Abstract
Molecular techniques using fungal DNA barcoding (ITS) and other markers have been key to identifying the biodiversity of different geographic areas, mainly in megadiverse countries. Here, we provide an overview of the fungal diversity in Brazil based on DNA markers of phylogenetic importance generated since 1996. We retrieved fungal sequences of ITS, LSU, SSU, tef1-α, β-tubulin, rpb1, rpb2, actin, chitin synthase, and ATP6 from GenBank using different field keywords that indicated their origin in Brazil. A total of 19,440 sequences were recovered. ITS is the most representative marker (11,209 sequences), with 70.1% belonging to Ascomycota, 18.6% Basidiomycota, 10.2% unidentified, 1.1% Mucoromycota, two sequences of Olpidium bornovanus (Fungi incertae sedis), one sequence of Blastocladiomycota (Allomyces arbusculus), and one sequence of Chytridiomycota (Batrachochytrium dendrobatidis). Considering the sequences of all selected markers, only the phyla Cryptomycota and Entorrhizomycota were not represented. Based on ITS, using a cutoff of 98%, all sequences comprise 3047 OTUs, with the majority being Ascomycota (2088 OTUs) and Basidiomycota (681 OTUs). Previous numbers based mainly on morphological and bibliographical data revealed 5264 fungal species from Brazil, with a predominance of Basidiomycota (2741 spp.) and Ascomycota (1881 spp.). The unidentified ITS sequences not assigned to a higher taxonomic level represent 1.61% of all ITS sequences sampled and correspond to 38 unknown class-level lineages (75% cutoff). A maximum likelihood phylogeny based on LSU illustrates the fungal classes occurring in Brazil.
Keywords: Brazil, Brazilian List, Fungi, GenBank, ITS barcoding
Introduction
The kingdom Fungi is monophyletic and consists of eukaryotic and heterotrophic organisms with a great diversity regarding their morphological, molecular, subcellular, biochemical, and ecological aspects [1–4]. For decades, many authors have attempted to estimate the global number of fungal species. Hawksworth [5] estimated 1.5 million species based on a 5:1 ratio of fungal to plant species. This conservative number was widely accepted until the early twenty-first century. More recent estimates based on molecular analyses of environmental samples from soil communities revealed numbers of about 3.5–5.1 [6] to 6 million [7] species. Recently, Hawksworth and Lücking [8] proposed an updated estimate of 2.2–3.8 million global fungal species. However, the number of described species in the world is currently about 120,000 [8], which means that we only know 2 or 3.1–5.4% of the estimates presented by Taylor et al. [7] and Hawksworth and Lücking [8], respectively.
The taxonomy and classification of fungi have been based on different characteristics through the last two centuries, including biochemical, molecular, morphological, physical, physiological, and sexual [1, 9]. Molecular techniques using fungal DNA barcoding and other markers have been key to identifying and exploring the biodiversity of different geographic areas [10–12] and are even more useful to explore megadiverse countries [13].
The nuclear ribosomal DNA internal transcribed spacer (ITS) region has been widely used in phylogenetic studies for sequence-based classification and identification in many fungal groups [13–18], as well as for exploration of fungal diversity in diverse substrates [19–23].
The ITS region has been proposed as the universal DNA barcoding marker for fungi [24]. However, in some groups of fungi, ITS does not provide the best taxonomic resolution and other markers represent reasonable alternatives, e.g., the D1/D2 domains of the nuclear ribosomal large subunit (LSU) gene for many yeasts [25–27]; the nuclear ribosomal small subunit (SSU) gene for arbuscular mycorrhizal fungi [28]; the β-tubulin for Penicillium spp. [29]; and the translation elongation factor 1-α (tef1-α), the largest subunit of RNA polymerase II largest (rpb1), and the second largest subunit of RNA polymerase II (rpb2) for Fusarium spp. [30].
Furthermore, multi-loci analyses have been essential for a better resolution of the higher taxonomic level relationships [31–37] or species complexes [38–42], and the number of complete fungal genome sequences for genetic and phylogenomic studies has substantially increased [43–45].
The advent of generating DNA sequences for biodiversity studies brought together many new web-accessible databases and tools [46]. The International Nucleotide Sequence Database Collaboration (INSDC) is a long-standing foundational initiative that represents the most widely used sequence repository [47, 48] and comprises, among other sources, the GenBank (at the National Center for Biotechnology Information - NCBI), a comprehensive no cost and publicly available database for DNA data [49, 50]. The UNITE database, which focuses on ITS fungal sequences, has also been an important tool for the identification of environmental sequence data, mainly obtained through metabarcoding efforts [51].
The latest GenBank release (October 2019) recorded 216,763,706 sequences that have been deposited since 1982 [52] and, according to Benson et al. [49], contains almost 260,000 formally described species of diverse organisms. Hawksworth and Lücking [8] pointed out that the named fungal species with sequences in Genbank (until November 2016) represent only 29% of the 120,000 known species. The authors also reinforced the importance of obtaining sequences for the missing named accepted species, while Seifert and Rossman [53] have already highlighted the value of DNA sequences in describing new species. However, this is not a formal requirement according to the International Code of Nomenclature for algae, fungi, and plants [54].
The number of DNA sequences from Brazilian fungal samples has increased considerably over the last decades and, together with documentation of new records and species, the knowledge about the Brazilian fungal diversity has also improved [55–59]. In 2010, based on a collaborative project and as part of the Global Strategy for Plant Conservation (GSPC), the first online version of the “Catalog of Plants and Fungi of Brazil” that provided 3187 species names of fungi to Brazil, among other groups of algae, plants, and fungus-like organisms [60], was published. The online version of the “Brazilian List,” as it is popularly known, was continually updated until 2015 and it includes data about nomenclature, geographic distribution, life form, substrate, and habitat [61] although there is no molecular data associated with these records.
Based on the updated Brazilian List, Maia et al. [62] compiled a total of 5264 accepted fungal species names (excluding fungus-like organisms) which represent an increment of approximately 65% to the number of species previously presented in 2010. Despite the contribution of many researchers to update the Brazilian List, the 5264 names represent only 36–40% of the number of known fungal species in Brazil, which was suggested by Lewinsohn and Prado [63] as 13,090–14,510, and only 2–3.5% of the 150,000–263,000 species estimated as occurring in the country [63].
Considering the importance of molecular data for biodiversity studies and the potential for mycological research in Brazil, we provide an overview of the fungal diversity in Brazil represented by selected DNA markers available in GenBank since 1996, when the first DNA sequences from Brazilian samples were deposited in the database.
The main goal of this work is to characterize the Brazilian fungal diversity based on DNA sequences generated over 20 years. Therefore, we (i) determine the total number of sequences of each marker per higher taxonomic categories, and how many sequences of each marker became available per year; (ii) determine which phyla, classes, and orders are represented by each marker; (iii) determine what is the Brazilian diversity of fungi based on the ITS sequences with a cutoff of 98% similarity; (iv) access the unidentified ITS sequences to assign them to a higher taxonomic level (phylum or class); (v) determine which are the best represented genera based on the number of ITS sequences and the number of operational taxonomic units (OTUs) they represent; (vi) illustrate the Brazilian fungal diversity represented in GenBank within a phylogenetic context; and (vii) compare the diversity of the molecular data with the number of fungal species estimated and known for the country.
Material and methods
Obtaining sequences and metadata
DNA sequences of fungi from Brazil corresponding to 10 selected markers were retrieved from the NCBI GenBank database in October 2017, using query strings (Table 1) to search the sequences from Brazil, including ITS (nuclear ribosomal internal transcribed spacer), LSU (nuclear ribosomal large subunit), SSU (nuclear ribosomal small subunit), rpb1 (RNA polymerase II largest subunit), rpb2 (RNA polymerase II second largest subunit), tef1-α (translation elongation factor 1-alpha), actin, chitin synthase, ATP6 (ATPase 6), and β-tubulin. The markers were selected based on the list of DNA markers of phylogenetic importance suggested in MycoBank to register a new taxon (http://www.mycobank.org). The sequences were downloaded in a file with format GenBank (full), which was parsed using a custom Perl script (available upon request) to extract information from the following fields: “country,” “host,” “voucher,” “isolate,” “strain,” “isolation source,” and “notes.” Then, we parsed each of the records and extracted the accession numbers that contained “Brazil” or “Brasil.” Once we had the corresponding accession numbers of the sequences that represented samples exclusively from Brazil, we extracted the information on “source” and submission date, which is usually included in one of the fields labeled as “journal.”
Table 1.
