitlin Butler

PLOS Genetics

On behalf of:

The PLOS Genetics Team

Carlyle House, Carlyle Road, Cambridge CB4 3DN | United Kingdom

plosgenetics@plos.org | +44 (0) 1223-442823

plosgenetics.org | Twitter: @PLOSGenetics

Associated Data

    This section collects any data citations, data availability statements, or supplementary materials included in this article.

    Supplementary Materials

    S1 Text. List of FinnGen members.

    FinnGen consists of the people listed in the Supplementary text.

    (DOCX)

    S1 Fig. Phenotype distributions of intraocular pressure measurements.

    Phenotype distributions of the corneal-compensated (A) and Goldman-correlated (B) IOP measurements (the median of left and right eyes) stratified by glaucoma disease status in unrelated White British in UK Biobank displayed as a Tukey’s box plot overlapping on a violin plot. In the box plot, the middle bold horizontal line represents the median, the lower and upper hinges show the first and third quartiles, the lower and upper whiskers represent 1.5 * interquartile range from the hinges. The data points beyond whiskers are plotted individually.

    (TIF)

    S2 Fig. The identification of unrelated White British individuals in UK Biobank.

    The identification of unrelated White British individuals in UK Biobank. The first two genotype principal components (PCs) are shown on the x- and y-axis and the identified unrelated White British individuals (Methods) are shown in red.

    (TIF)

    S3 Fig. Genome-wide protein-altering variant association analysis of intraocular pressure phenotypes in UK Biobank.

    Genome-wide protein-altering variant association analysis of corneal compensated (A) and Goldman-correlated (B) intraocular pressure in UK Biobank. The rare (0.01% < MAF < 1%) protein-altering variants with P < 0.01 are shown. The red dashed horizontal line represents the genome-wide significance threshold (P = 10−6). The variants are shown in red (odd autosomes) or blue (even autosomes). The genomic coordinates of the variants are shown on the x-axis and the statistical significance of univariate analysis is shown on the y-axis.

    (TIF)

    S4 Fig. The protein-altering variant GWAS QQ plot for intraocular pressure phenotypes.

    The protein-altering variant GWAS QQ plot for corneal compensated (A) and Goldman-correlated (B) intraocular pressure. The variants outside of MHC region with 0.01% < MAF < 1% are included in the analysis.

    (TIF)

    S5 Fig. The intensity plots for ANGPTL7 protein-altering variants with 0.01% < MAF < 1%.

    The intensity plots for ANGPTL7 protein-altering variants with 0.01% < MAF < 1%. (A) rs200058074 (p.Gln136Arg). (B) rs28991002 (p.Arg140His). (C) rs28991009 (p.Gln175His). (D) rs143435072 (p.Arg177Ter).

    (TIF)

    S6 Fig. The breakdown of the data sources used for the definition of glaucoma in UK Biobank.

    The breakdown of the data sources used for the definition of glaucoma in UK Biobank. The combination of self-reported glaucoma (coded as "1277" in UKB Data coding ID 6) and ICD-10 codes from hospital inpatient data are used for the glaucoma definition in UK Biobank. The number of individuals in the white British individuals without IOP measurements are shown.

    (TIF)

    S7 Fig. Phenome-wide association analysis of p.Arg220Cys in FinnGen.

    Phenome-wide association analysis of p.Arg220Cys in FinnGen. -log10(P-value) is displayed on the y-axis. Disease endpoints grouped by disease categories are displayed on the x-axis. Highlighted associations with P < 1x10-4 are shown.

    (TIF)

    S8 Fig. Protein expression in normal tissues and cell lines from ProteomicsDB and MOPED for ANGPTL7.

    Protein expression in normal tissues and cell lines from ProteomicsDB and MOPED for ANGPTL7.

    (TIF)

    S9 Fig. The cascade plots for intraocular pressure and glaucoma.

    The cascade plot for corneal compensated (A) and Goldman-correlated (B) intraocular pressure association analysis in UK Biobank. The cascade plot for glaucoma (C) from published genome-wide significant GWAS associations (gray) and the variants highlighted in our paper. The minor allele frequency and the BETA (SD) are plotted for the LD-pruned variants with P < 5x10-8. The odds ratios are included for LD pruned published variants with P < 5x10-8 for glaucoma.

    (TIF)

    S1 Data. The homozygous carrier analysis results for ANGPTL7 p.Arg220Cys allele in FinnGen.

    The homozygous carrier analysis results for ANGPTL7 p.Arg220Cys allele in FinnGen. The phenotype (Phenotype and Phenotype_description), the number of cases and controls and case frequency in homozygous carriers (HOM_case, HOM_cntrl, and HOM_case_%, respectively), the number of cases and controls and case frequency in all individuals (ALL_case, ALL_cntrl, and ALL_case_%, respectively), odds ratio (odds_ratio), and p-value from Fisher’s exact test (Fisher_p-value) are shown for disease endpoints.

    (XLSX)

    S2 Data. The PheWAS results for ANGPTL7 p.Arg220Cys allele for eye-related phenotypes in FinnGen.

    The PheWAS results for ANGPTL7 p.Arg220Cys allele for eye-related phenotypes in FinnGen. The phenotype (phenotype_code and phenotype_string), phenotype category (category), beta value (beta), odds ratio (odds_ratio), and p-value (pval) of the association are shown for each of the eye phenotypes.

    (XLSX)

    S3 Data. The PheWAS results for ANGPTL7 p.Arg220Cys allele for non-eye related phenotypes in FinnGen.

    The PheWAS results for ANGPTL7 p.Arg220Cys allele for non-eye related phenotypes in FinnGen. The phenotype (phenotype_code and phenotype_string), phenotype category (category), beta value (beta), odds ratio (odds_ratio), and p-value (pval) of the association are shown for each of the phenotypes that are not labeled as “Diseases of the eye and adnexa” in phenotype category.

