Abstract
Abstract. Vegetated sites below bird‐nesting cliffs are uniquely nutrient‐rich habitats in the otherwise nutrient‐poor arctic environment. Plants from six distinct vegetation zones below such a cliff at 79° N, Svalbard, Norway, were collected for analysis under greenhouse conditions. Leaf nitrate reductase activity (NRA) was analysed in 42 species representing 25 % of the Svalbard vascular flora. The species mean NRA values ranged from 0.37 to 8.34 μmols of nitrite ions formed per gram of plant fresh weight per hour. Species in the vegetated zone growing closest to recent guano deposits had the highest NRA values, (mean = 4.47) whereas plants growing farther below the cliff had significantly lower values (mean = 0.55).
A similar pattern was detected in a duplicate set of plants induced with 15 mM KNO3; vegetation zone means for NRA ranged from 5.08 to 0.98 μmols of nitrite ions formed per gram of plant fresh weight per hour. Maximally induced species NRA values were highest in the first zones below the cliff and decreased downslope. This gradient paralleled the steep soil nitrate gradient, which decreased from 13.84 mg/l at the cliffbase to 1.03 mg/l downslope. Correspondingly, soil ammonium ions in the vegetation zones ranged between 1.96 mg/l at the cliff‐base to 0.03 mg/l downslope. Correlations between NRA and soil nitrate provide a systematic basis for assigning scalar ‘nitrogen figures’ as indicators of habitat preference, here for the first time applied to arctic species.
Keywords: Ammonia, Guano, Nitrogen indication, Soil nitrate
Nomenclature: Rønning (1979).
References
- Aune, B. 1982. Klima; Climate at Norwegian Arctic Stations. Nor. Meteorol. Inst. 5: 1–44. [Google Scholar]
- Bedard, J. , Therriault, J. C. & Berube, J. 1980. Assessment of the importance of nutrient recycling by seabirds in the St. Lawrence Estuary. Can. J. Fish. Aquat. Sci. 37: 583–588. [Google Scholar]
- Beevers, L. & Hageman, R. H. 1969. Nitrate reduction in higher plants. Annu. Rev. Plant Ecol. 20: 459–522. [Google Scholar]
- Bosman, A. L. , Du Toit, J. T. , Hockey, P. A. R. & Branch, G. M. 1986. A field experiment demonstrating the influence of seabird guano on intertidal primary production. Coast. Shelf Sci. 23: 283–294. [Google Scholar]
- Callaghan, T. V. & Emanuelsson, U. 1985. Population structure and processes of tundra plants and vegetation In: White J. (ed.) The population structure of vegetation, pp. 399–440. Blackwell, Oxford. [Google Scholar]
- Clarkson, D. T. , Hopper, M. J. & Jones, L. H. P. 1986. The effect of root temperature on the uptake of nitrogen and the relative size of the root system in Lolium perenne I. Solutions containing both NH4 + and NO3 ‐ . Plant Cell Environ. 9: 535–545. [Google Scholar]
- Ellenberg, H. 1979. Zeigerwerte von Pflanzen in Mitteleuropa. 2. ed. Scr. Geobot. 9: 1–122. [Google Scholar]
- Ellenberg, H. , Wever, H. E. , Düll, R. , Wirth, V. , Werner, W. & Paulißen, D. 1991. Zeigerwerte von Pflanzen in Mitteleuropa. Scr. Geobot. 18: 1–248. [Google Scholar]
- Franz, E. H. & Haines, B. L. 1977. Nitrate reductase activities of vascular plants in a terrestrial sere: relationship of nitrate to uptake and the cybernetics of biogeochemical cycles. Bull. Ecol. Soc. Am. 58: 62. [Google Scholar]
- Gebauer, G. , Rehder, H. & Wollenweber, B. 1988. Nitrate, nitrate reduction and organic nitrogen in plants from different ecological and taxonomic groups of Central Europe. Oecologia (Berl.) 75: 371–385. [DOI] [PubMed] [Google Scholar]
- Gigon, A. & Rorison, I. H. 1972. The response of some ecologically distinct plant species to nitrate and ammonium nitrogen. J. Ecol. 60: 93–99. [Google Scholar]
- Guerrero, M. G. 1985. Assimilatory nitrate reduction In: Coombs J., Hall D. O., Long S. P. & Surlock J. M. O. (eds.) Techniques in bioproductivity and photosynthesis, pp. 165–172, Pergamon Press, New York, NY. [Google Scholar]