Query strings used to search for DNA sequences from Brazilian fungal samples in GenBank
| Query | Query strings |
|---|---|
| Main query (country) | Fungi[ORGN] AND 300:10000[SLEN] AND Brazil OR Brasil |
| ITS* | rRNA[Title] OR ribosomal RNA[Title] |
| LSU* | rRNA[Title] OR ribosomal RNA[Title] |
| SSU* | rRNA[Title] OR ribosomal RNA[Title] |
| rpb1 | rpb1[Title] OR RNA polymerase II largest subunit[Title] NOT rpb2 NOT rpbII |
| rpb2 | rpb2[Title] OR rpbII[Title] OR RNA polymerase II second largest subunit[Title] OR RNA polymerase II second large subunit[Title] NOT rpb1 |
| tef1-α | TEF1[Title] OR EF1[Title] OR EF-1[Title] OR TEF-1[Title] OR TEF[Title] OR tef1a[Title] OR EF[Title] OR translation elongation factor 1[Title] OR EF1alpha[Title] OR EF1a[Title] OR EF1-alpha[Title] OR TEF1-alpha[Title] |
| actin | actin[Title] OR actG[Title] |
| chitin synthase | chitin synthase[Title] OR CHS[Title] OR CHS-1[Title] |
| ATP6 | ATP6[Title] OR ATPase6[Title] OR ATP synthase F0 subunit 6[Title] OR ATP synthase subunit 6[Title] OR MTATP synthase F0 subunit 6[Title] OR MT-ATP6[Title] OR MTATP6[Title] OR ATP-6[Title] |
| β-tubulin | tub[Title] OR btub[Title] OR beta-tubulin[Title] OR tubulin[Title] OR tub2[Title] |
*The module gene_parser from PifCoSM (https://github.com/RybergGroup/PifCoSm) was used to separate the ITS, LSU, and SSU regions, with additional manual inspection to remove redundant sequences
We considered the taxon name associated to the “source” field and followed the fungal classification adopted by the GenBank database, which is continually updated and currently considers nine phyla (Ascomycota, Basidiomycota, Blastocladiomycota, Chytridiomycota, Cryptomycota, Entorrhizomycota, Microsporidia, Mucoromycota, and Zoopagomycota), based on the most recent phylogenies [2, 45, 64–66].
Computational analyses
In order to recognize operational taxonomic units (OTUs), we downloaded all the ITS sequences from Brazil and used the software CD-hit [67] with a cutoff of 98%, following the sequence similarity adopted by Tedersoo et al. [11] in a global diversity study of soil fungi.
Many of the retrieved sequences were unidentified. In order to assign them to a higher taxonomic level (phylum or class), we performed a BLASTn analysis against the NCBI GenBank database, using -max_target_seqs 50 and -outfmt “7 qacc sacc evalue ppos sscinames.” The hit with the highest percentage of similarity was used as a proxy of the identity of the sequence. A few of the sequences gave unclear results, and we were not able to assign them to any known taxonomic category, so they remained as unidentified and were later clustered using CD-hit with a cutoff of 98% to estimate the number of OTUs that remained unclassified, and with a cutoff of 75%, representing class-level following the criterion adopted by Tedersoo et al. [11], to identify if these sequences belonged to different higher taxonomic levels.
Additionally, we downloaded all the LSU sequences with the aim of reconstructing a molecular phylogeny to show the Brazilian fungal diversity represented in GenBank within a phylogenetic context. When LSU sequences of particular classes occurring in Brazil were not recovered, but other gene markers were found from Brazilian samples, we downloaded LSU sequences from samples from other parts of the world, just to fully illustrate the diversity of Brazilian fungi represented in GenBank. The LSU sequences were aligned using MAFFT 6.717 [68] and the phylogenetic tree was reconstructed using RAxML 8.2.4 [69]. The maximum likelihood (ML) tree generated was displayed in FigTree v1.4.2 (http://tree.bio.ed.ac.uk/software/figtree/), and the branches were collapsed in classes of fungi or another higher taxonomic category when class was not applicable. The graphics (Figs. 1–3) were created using Microsoft Excel and the final artworks were edited on Adobe Illustrator.
Fig. 1.
Number of DNA sequences from Brazilian fungal samples for each selected marker submitted to GenBank per year
Fig. 3.
Relative proportion of the classification of unidentified Brazilian fungal ITS sequences using BLASTn search against the NCBI GenBank database. A, Ascomycota; B, Basidiomycota; C, Chytridiomycota; M, Mucoromycota; and Z, Zoopagomycota
Results
Our search led to a total of 19,440 DNA sequences of fungal samples from Brazil belonging to seven out of the nine phyla considered by the current classification adopted by GenBank. Only the phyla Cryptomycota and Entorrhizomycota were not recovered.
Ascomycota is the most well-representated phylum with a total of 14,442 sequences, which corresponds to three subphyla (Pezizomycotina, Saccharomycotina, and Taphrinomycotina) and includes 10 classes and 51 orders (Table 2). Basidiomycota has 3518 sequences corresponding to four subphyla (Agaricomycotina, Pucciniomycotina, Ustilaginomycotina, and Wallemiomycotina) and includes 12 classes and 35 orders (Table 2). Mucoromycota showed a lower number of sequences (286), being represented by three subphyla (Glomeromycotina, Mortierellomycotina, and Mucoromycotina) and seven of the eight orders currently recognized in the phylum [45]; only Endogonales was not represented (Table 2).
Table 2.
Number of DNA sequences in GenBank from Brazilian fungal samples assigned to higher taxonomic categories per selected marker
| Taxa | ITS | LSU | tef1 | β-tubulin | rpb2 | SSU | rpb1 | actin | chitin | ATP6 |
|---|---|---|---|---|---|---|---|---|---|---|
| Fungi | ||||||||||
| Unclassified | 1138 | 2 | 22 | |||||||
| Incertae sedis | ||||||||||
| Olpidium (2/6/40) | 2 | |||||||||
| Ascomycota | ||||||||||
| Unclassified | 48 | 23 | ||||||||
| Incertae sedis | ||||||||||
| Amphobotrys (1/1/1) | 2 | |||||||||
| Aporospora (1/-/-) | 1 | |||||||||
| Clathrosporium (2/-/1) | 2 | 2 | ||||||||
| Dichotomophthora (1/-/2) | 2 | |||||||||
| Phaeoramularia (1/-/-) | 1 | |||||||||
| Phaeoseptoria (1/-/19) | 1 | |||||||||
| Phialocephala (-/1/20) | 1 | |||||||||
| Pseudofusarium (1/-/-) | 1 | |||||||||
| Repetophragma (1/-/11) | 1 | |||||||||
| Radulidium (-/-/1) | 1 | |||||||||
| Sirosporium (1/-/25) | 1 | 1 | ||||||||
| Pezizomycotina | ||||||||||
| Unclassified | 3 | 1 | ||||||||
| Incertae sedis | ||||||||||
| Coremiella (-/-/1) | 2 | |||||||||
| Pyriculariopsis (-/-/5) | 1 | |||||||||
| Arthoniomycetes | ||||||||||
| Arthoniales (2/54/1538) | 2 | |||||||||
| Dothideomycetes | ||||||||||
| Unclassified | 4 | 1 | 1 | |||||||
| Asterinales (3/246/-) | 4 | 10 | 3 | |||||||
| Asterotexiales (-/-/-) | 2 | |||||||||
| Botryosphaeriales (160/19/1628) | 913 | 58 | 298 | 116 | 11 | 2 | ||||