    (XLSX)

    S1 Table. List of UK Biobank phenotypes analyzed in the study.

    List of UK Biobank phenotypes analyzed in the study. Phenotype name, the source field ID in UK Biobank (UKB Field ID), phenotype ID in Global Biobank Engine (GBE ID), the number of individuals (N) are shown.

    (XLSX)

    S2 Table. Consistency of the genotype calls for four protein-altering variants in ANGPTL7 between genotyping array and exome sequencing data.

    Consistency of the genotype calls for four protein-altering variants in ANGPTL7 between genotyping array and exome sequencing data. Variant including chromosome, position, reference, and alternate allele (hg19), the rs identifier of the genetic variant (rsID), amino acid nomenclature (HGVSp), genotype call from the array (Array) and exome data (Exome), and the number of individuals (N). Inconsistent variant calls are highlighted in bold font.

    (XLSX)

    S3 Table. Number of individuals stratified by genotype of rare (0.01% < MAF < 1%) protein-altering variants in ANGPTL7.

    Number of individuals stratified by genotype of rare (0.01% < MAF < 1%) protein-altering variants in ANGPTL7. The combination of genotypes is shown in the first four columns (rs200058074, rs28991002, rs28991009, and rs143435072) as well as the number of British individuals with the genotype combination in UK Biobank (n_observed). The expected number of individuals is computed under the Hardy-Weinberg equilibrium model and the independence assumption (n_expected, Method).

    (XLSX)

    S4 Table. GCTA estimates of phenotypic variance explained by the 4 rare variants in ANGPTL7 for the IOP measures and glaucoma.

    GCTA estimates of phenotypic variance explained by the 4 rare variants in ANGPTL7 for the IOP measures and glaucoma. The phenotype (Phenotype and GBE_ID), the estimated local heritability (V(G)/Vp), standard error (SE), and p-value (P) are shown. The SE and P are estimated based on from Jackknife method.

    (XLSX)

    S5 Table. ANGPTL7 IOP protein-altering variant association for 6 IOP measurements in UK Biobank.

    ANGPTL7 IOP protein-altering variant association for 6 IOP measurements in UK Biobank. The association statistics for 6 IOP traits (corneal compensated IOP [median INI2005254, right: INI5254, and left: INI5262] and Goldman-correlated IOP [median INI2005255, right: INI5255, and left: INI5263]) are shown. The phenotype (GBE_ID), variant (chromosome, position, reference, and alternate allele [hg19]), rsID, the HGVS amino acid nomenclature (HGVSp), and the estimated regression coefficient with 95% confidence intervals (BETA [95% CI]), and p-value of association (P) are shown.

    (XLSX)

    S6 Table. ANGPTL7 IOP protein-altering variant association for 6 IOP measurements in UK Biobank.

    Pairwise genetic correlation of IOP phenotypes. The genetic correlation (rg) for pairs of traits (Trait 1 and Trait 2, shown as GBE ID for 6 IOP traits (corneal compensated IOP [median INI2005254, right: INI5254, and left: INI5262] and Goldman-correlated IOP [median INI2005255, right: INI5255, and left: INI5263]) is shown with the standard error estimates (SE) based on Jackknife.

    (XLSX)

    S7 Table. Glaucoma definitions in FinnGen.

    Glaucoma definitions in FinnGen. ICD-codes are used in the Finnish hospital discharge and cause-of-death registries. ATC-codes are used in the Social Insurance Institution prescription drug purchase registry. All endpoint definitions in the FinnGen phenome-wide association analysis are available online (https://www.finngen.fi/fi/node/68).

    (XLSX)

    S8 Table. FinnGen summary of MYOC p.Gln168Ter and ANGPTL7 p.Arg220Cys carriers in primary open glaucoma and all glaucoma cases.

    FinnGen summary of MYOC p.Gln168Ter and ANGPTL7 p.Arg220Cys carriers in primary open glaucoma cases (A) and all glaucoma (B). The numbers of primary open-angle glaucoma (POAG) cases/controls stratified by genotype are shown. FinnGen summary of genotype counts for ANGPTL7 p.Arg220Cys in unrelated individuals in primary open glaucoma cases (C) and all glaucoma (D).

    (XLSX)

    S9 Table. ANGPTL7 protein-altering variant association with reproductive fitness.

    ANGPTL7 protein-altering variant association with reproductive fitness, (A) the number of live births and (B) the number of children fathered. Variant includes chromosome, position, reference, and alternate allele (hg19). rsID—the rs identifier of the genetic variant. HGVSp—the HGVS protein sequence name. MAF—the minor allele frequency in UK Biobank British population. Beta—estimated regression coefficient with 95% confidence intervals. P—p-value of association.

    (XLSX)

    S10 Table. The PheWAS results for the four protein-altering variants in ANGPTL7 in UK Biobank.

    The PheWAS results for the four protein-altering variants in ANGPTL7 in UK Biobank. The association summary statistics with P < 1.0 x 10−3 and SE < .5 are shown.

    (XLSX)

    Attachment

    Submitted filename: ANGPTL7_Glaucoma_review_response_20191218.pdf

    Data Availability Statement

    The genome-wide summary statistics and the results of gene-based burden and dispersion tests are available at NIH’s instance of figshare (https://doi.org/10.35092/yhjc.11368022 and http://doi.org/10.35092/yhjc.11369166, respectively)[41][47]. Analysis scripts and notebooks are available on GitHub (https://github.com/rivas-lab/ANGPTL7/).


    Articles from PLoS Genetics are provided here courtesy of PLOS

    RESOURCES