- Havill, D. C. , Lee J. A. & Stewart, G. R. 1974. Nitrate utilization by species from acidic and calcareous soils. New Phytol. 73: 1221–1231. [Google Scholar]
- Hipkin, C. R. , Gharbi, A. A. & Robertson, K. P. 1984. Studies on nitrate reductase in British angiosperms. II. Variations in nitrate reductase activity in natural populations. New Phytol. 97: 641–651. [Google Scholar]
- Hisdal, V. 1987. Spectral distribution of global and diffuse solar radiation in Ny‐Ålesund, Spitsbergen. Polar Res. 5: 1–28. [Google Scholar]
- Högbom, L. & Ohlson, M. 1991. Nitrate assimilation in coexisting vascular plants in mire and swamp forest habitats in Central Sweden. Oecologia (Berl.) 87: 495–499. [DOI] [PubMed] [Google Scholar]
- Lee, J. A. & Stewart, G. R. 1978. Ecological aspects of nitrogen assimilation. In: Woolhouse H. W. (ed.) Adv. Bot. Res. 6: 1–43. [Google Scholar]
- Lee, J. A. , Woodin, S. J. & Press, M. C. 1986. Nitrogen assimilation in an ecological context In: Lambers H., Neeteson J. J. & Stulen I. (eds.) Fundamental, ecological and agricultural aspects of nitrogen metabolism in higher plants, pp. 331–346. Martinus Nijhoff Publishers, Dordrecht. [Google Scholar]
- Lillo, C. 1984. Circadium rhythmicity of nitrate reductase activity in barley leaves. Physiol. Plant. 61: 219–223. [Google Scholar]
- Maessen, O. , Freeman, B. , Nams, M. L. N. & Svoboda, J. 1983. Resource allocation in high‐arctic vascular plants of differing growth forms. Can. J. Bot. 61: 1680–1691. [Google Scholar]
- Margolis, H. A. , Vézina, L. P. & Ouimet, R. 1988. Relation of light and nitrogen source to growth, nitrate reductase and glutamine synthetase activity of jack pine seedlings. Physiol. Plant. 72: 790–795. [Google Scholar]
- Mooney, H. A. & Billings, W. D. 1961. Comparative physiological ecology of arctic and alpine populations of Oxyria digyna . Ecol. Monogr. 31: 1–29. [Google Scholar]
- Muller, B. & Garnier, E. 1990. Components of relative growthrate and sensitivity to nitrogen availability in annual and perennial species of Bromus . Oecologia (Berl.) 84: 513–518. [DOI] [PubMed] [Google Scholar]
- Nicholas, J. C. , Harper, J. E. & Hageman, R. H. 1976. Nitrate reductase activity in soybeans (Glycine max (L.) Merr.) 1. Effects of light and temperature. Plant Physiol. 58: 731–735. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Odasz, A. M. 1988. Nitrat‐reductase aktivitet i karplanter fra fuglefjell på Svalbard. Blyttia 46: 75–84. [Google Scholar]
- Odasz, A. M. 1989. Rønning vs. Decorana. K. Nor. Vidensk. Selsk. Mus. Rapp. Bot. Ser. 2: 35–56. [Google Scholar]
- Rønning, O. 1979. Svalbard flora. Norsk Polarinstitutt, Oslo. [Google Scholar]
- Shaver, G. R. & Chapin, F. S. III . 1980. Response to fertilization by various plant growth forms in an Alaskan tundra: nutrient accumulation and growth. Ecology 61: 662–675. [Google Scholar]
- Speir, T. W. & Cowling, J. C. 1984. Ornithogenic soils of the cape bird Adelie Penguin rookeries, Antarctica. 1. Chemical properties. Polar Biol. 2: 199–205. [Google Scholar]
- Stearns, S. C. 1976. Life history tactics: a review of ideas. Quat. Rev. Biol. 51: 3–47. [DOI] [PubMed] [Google Scholar]
- Tatur, A. & Barczuk, A. 1985. Ornithogenic phosphates on King George Island in the Maritime Antarctic In: Siegfried W. R., Condy P. R. & Laws R. M. (eds.) Antarctic nutrient cycles and food webs, pp. 163–168. Springer‐Verlag, Berlin. [Google Scholar]
- Thurston, J. M. 1969. The effect of liming and fertilizers on the botanical composition of permanent grassland and on the yield of hay In: Rorison I. H. (ed.) Ecological aspects of the mineral nutrition of plants, pp. 3–10, Blackwell, Oxford. [Google Scholar]
- Väre, H. , Vestberg, M. & Eurola, S. In press. Mycorrhiza and root‐associated fungi in Spitzbergen. Lindbergia.