| Capnodiales (164/98/7244) | 460 | 237 | 165 | 70 | 49 | 34 | 28 | |||
| Dothideales (7/74/350) | 33 | 37 | 1 | |||||||
| Hysteriales (-/2/69) | 3 | |||||||||
| Myriangiales (22/2/157) | 76 | 67 | 49 | 44 | 20 | 18 | ||||
| Mytilinidiales (1/1/-) | 1 | |||||||||
| Pleosporales (185/76/4764) | 603 | 35 | 11 | 121 | 16 | 13 | ||||
| Trypetheliales (-/-/192) | 35 | |||||||||
| Tubeufiales (8/10/-) | 12 | 10 | 5 | |||||||
| Venturiales (6/2/-) | 7 | 2 | 1 | |||||||
| Incertae sedis | ||||||||||
| Arxiella (1/-/2) | 1 | |||||||||
| Hyalosphaera (-/-/3) | 1 | |||||||||
| Inocyclus (1/-/7) | 3 | 3 | 3 | |||||||
| Perisporiopsis (1/-/16) | 1 | |||||||||
| Phalangispora (1/-/2) | 1 | 1 | ||||||||
| Speiropsis (3/2/7) | 6 | 5 | ||||||||
| Eurotiomycetes | ||||||||||
| Chaetothyriales (79/3/213) | 354 | 36 | 96 | 2 | 6 | 2 | 13 | 23 | ||
| Eurotiales (186/60/928) | 481 | 52 | 1 | 116 | 122 | 31 | 25 | |||
| Onygenales (13/1/271) | 153 | 43 | 2 | 1 | 30 | 1 | ||||
| Phaeomoniellales (7/-/-) | 28 | 1 | ||||||||
| Pyrenulales (-/29/538) | 1 | |||||||||
| Verrucariales (3/2/1032) | 3 | |||||||||
| Lecanoromycetes | ||||||||||
| Unclassified | 2 | |||||||||
| Baeomycetales (-/-/16) | 2 | |||||||||
| Caliciales (1/-/-) | 1 | |||||||||
| Lecanorales (29/219/5695) | 41 | 19 | 1 | 11 | 2 | 3 | ||||
| Ostropales (1/162/2753) | 1 | 33 | 2 | 2 | 5 | |||||
| Peltigerales (6/2/1208) | 19 | 6 | 4 | 4 | ||||||
| Pertusariales (-/8/901) | 1 | |||||||||
| Teloschistales (-/22/1954) | 1 | |||||||||
| Incertae sedis | ||||||||||
| Chromatochlamys (-/-/-) | 2 | |||||||||
| Phlyctis (-/-/12) | 1 | 1 | ||||||||
| Leotiomycetes | ||||||||||
| Erysiphales (15/7/769) | 32 | 8 | ||||||||
| Helotiales (24/60/3881) | 56 | 22 | 9 | 16 | ||||||
| Rhytismatales (1/2/795) | 1 | |||||||||
| Incertae sedis | ||||||||||
| Geomyces (1/-/4) | 1 | |||||||||
| Lauriomyces (1/2/5) | 1 | 1 | ||||||||
| Myxotrichum (1/-/12) | 1 | |||||||||
| Oidiodendron (1/1/28) | 1 | |||||||||
| Pseudeurotium (1/-/5) | 1 | |||||||||
| Xylogone (2/-/1) | 5 | |||||||||
| Orbiliomycetes | ||||||||||
| Orbiliales (5/1/288) | 5 | |||||||||
| Pezizomycetes | ||||||||||
| Pezizales (2/28/1683) | 2 | |||||||||
| Sordariomycetes | ||||||||||
| Unclassified | 2 | |||||||||
| Calosphaeriales (1/-/54) | 1 | |||||||||
| Chaetosphaeriales (13/26/311) | 5 | 4 | ||||||||
| Coniochaetales (8/1/76) | 9 | 4 | 1 | |||||||
| Coronophorales (1/-/87) | 1 | 1 | ||||||||
| Diaporthales (179/8/1196) | 474 | 23 | 80 | 87 | 9 | 1 | ||||
| Falcocladiales (2/-/-) | 4 | 2 | 2 | |||||||
| Glomerellales (88/-/-) | 1010 | 15 | 1 | 439 | 1 | 1 | 3 | |||
| Hypocreales (263/82/2647) | 1286 | 101 | 1006 | 335 | 227 | 84 | 111 | 31 | ||
| Magnaporthales (18/-/-) | 27 | 12 | 126 | 130 | 10 | 5 | ||||
| Meliolales (3/87/1980) | 3 | 20 | 11 | |||||||
| Microascales (22/4/397) | 103 | 3 | 10 | 34 | 5 | |||||
| Myrmecridiales (1/-/-) | 3 | 2 | ||||||||
| Ophiostomatales (8/-/341) | 133 | 1 | 89 | 39 | 5 | |||||
| Phyllachorales (26/2/1226) | 54 | 1 | 32 | |||||||
| Sordariales (38/63/854) | 94 | 8 | 5 | 1 | 4 | |||||
| Togniniales (6/-/-) | 8 | 26 | ||||||||
| Trichosphaeriales (17/2/73) | 41 | 1 | 1 | |||||||
| Xylariales (163/275/2487) | 319 | 50 | 5 | 29 | 3 | 1 | 2 | |||
| Incertae sedis | ||||||||||
| Papulosa (-/-/1) | 1 | |||||||||
| Saccharomycotina | ||||||||||
| Saccharomycetes | ||||||||||
| Saccharomycetales (237/-/906) | 867 | 936 | 12 | 6 | 8 | 8 | 12 | |||
| Taphrinomycotina | ||||||||||
| Schizosaccharomycetes | ||||||||||
| Schizosaccharomycetales (1/-/5) | 1 | |||||||||
| Basidiomycota | ||||||||||
| Unclassified | 10 | |||||||||
| Agaricomycotina | ||||||||||
| Agaricomycetes | ||||||||||
| Unclassified | 1 | 13 | ||||||||
| Agaricales (202/924/13233 | 437 | 76 | 130 | 8 | 7 | 25 | ||||
| Amylocorticiales (1/-/-) | 1 | 1 | ||||||||
| Atheliales (2/10/106) | 2 | 28 | 27 | 2 | ||||||
| Auriculariales (5/29/198) | 9 | 9 | 3 | |||||||
| Boletales (20/92/1316) | 45 | 11 | 1 | 1 | 2 | 1 | ||||
| Cantharellales (62/40/544) | 186 | 7 | 1 | 34 | ||||||
| Corticiales (4/22/136) | 4 | 5 | 1 | |||||||
| Geastrales (10/37/64) | 16 | 13 | 6 | 4 | ||||||
| Gloeophyllales (1/2/33) | 1 | |||||||||
| Gomphales (2/5/336) | 4 | 1 | 4 | |||||||
| Hysterangiales (2/6/114) | 7 | |||||||||
| Hymenochaetales (54/165/610) | 83 | 79 | 28 | 31 | ||||||
| Lepidostromatales (1/-/-) | 11 | 1 | ||||||||
| Phallales (2/35/88) | 3 | 2 | 2 | 2 | 2 | |||||
| Polyporales (116/453/1801) | 207 | 145 | 2 | 3 | 2 | 1 | 1 | |||
| Russulales (6/137/1767) | 6 | 1 | 1 | 1 | ||||||
| Sebacinales (-/-/30) | 4 | |||||||||
| Stereopsidales (1/-/-) | 1 | 3 | 3 | |||||||
| Thelephorales (7/7/269) | 9 | |||||||||
| Dacrymycetes | ||||||||||
| Dacrymycetales (1/3/101) | 1 | 3 | ||||||||
| Tremellomycetes | ||||||||||
| Cystofilobasidiales (1/-/20) | 1 | 1 | ||||||||
| Filobasidiales (2/-/4) | 3 | 6 | ||||||||
| Tremellales (66/4/341) | 200 | 232 | 26 | 22 | 65 | 29 | 2 | |||
| Trichosporonales (19/-/-) | 60 | 57 | 1 | 1 | 1 | |||||
| Pucciniomycotina | ||||||||||
| Agaricostilbomycetes | ||||||||||
| Agaricostilbales (1/-/43) | 1 | 2 | ||||||||
| Incertae sedis | ||||||||||
| Sporobolomyces (1/-/25) | 2 | 2 | ||||||||
| Cystobasidiomycetes | ||||||||||
| Unclassified | 1 | |||||||||
| Cystobasidiales (7/-/9) | 12 | 8 | ||||||||
| Erythrobasidiales (5/-/2) | 5 | 3 | ||||||||
| Incertae sedis | ||||||||||
| Symmetrospora (3/-/-) | 5 | 4 | ||||||||
| Microbotryomycetes | ||||||||||
| Sporidiobolales (14/-/83) | 22 | 42 | ||||||||
| Incertae sedis | ||||||||||
| Colacogloea (2/-/4) | 2 | 1 | ||||||||
| Curvibasidium (-/-/2) | 1 | |||||||||
| Yunzhangia (-/-/-) | 1 | |||||||||
| Pucciniomycetes | ||||||||||
| Pucciniales (9/749/7798) | 615 | 5 | 13 | 14 | 1 | |||||
| Ustilaginomycotina | ||||||||||
| Exobasidiomycetes | ||||||||||
| Exobasidiales (3/-/83) | 4 | 6 | 1 | |||||||
| Microstromatales (4/-/10) | 9 | 6 | 1 | |||||||
| Malasseziomycetes | ||||||||||
| Malasseziales (26/-/7) | 101 | 77 | ||||||||
| Moniliellomycetes | ||||||||||
| Moniliellales (-/-/-) | 7 | |||||||||
| Ustilaginomycetes | ||||||||||
| Ustilaginales (10/-/851) | 13 | 23 | 3 | 1 | 1 | 7 | 4 | |||
| Wallemiomycotina | ||||||||||
| Wallemiomycetes | ||||||||||
| Wallemiales (-/-/2) | 1 | 1 | ||||||||
| Blastocladiomycota | ||||||||||
| Blastocladiomycetes | ||||||||||
| Blastocladiales (1/17/179) | 1 | 2 | 1 | 1 | 1 | |||||
| Chytridiomycota | ||||||||||
| Chytridiomycetes | ||||||||||
| Chytridiales (-/68/494) | 1 | |||||||||
| Cladochytriales (-/-/-) | 1 | |||||||||
| Rhizophydiales (1/24/104) | 1 | |||||||||
| Spizellomycetales (-/1/27) | 1 | 1 | ||||||||
| Microsporidia | ||||||||||
| Nosema (-/-/81) | 9 | |||||||||
| Pleistophora (-/-/34) | 1 | 1 | ||||||||
| Potaspora (-/-/-) | 1 | 1 | ||||||||
| Mucoromycota | ||||||||||
| Glomeromycotina | ||||||||||
| Unclassified | 3 | 3 | 2 | |||||||
| Glomeromycetes | ||||||||||
| Archaeosporales (2/10/6) | 3 | 4 | ||||||||
| Diversisporales (24/39/74) | 38 | 46 | 44 | |||||||
| Glomerales (5/61/86) | 23 | 23 | 3 | 4 | ||||||
| Paraglomerales (-/5/3) | 4 | |||||||||
| Mortierellomycotina | ||||||||||
| Mortierellales (1/10/93) | 1 | |||||||||
| Mucoromycotina | ||||||||||
| Mucorales (35/76/205) | 60 | 20 | 2 | |||||||
| Umbelopsidales (1/-/-) | 1 | |||||||||
| Zoopagomycota | ||||||||||
| Entomophthoromycotina | ||||||||||
| Entomophthoromycetes | ||||||||||
| Entomophthorales (-/3/256*) | 2 | |||||||||
| Neozygitomycetes | ||||||||||
| Neozygitales (-/2/21**) | 2 | |||||||||
| Kickxellomycotina | ||||||||||
| Kickxellales (-/-/32) | 1 | 1 | ||||||||
| Total | 11,209 | 2863 | 2097 | 1693 | 603 | 493 | 241 | 128 | 65 | 48 |
Numbers in parentheses for each taxon represent, respectively, the number of OTUs based on ITS (98% cutoff)/the number of species in the Brazilian List [93]/the global number of known species [92]. (-/-/-), OTUs not calculated because no ITS sequences available/number of taxa not available in the Brazilian List [93]/number of known species not considered by Kirk et al. [92] because the taxon was newly described or treated in a different taxonomic rank
*Number based on Entomophthorales, excluding Neozygitaceae
**Number based on Neozygitaceae
There are few DNA sequences available for the other four phyla sampled and also fewer taxa represented (Table 2). Microsporidia has a total of 13 sequences from three species: Nosema ceranae I. Fr., F. Feng, JA da Silva, SB Slemenda & NJ Pieniazek [70]; Pleistophora hyphessobryconis Schäperclaus [71]; and the non-validly published taxon Potaspora aequidens [72]. Blastocladiomycota is represented by six sequences of Allomyces arbusculus EJ Butler (Blastocladiomycetes, Blastocladiales) [73].
Zoopagomycota has a total of six sequences of Entomophthoromycotina and Kickxellomycotina, represented by Conidiobolus lamprauges Drechsler (Entomophthorales, Entomophoromycetes) [74]; Neozygites tanajoae Delal., Humber & AE Hajek (Neozygitales, Neozygitomycetes) [55]; Coemansia brasiliensis Thaxt. ex Linder [75]; and Spiromyces sp. (Kickxellales). Finally, Chytridiomycota is represented by five sequences from four orders of Chytridiomycetes, including the following taxa: Batrachochytrium dendrobatidis Longcore, Pessier & DK Nichols (Rhizophydiales) [76]; Geranomyces variabilis (Longcore, DJS Barr & Désauln.) DR Simmons (Spizellomycetales) [77]; and Entophlyctis luteolus Longcore (Chytridiales) and Nowakowskiella multispora Karling (Cladochytriales). Two sequences of the incertae sedis taxon Olpidium bornovanus Sahtiy. ex Karling (=Leiolpidium bornovanum Doweld) [78, 79] were also recovered. A total of other 1162 unidentified sequences not assigned to any phylum completed our dataset.
The ITS region is the most representative marker, corresponding to 57.7% of the total number of sequences, and followed by LSU (14.7%), tef1-α (10.8%), β-tubulin (8.7%), rpb2 (3.1%), SSU (2.5%), rpb1 (1.2%), actin (0.7%), chitin synthase (0.3%), and ATP6 (0.2%). The first sequences from fungal Brazilian samples submitted to GenBank were SSU sequences dated October 25, 1996 (Fig. 1): U76338 Colletotrichum gloeosporioides (Penz.) Penz. & Sacc. and U76340 Sphaerodothis acrocomiae Chardón & RED Baker (=Camarotella costaricensis (F. Stevens) KD Hyde & PF Cannon). The next sequences were submitted in 1998 (Fig. 1) and represent ITS and LSU sequences (AF079596, AF079643–AF079644, AF079678, AF079725–AF079726) of some Agaricales ant symbiont [80], ITS (AF046891 and AF046900) of a phytopathogenic Diaporthales [81], and ITS (AF097913) of a new species of Trichoderma described as a parasite of the cacao witches broom pathogen [82].
The first sequences for the other markers have been submitted since 2000 for β-tubulin, 2002 for tef1-α, 2003 for actin, 2005 for rpb1 and rpb2, and 2007 for ATP6 and chitin synthase (Fig. 1). The number of ITS sequences has been continuously increasing since 2006, with a decrease in 2012, 2013, and 2015, and the highest number of sequences was submitted in 2016.
The phyla represented by each marker are not equally distributed and, although ITS is the most commonly used marker, SSU is the only marker that includes sequences of all the seven sampled phyla (Fig. 2). Also, Ascomycota is the best represented phylum for most markers, except for ATP6, which is predominantly composed of sequences of Basidiomycota, mainly phytopathogens that belong to the order Cantharellales (Agaricomycetes) [83]. The total number of ITS sequences includes 7837 sequences of Ascomycota, 2100 Basidiomycota, 1138 unidentified, 130 Mucoromycota, two sequences of Olpidium bornovanus, one sequence of Blastocladiomycota (Allomyces arbusculus), and one sequence of Chytridiomycota (Batrachochytrium dendrobatidis).
Fig. 2.
Relative proportion of DNA sequences in GenBank from Brazilian fungal samples assigned to phyla for all and each selected marker
Based only on the ITS sequences and using a cutoff of 98%, the Brazilian fungal sequences comprise a total of 3047 OTUs, of which 2088 belong to Ascomycota, 681 belong to Basidiomycota, and 69 belong to Mucoromycota. The unidentified sequences not assigned at least to the phylum rank represent 245 OTUs. When performing a BLASTn search of these unidentified sequences at > 75% sequence similarity (representing class-level), they were assigned to seven classes of Ascomycota (67.14% of the unidentified sequences), three classes of Basidiomycota (15.47%), three subphyla in Mucoromycota (1.14%), plus sequences in Chytridiomycota and Zoopagomycota; 181 sequences could not be assigned to any known class of fungi with this approach (Fig. 3). Furthermore, clustering the 181 unclassified sequences revealed 72 distinct OTUs using a cutoff of 98% and 38 higher level groups at 75% cutoff, indicating that there are many unknown deeply divergent lineages in Brazil.
For the identified ITS sequences, the classes with the greatest number of sequences are also the most diverse regarding the ITS marker (Fig. 4), corresponding to Sordariomycetes (3592 seq., 857 OTUs), Dothideomycetes (2125 seq., 563 OTUs), Eurotiomycetes (1019 seq., 288 OTUs), and Agaricomycetes (1033 seq., 498 OTUs).
Fig. 4.
ML tree including the main higher taxonomic categories occurring in Brazil from which there are molecular data available. The first number in the parentheses for each taxon represents the total of ITS sequences available or (-) when there are no ITS sequences. For the following numbers in the parentheses, see footnotes in Table 1. *Number based on Malasseziales; **number based on Entomophthorales, excluding Neozygitaceae
Hypocreales is the order of Ascomycota with the highest number of ITS sequences retrieved (1286 seq.) and also the most diverse order (263 OTUs). On the other hand, there are some orders of Ascomycota in which the relative proportion between the number of ITS sequences and the corresponding OTUs is disproportionate (Table 2), such as Glomerellales with 1010 sequences equivalent to only 88 OTUs, and Xylariales with 319 sequences that correspond to 163 OTUs. In Basidiomycota, Pucciniales has the largest number of ITS sequences (615 seq.) but they represent only 9 OTUs. Agaricales (202 OTUs) and Polyporales (116 OTUs) are the most diverse orders in Basidiomycota (Table 2).
Among the most sampled genera in Ascomycota (> 150 ITS seq.), the following are the most diverse based on the number of OTUs recognized (Table 3): Phyllosticta (109 OTUs), Penicillium (95 OTUs), Diaporthe (90 OTUs), Candida (83 OTUs), Fusarium (80 OTUs), and Colletotrichum (76 OTUs). Some genera of Ascomycota, despite the high number of ITS sequences available, represent a low diversity, such as Fonsecae (200 seq., 16 OTUs) and Lasiodiplodia (204 seq., 9 OTUs). On the other hand, OTUs in the genera Xylaria (95 seq., 52 OTUs) and Phyllachora (54 seq., 27 OTU) showed a more uniform sampling.
Table 3.
Fungal genera occurring in Brazil with the greatest number of ITS sequences and their genetic diversity based on OTUs (ITS 98% cutoff)
| Genera ordered by number of ITS sequences | Genera ordered by number of OTUs | ||
|---|---|---|---|
| Genera (Phylum)* | No. of sequences | Genera (Phylum)* | No. of OTUs |
| Colletotrichum (A) | 969 | Phyllosticta (A) | 09 |
| Candida (A) | 536 | Penicillium (A) | 95 |
| Phyllosticta (A) | 467 | Diaporthe (A) | 90 |
| Fusarium (A) | 449 | Candida (A) | 83 |
| Phakopsora (B) | 444 | Fusarium (A) | 80 |
| Trichoderma (A) | 289 | Colletotrichum (A) | 76 |
| Diaporthe (A) | 257 | Aspergillus (A) | 63 |
| Aspergillus (A) | 204 | Trichoderma (A) | 44 |
| Lasiodiplodia (A) | 204 | Rhizoctonia (B) | 38 |
| Fonsecaea (A) | 200 | Pluteus (B) | 29 |
| Penicillium (A) | 199 | Cora (B) | 24 |
| Puccinia (B) | 168 | Cryptococcus (B) | 18 |
| Cryptococcus (B) | 94 | Fonsecaea (A) | 16 |
| Rhizoctonia (B) | 90 | Ceratobasidium (B) | 16 |
| Cora (B) | 70 | Lasiodiplodia (A) | 9 |
| Ceratobasidium (B) | 56 | Puccinia (B) | 4 |
| Pluteus (B) | 56 | Phakopsora (B) | 3 |
*Genera with > 150 ITS sequences for Ascomycota (A) and > 50 ITS sequences for Basidiomycota (B)
In Basidiomycota, although Phakopsora (444 seq.) and Puccinia (168 seq.) were the most sampled genera for ITS (> 50 ITS seq.), their diversity is very low with only 3 and 4 OTUs, respectively. Rhizoctonia (38 OTUs), Pluteus (29 OTUs), and Cora (24 OTUs) are the most diverse genera among the most sampled Basidiomycota for ITS (Table 3).
The ML tree based on LSU sequences (Fig. 4) illustrates the main groups of fungi occurring in Brazil, grouped into classes, and for which there are DNA sequences available. Neozygitomycetes is not represented in the tree because there is no LSU sequence available for any representative of this class, only SSU sequences of Neozygites tanajoae Delal., Humber & AE Hajek from Brazilian samples (AY233981–AY233982).
Besides the phyla Cryptomycota and Entorrhizomycota that were not recovered in this study, the classes (or subphyla) of fungi for which there is no molecular data available from Brazilian samples include: Coniocybomycetes, Geoglossomycetes, Laboulbeniomycetes, Lichinomycetes, and Xylonomycetes (Pezizomycotina, Ascomycota); Archaeorhizomycetes, Neolectomycetes, Pneumocystidomycetes, and Taphrinomycetes (Taphrinomycotina, Ascomycota); Atractiellomycetes, Classiculomycetes, Cryptomycocolacomycetes, Mixiomycetes, Spiculogloeomycetes, and Tritirachiomycetes (Pucciniomycotina, Basidiomycota); Neocallimastigomycetes and Monoblepharidomycetes (Chytridiomycota); and Basidiobolomycetes (Entomophthoromycotina, Zoopagomycota) and Zoopagomycotina (Zoopagomycota).
Discussion
The total of 19,440 sequences recovered in this study and also the number of sequences for each selected marker supersede the total number of fungal sequences from any other country in South America and for any marker, based on a search conducted by Gazis [84], who used the words “fungi + country” as query.
Although there are no molecular data for Cryptomycota from Brazil, Maia et al. [62] recorded five species in the country. According to the Brazilian List [85] and the bibliography consulted [86, 87], there are eight names of Cryptomycota from Brazil, but only five represent validly published species: Rozella allomycis Foust, R. chytriomycetis Karling, R. cladochytrii Karling, R. endochytrii Karling, and R. rhizophydii Karling. About 20 species have been described in Cryptomycota, but molecular data and complete morphological and ultrastructure characterization for these taxa are rare [88]. According to a recent phylogenetic analysis based on SSU [88], there are only 13 sequences of Cryptomycota available, including sequences from Australia, France, Japan, and the USA, and most of them are represented by environmental, undetermined sequences. Rozella allomycis and R. rhizoclosmatii Letcher & Longcore are the only species in the phylum that have been characterized based on molecular, morphological, and ultrastructural data [73, 88–90].
For Entorrhizomycota, we did not find any record of species occurring in Brazil. Entorrhizomycota was proposed by Bauer et al. [66] based on multi-loci molecular analyses to accommodate the class Entorrhizomycetes and the single genus Entorrhiza, previously assigned to Ustilaginomycotina (Basidiomycota). Thereafter, Riess et al. [91] proposed a new order in Entorrhizomycota, viz. Talbotiomycetales, to accommodate Talbotiomyces calosporus (PHB Talbot) Vánky, R. Bauer & Begerow. Recently, Zhao et al. [37], based on a six-gene phylogenetic study with estimated divergence time, accepted the recognition of Entorrhizomycota as phylum.
Ascomycota and Basidiomycota are the most diverse phyla of fungi worldwide with ca. 64,131 and 31,515 species, respectively [92], and they also represent the phyla with the largest proportion of sequences sampled in our study (Fig. 2). Among the classes of Ascomycota recovered in this study (Fig. 4), Saccharomycetes and Schizosaccharomycetes, both comprising most of the yeast-forming fungi, have not been included in the Brazilian List [93].
For Saccharomycetes, we found a total of 1849 sequences (Table 2, Fig. 4), most of them are from several published works, including taxonomic and phylogenetic studies with new records and species from Brazil [94–101]. For Schizosaccharomycetes, the only sequence recovered (JQ726610) is part of a study with yeasts isolated from Brazilian cocoa box fermentations [102].
It is also important to point out that we found a sequence (AF457891) assigned in GenBank as Lichinomycetes, because in the “source” field it is named as Peltula crispatula (Nyl.) Egea (Lichinomycetes), a synonym of Cladonia crispatula (Nyl.) Ahti, which is currently accepted as a member of Lecanoromycetes [103]. Cladonia crispatula is listed in the Brazilian List [104] and the sequence AF457891 is also published under C. crispatula, as part of a broad phylogeny for the genus [105]. Thus, we considered this sequence in Lecanorales and recognize that there is no molecular data for Lichinomycetes from Brazil and most likely no other records for species of this class in the country. A similar misidentification was found for the sequence EU075543 that is named in GenBank as Lecidea haematites Fée, a synonym of Ramboldia haematites (Fée) Kalb. The genus Lecidea is a member of Lecideales, Lecanoromycetes [106], but according to Kalb et al. [107], the Brazilian sample (EU075543) represents a Lecanorales (Lecanoromycetes) member, whose current name is R. haematites.
In our Basidiomycota dataset, we recovered sequences of six classes that have not been included in the Brazilian List [93], most of them are taxa of yeast-forming fungi: Agaricostilbomycetes, Cystobasidiomycetes, Malasseziomycetes, Microbotryomycetes, Moniliellomycetes, and Wallemiomycetes.
Agaricostilbomycetes is represented by sequences of Bensingtonia sp. (FJ605257) [108], unpublished sequences of Sporobolomyces sp. (HQ014448–HQ014452), and Sterigmatomyces halophilus Fell (KY105555 and KY109791) [109]. Cystobasidiomycetes is represented by a total of 38 sequences of Cystobasidiales, Erythrobasidiales, and species of the incertae sedis genus Symmetrospora, most of them as part of unpublished works, except for Sette et al. [110] and Arcuri et al. [111], and representing undetermined samples at the species level.
For Malasseziomycetes, we found a total of 178 sequences (Table 2, Fig. 4), most of them as part of unpublished works and representing only nine species: Malassezia dermatis Sugita, M. Takash., A. Nishikawa & Shinoda; M. furfur (C.P. Robin) Baill.; M. globosa Midgley, E. Guého & J. Guillot; M. japonica Sugita, M. Takash., M. Kodama, Tsuboi & A. Nishikawa; M. nana A. Hirai, R. Kano, Makimura, H. Yamag. & A. Haseg.; M. pachydermatis (Weidman) C.W. Dodge, M. restricta E. Guého, J. Guillot & Midgley; M. slooffiae J. Guillot, Midgley & E. Guého; and M. sympodialis R.B. Simmons & E. Guého. Malassezia nana was proposed as new species by Hirai et al. [112] based on samples isolated from Brazil and Japan.
For Microbotryomycetes, we recovered a total of 69 sequences, most of them as part of unpublished works, except for Arcuri et al. [111] and Sperandio et al. [113], and representing species of the genera Colacogloea, Rhodosporidiobolus, Rhodotorula, Sporidiobolus, Sporobolomyces, and Yunzhangia. Sequences of Sporobolomyces sp. are also assigned to Agaricostilbomycetes (Table 2) because the genus is known to be polyphyletic [114].
Moniliellomycetes is represented by only seven unpublished and undetermined sequences of the genus Moniliella; while Wallemiomycetes is represented by only two sequences (KM196339 and KM196392) of Wallemia mellicola Jančič, HDT Nguyen, Seifert & Gunde-Cim., a species described by Jančič et al. [115].
Most of the Ascomycota and Basidiomycota classes sampled in this study, but not included in the Brazilian List, represent groups of yeast-forming fungi, which shows the need to consolidate efforts so that these groups of fungi are also incorporated in the next initiatives to inventory the Brazilian fungal diversity. Microsporidia is also absent from the Brazilian List, but sequences of Nosema ceranae, Pleistophora hyphessobryconis [71], and Potaspora aequidens [72] confirm its occurrence in Brazil.
Besides the orders in the classes discussed above, we present 26 orders of fungi (Table 2) that have not been listed before in the Brazilian List, including: two orders in Dothideomycetes (Asterotexiales and Trypetheliales); one in Eurotiomycetes (Phaeomoniellales); two in Lecanoromycetes (Caliciales and Baeomycetales); eight in Sordariomycetes (Calosphaeriales, Coronophorales, Falcocladiales, Glomerellales, Magnaporthales, Myrmecridiales, Ophiostomatales, and Togniniales); four in Agaricomycetes (Amylocorticiales, Lepidostromatales, Sebacinales, and Stereopsidales); three in Tremellomycetes (Cystofilobasidiales, Filobasidiales, and Trichosporonales); two in Exobasidiomycetes (Exobasidiales and Microstromatales); one in Ustilaginomycetes (Ustilaginales); one in Chytridiomycetes (Cladochytriales); one in Mucoromycotina (Umbelopsidales); and one in Kickxellomycotina (Kickxellales).
Some of these orders were recently proposed and therefore are not included in the latest update of the Brazilian List, such as Asterotexiales [116], Falcocladiales [117], Lepidostromatales [118], Phaeomoniellales [119], and Umbelopsidales [45].
In other cases, the taxa in the Brazilian List were considered incertae sedis, such as many genera of Glomerellales, Magnaporthales, Myrmecridiales, and Trypetheliales; or treated in a different taxonomic classification, such as Physcia considered in Teloschistales instead of Caliciales; Ceraceomyces considered in Boletales instead of Amylocorticiales; Stereopsis considered in Polyporales instead of Stereopsidales; Trichosporon considered in Tremellales instead of Trichosporonales; and Nowakowskiella considered in Chytridiales instead of Cladochytriales [93]. The records of Caronophorales [120] and Sebacinales [121] from Brazil, based on the molecular data recovered here, are also more recent than the latest update of the Brazilian List.
The other 10 orders of fungi not recorded in the Brazilian List include many groups of phytopathogens and endophytes, such as Calosphaeriales [122], Microstromatales (only unpublished sequences), Togniniales [123, 124], and Ustilaginales [125]; fungi saprobes of insects, such as Kickxellales [75], and of clinical importance for humans and other animals, such as Ophiostomatales [126–131]; other yeast-forming fungi, including Cystofilobasidiales (unpublished sequences), Exobasidiales [113, 132], Filobasidiales [111], and Ustilaginales [113, 133]; or lichen-forming fungi, such as Baeomycetales [134]. Again, we reinforce the need to consolidate efforts so that a variety of groups of fungi of agronomic and clinical importance can also be incorporated in broad inventories of Brazilian fungal diversity.
On the other hand, there are 12 orders of fungi recorded in the Brazilian List for which we did not recover molecular data: Acrospermales, Jahnulales, Microthyriales (Dothideomycetes), Candelariales, Trechisporales (Agaricomycetes), Doassansiales (Exobasidiomycetes), Urocystidiales (Ustilaginomycetes), Lobulomycetales, Rhizophlyctidales (Chytridiomycetes), Monoblepharidales (Monoblepharidomycetes), Dimargaritales (Kickxellomycotina), and Zoopagales (Zoopagomycotina). A second manually quick search in GenBank using the words “taxa + Brazil” as query, in which taxa was substituted for the orders and respective genera listed in the Brazilian List, confirmed that there are no molecular data associated with these taxa from Brazilian samples. Microthyriales is the third order of Ascomycota with the highest number of species listed from Brazil, with ca. 120 species [62], and even though it represents a diverse group occurring in the country, it has not yet been studied within a molecular context.
The number of sequences represented for each group of fungi per marker could reflect the effectiveness of using some markers for species identification and phylogenetic studies in certain groups. For instance, the relative proportion of Mucoromycota sequences is higher for SSU than the other markers (Fig. 2). SSU sequences have been widely used for the identification of species of Glomeromycotina (Mucoromycota), and the most comprehensive taxa sampling of this group was done using that molecular marker [135].
The SSU region has also been used traditionally for molecular studies in Zoopagomycota [136], although multi-loci studies have been essential for broad phylogenetic studies and protein-coding genes such as MCM7 and TSR1 have shown significant promise in the group [137]. The sequences of Zoopagamycota recovered in this study are mostly SSU sequences (Table 2). Molecular studies in Blastocladiomyota, Chytridiomycota, and Microsporidia [73, 138–140] also have been based fundamentally on SSU, and the sampling of this marker is representative among the sequences from Brazilian specimens of these groups.
The OTU clustering approach is useful to estimate the intraspecific ITS variability in some groups [141], and approximately correlates to species level, also called “species hypothesis” by Kõljalg et al. [142], on different similarity thresholds (97–99%), but it has also been shown that OTUs do not necessarily correspond to species [143]. Therefore, it is important to highlight that the weighted intraspecific ITS variability is different for each group of fungi, reaching average values of 5.63% in Chytridiomycota and 7.46% in Glomeromycotina [141]. On the other hand, the effectiveness of ITS as DNA barcode or even to determine the OTUs is relevant in most Ascomycota and Basidiomycota [11, 24, 141, 144], which represent the most sampled phyla for ITS in our study. Alternative methods such as amplicon sequence variants (ASVs) have been proposed to analyze high-throughput sequencing data in order to reduce sequencing errors, to avoid arbitrary tresholds that are usually imposed in the OTU clustering approach, and to provide an accurate measurement of diversity [145].
The total of 3047 OTUs calculated for all fungal sequences represents 57.9% of the number of species listed by Maia et al. [62] and 21–23.2% of the total estimated number of known fungal species in Brazil [63]. Compared with the number of fungal species known in the world [8], it represents 2.54%. When we consider the estimates of global fungal species [7, 8] or the species occurring in Brazil [63], the number of OTUs recovered in this study represents 0.05–0.14% or 1.16–2.03%, respectively.
Tedersoo et al. [11], in a metabarcoding study of global diversity of soil fungi, found a total of 80,486 OTUs classified as fungi, from which, excluding the OTUs represented by single sequences (35,923 OTUs), Ascomycota (48.7%) and Basidiomycota (41.8%) were the most OTU-rich plyla. In our study, the numbers of OTUs found for Ascomycota (2088) and Basidiomycota (681) represent 68.5% and 22.3% of the total, respectively.
The unidentified ITS sequences not assigned to any phylum or class of fungi represent 1.61% of all ITS sequences sampled, 2.36% of all OTUs calculated and correspond to 38 class-level lineages. In the global soil fungi study of Tedersoo et al. [11], ~ 6% of all fungal OTUs could not be assigned to any higher taxonomic level and represent 14 divergent class-fungal lineages. This comparison reinforces the status of Brazil as a megadiverse country, which is not well explored regarding its funga composition. Also, following the three major sources for unrecognized fungal diversity listed by Hawksworth and Lücking [8], we believe that all of them fit to Brazil, which includes biomes considered to be biodiversity hotspots and many understudied geographic areas, besides a considerable number of cryptic fungal species and ecologically cryptic fungi.
The most OTU-rich classes in this work are Sordariomycetes, Dothideomycetes, Eurotiomycetes, and Agaricomycetes (Fig. 4). According to the data from the Brazilian List [93], the classes occurring in Brazil with the highest number of species are Agaricomycetes (1977 spp.), Pucciniomycetes (750 spp.), Sordariomycetes (551 spp.), and Dothideomycetes (436 spp.). Among the classes sampled in this study, Agaricomycetes, Dothideomycetes, Lecanoromycetes, and Sordariomycetes are the most diverse classes regarding the global number of species [92]. It is interesting to note that Pucciniomycetes is one of the classes with more species listed in the Brazilian List, but the molecular diversity within the Brazilian samples of this class available in GenBank represents only nine OTUs; what could indicate that Pucciniomycetes in Brazil has been well studied based on morphology, but many species remain without molecular data available.
It is important to highlight that the numbers for Dothideomycetes and Eurotiomycetes should not be directly associated to species level because different species are usually grouped together within the same OTU in some taxa of these groups [24, 29, 30], mainly representatives of Hypocreales (e.g., Fusarium) and Trichocomaceae (e.g., Aspergillus and Penicillium). In our study, ITS sequences of Fusarium represent 12.5% of the total ITS sequences in Sordariomycetes, while Aspergillus and Penicillium represent 39.5% of the total ITS sequences in Eurotiomycetes.
Maia et al. [62] listed six orders of Ascomycota as the most diverse in Brazil (> 90 spp.): Xylariales, Asterinales, Lecanorales, Ostropales, Microthyriales, and Capnodiales. In our study Xylariales (163 OTUs) and Capnodiales (164 OTUs) are the most diverse based on the number of OTUs calculated here. Capnodiales is also considered the most diverse order regarding the global number of species, with ca. 7244 spp. [92].
For Basidiomycota, Maia et al. [62] listed Agaricales, Puccinales, Polyporales, Hymenochaetales, Russulales, and Boletales as the most diverse orders. In our study, Agaricales (202 OTUs), Polyporales (116 OTUs), and Hymenochaetales (54 OTUs) are among the most OTU-rich orders, together with Tremellales (66 OTUs) and Cantharellales (62 OTUs). Considering the orders of Basidiomycota recovered in this study, Kirk et al. [92] pointed out Agaricales (13,233 spp.), Pucciniales (7798 spp.), and Polyporales (1801) as the most diverse orders in the world.
For the richest genera of fungi occurring in Brazil, Maia et al. [62] listed a total of 11 genera of Ascomycota, seven of Basidiomycota, and one of Mucoromycota; all of them have at least 37 species recorded. Considering the genera with the highest number of ITS sequences recovered in this study and that also are the most OTU-rich ones (Table 3), only Pluteus (Basidiomycota) is among the list of genera of Maia et al. [62]. Based on this, Pluteus is one of the genera of fungi occurring in Brazil that has been well studied in terms of taxonomy, using both morphological and molecular data [143–161].
In Basidiomycota, we also highlight the progress on molecular studies involving the genus Cora, a group of macrolichens that has shown surprising diversity after the use of the ITS sequences in systematic studies, with an increment of almost 180 species newly described, including many occurring in Brazil [12, 92, 162].
The genus Xylaria, although has not been considered in our list for the most well-sampled genera (Table 3), was previously pointed out by Maia et al. [62] to be among the most species-rich genera occurring in Brazil and we found a total of 52 OTUs. The ITS sequences of Xylaria from Brazil, 95 in total, are mostly represented by unidentified samples and as part of general studies for exploration of fungal diversity, including few published works [20, 163–166]. In addition, we acknowledge that the intraspecific ITS variability in the genus can be up to 24.2% [141]. On the other hand, Trichoderma, a genus with known low ITS interspecific variability [167, 168], is among the richest genera occurring in Brazil (Table 3), but for which there are only four species reported in the Brazilian List [169].
For some of the other most OTU-rich genera presented here (Table 3), including Aspergillus, Candida, Colletotrichum, Diaporthe, Fusarium, Phyllosticta, Penicillium, and Rhizoctonia, we recognize that there may not be any correlation between the number of OTUs found in this study and the number of species. Many authors have shown that the ITS interspecific variability in these groups is very high and sometimes its use may yield unreliable species diagnoses or that other markers have better taxonomic resolution at the species level [25–27, 29, 30, 141, 170–176].
Conclusions
Based on the combined data of this work and the previous data from the Brazilian List, we found a total of 8 phyla, 13 subphyla, 28 classes, and 113 orders of fungi occurring in Brazil. Entorrhizomycota remains unrecorded in Brazil. Ascomycota and Basidiomycota are the most diverse phyla, respectively. The discrepancy between the number of OTUs found in this study and the number of species recorded for these phyla in previous morphological and bibliographical studies suggests that in Brazil, the Basidiomycota has been well studied within a taxonomic framework using morphologica data, while Ascomycota has been better investigated using molecular data and mainly for taxa of clinical and agronomic importance, which usually have not been listed in the Brazilian fungal inventories.
We highlight groups that are potentially better studied in the country, such as Sordariomycetes, Dothideomycetes, Eurotiomycetes, and Agaricomycetes; groups that are in need of studies to incorporate molecular data in order to have more accurate estimates of their diversity and occurrence in the country, such as some orders in Dothideomycetes, Agaricomycetes, Exobasidiomycetes, Ustilaginomycetes, Chytridiomycetes, Monoblepharidomycetes, Kickxellomycotina, Zoopagomycotina; and groups that knownly occur in Brazil but are not included in the Brazilian List, such as phytopathogens, endophytes, saprobes, fungi of clinical importance for human and other animals, and yeast-forming fungi.
Finally, considering Brazil as a megadiverse country and poorly explored regarding its funga composition, we emphasize the need of joint efforts of mycologists to update the inventories and to reach unexplored areas and understudied habitats, besides the urgent need of new biodiversity conservation strategies to avoid losing species that have not even been described.
Acknowledgments
The authors thank Dr. Genevieve Gates (Tasmanian Institute of Agriculture) for the language and pre-submission review.
Funding information
N. Menolli Jr. thanks to Coordenação de Aperfeiçoamento de Pessoal de Niv́ el Superior – Brazil (Capes), and Fundação de Amparo à Pesquisa do Estado de São Paulo (Fapesp) (grants 04/04319-2, 09/53272-2, 2018/15677-0.
Compliance with ethical standards
Conflict of interest
The authors declare that they have no conflict of interest.
Footnotes
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Nelson Menolli Jr and Marisol Sánchez-García contributed equally to this work.
Change history
6/9/2020
Due to a processing error, there was a mistake in Table 3. The first entry in the right column should read 109. The corrected table is given below.
References
- 1.Alexopoulos CJ, Mims CW, Blackwell M. Introductory mycology. 4. New York: John Wiley & Sons; 1996. [Google Scholar]
- 2.Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, Huhndorf S, James T, Kirk PM, Lücking R, Lumbsch T, Lutzoni F, Matheny PB, Mclaughlin DJ, Powell MJ, Redhead S, Schoch CL, Spatafora JW, Stalpers JA, Vilgalys R, Aime MC, Aptroot A, Bauer R, Begerow D, Benny GL, Castlebury LA, Crous PW, Dai Y-C, Gams W, Geiser DM, Griffith GW, Gueidan C, Hawksworth DL, Hestmark G, Hosaka K, Humber RA, Hyde K, Ironside JE, Kõljalg U, Kurtzman CP, Larsson K-H, Lichtwardt R, Longcore J, Miądlikowska J, Miller A, Moncalvo J-M, Mozley-Standridge S, Oberwinkler F, Parmasto E, Reeb V, Rogers JD, Roux C, Ryvarden L, Sampaio JP, Schüßler A, Sugiyama J, Thorn RG, Tibell L, Untereiner WA, Walker C, Wang Z, Weir A, Weiß M, White MM, Winka K, Yao Y-J, Zhang N. A higher-level phylogenetic classification of the fungi. Mycol Res. 2007;111(5):509–547. doi: 10.1016/j.mycres.2007.03.004. [DOI] [PubMed] [Google Scholar]
- 3.McLaughlin DJ, Kumar TKA, Blackwell M, Letcher PM, Roberson RW. Subcellular structure and biochemical characters in fungal phylogeny. In: McLaughlin DJ, Spatafora JW, editors. The Mycota: a comprehensive treatise on fungi as experimental systems for basic and applied research, Systematics and Evolution Part B, VII. 2. Berlin: Springer; 2014. pp. 229–258. [Google Scholar]
- 4.Dighton J, White JF, editors. The fungal community: its organization and role in the ecosystem. 4. Boca Raton: Taylor & Francis; 2016. [Google Scholar]
- 5.Hawksworth DL. The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycol Res. 1991;95(6):641–655. doi: 10.1016/S0953-7562(09)80810-1. [DOI] [Google Scholar]
- 6.O'Brien HE, Parrent JL, Jackson JA, Moncalvo J-M, Vilgalys R. Fungal community analysis by large-scale sequencing of environmental samples. Appl Environ Microbiol. 2005;71(9):5544–5550. doi: 10.1128/AEM.71.9.5544-5550.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Taylor DL, Hollingsworth TN, McFarland JW, Lennon NJ, Nusbaum C, Ruess RW. A first comprehensive census of fungi in soil reveals both hyperdiversity and fine-scale niche partitioning. Ecol Monogr. 2014;84(1):3–20. doi: 10.1890/12-1693.1. [DOI] [Google Scholar]
- 8.Hawksworth DL, Lücking R. Fungal diversity revisited: 2.2 to 3.8 million species. Microbiol Spectr. 2017;5(4):FUNK–0052. doi: 10.1128/microbiolspec.funk-0052-2016. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Hyde KD, Maharachchikumbura SSN, Hongsanan S, Samarakoon MC, Lücking R, Pem D, Harishchandra D, Jeewon R, Zhao R-L, Xu J-C, Liu J-K, Al-Sadi AM, Bahkali AH, Elgorban AM. The ranking of fungi: a tribute to David L. Hawksworth on his 70th birthday. Fungal Divers. 2017;84(1):1–23. doi: 10.1007/s13225-017-0383-3. [DOI] [Google Scholar]
- 10.Lindahl BD, Nilsson RH, Tedersoo L, Abarenkov K, Carlsen T, Kjøller R, Kõljalg U, Pennanen T, Rosendahl S, Stenlid J, Kauserud H. Fungal community analysis by high-throughput sequencing of amplified markers –a user’s guide. New Phytol. 2013;199(1):288–299. doi: 10.1111/nph.12243. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, Ruiz LV, Vasco-Palacios AM, Thu PQ, Suija A, Smith ME, Sharp C, Saluveer E, Saitta A, Rosas M, Riit T, Ratkowsky D, Pritsch K, Põldmaa K, Piepenbring M, Phosri C, Peterson M, Parts K, Pärtel K, Otsing E, Nouhra E, Njouonkou AL, Nilsson RH, Morgado LN, Mayor J, May TW, Majuakim L, Lodge DJ, Lee SS, Larsson K-H, Kohout P, Hosaka K, Hiiesalu I, Henkel TW, Harend H, Guo L-D, Greslebin A, Grelet G, Geml J, Gates G, Dunstan W, Dunk C, Drenkhan R, Dearnaley J, Kesel A, Dang T, Chen X, Buegger F, Brearley FQ, Bonito G, Anslan S, Abell S, Abarenkov K. Global diversity and geography of soil fungi. Science. 2014;346(6213):1256688. doi: 10.1126/science.1256688. [DOI] [PubMed] [Google Scholar]
- 12.Lücking R, Dal-Forno M, Moncada B, Coca LF, Vargas-Mendoza LY, Aptroot A, Arias LJ, Besal B, Bungartz F, Cabrera-Amaya DM, Cáceres MES, Chaves JL, Eliasaro S, Gutiérrez MC, Marin JEH, Herrera-Campos MA, Holgado-Rojas MA, Jonitz H, Kukwa M, Lucheta F, Madriñán S, Marcelli MP, Martins SMA, Mercado-Díaz JA, Molina JA, Morales EA, Nelson PR, Nugra F, Ortega F, Paredes T, Patiño AL, Peláez-Pulido RN, Pérez REP, Perlmutter GB, Rivas-Plata E, Robayo J, Rodríguez C, Simijaca DF, Soto-Medina E, Spielmann AA, Suárez-Corredor A, Torres J-M, Vargas CA, Yánez-Ayabaca A, Weerakoon G, Wilk K, Pacheco MC, Diazgranados M, Brokamp G, Borsch T, Gillevet PM, Sikaroodi M, Lawrey JD. Turbo-taxonomy to assemble a megadiverse lichen genus: seventy new species of Cora (Basidiomycota: Agaricales: Hygrophoraceae), honouring David Leslie Hawksworth’s seventieth birthday. Fungal Divers. 2017;84(1):139–207. doi: 10.1007/s13225-016-0374-9. [DOI] [Google Scholar]
- 13.Mittermeier RA, Robles-Gil P, Mittermeier CG, editors. Megadiversity. Sierra Madre: Earth’s Biologically Wealthiest Nations. CEMEX/Agrupaciaon; 1997. [Google Scholar]
- 14.Kang Y, Tanaka H, Moretti ML, Mikami Y. New ITS genotype of Cryptococcus gattii isolated from an AIDS patient in Brazil. Microbiol Immunol. 2009;53(2):112–116. doi: 10.1111/j.1348-0421.2008.00101.x. [DOI] [PubMed] [Google Scholar]
- 15.Miranda BEC, Barreto RW, Crous PW, Groenewald JZ. Pilidiella tibouchinae sp. nov. associated with foliage blight of Tibouchina granulosa (quaresmeira) in Brazil. IMA Fungus. 2012;3(1):1–7. doi: 10.5598/imafungus.2012.03.01.01. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Pereira CMR, Goto BT, Silva DKA, Ferreira ACA, Souza FA, Silva GA, Maia LC, Oehl F. Acaulospora reducta sp. nov. and A. excavate – two glomeromycotan fungi with pitted spores from Brazil. Mycotaxon. 2015;130(4):983–995. doi: 10.5248/130.983. [DOI] [Google Scholar]
- 17.Ramos LS, Figueiredo-Carvalho MHG, Barbedo LS, Ziccardi M, Chaves ALS, Zancopé-Oliveira RM, Pinto MR, Sgarbi DBG, Dornelas-Ribeiro M, Branquinha MH, Santos ALS. Candida haemulonii complex: species identification and antifungal susceptibility profiles of clinical isolates from Brazil. J Antimicrob Chemother. 2015;70(1):111–115. doi: 10.1093/jac/dku321. [DOI] [PubMed] [Google Scholar]
- 18.Drewinski MP, Menolli N, Jr, Neves MA. Agaricus globocystidiatus: a new neotropical species with pleurocystidia in Agaricus subg Minoriopsis. Phytotaxa. 2017;314(1):64–72. doi: 10.11646/phytotaxa.314.1.4. [DOI] [Google Scholar]
- 19.Rubini MR, Silva-Ribeiro RT, Pomella AWV, Maki CS, Araújo WL, Santos DR, Azevedo JL. Diversity of endophytic fungal community of cacao (Theobroma cacao L.) and biological control of Crinipellis perniciosa, causal agent of Witches' Broom Disease. Int J Biol Sci. 2005;1(1):24–33. doi: 10.7150/ijbs.1.24. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Sebastianes FLS, Romão-Dumaresq AS, Lacava PT, Harakava R, Azevedo JL, Melo IS, Pizzirani-Kleiner AA. Species diversity of culturable endophytic fungi from Brazilian mangrove forests. Curr Genet. 2013;59(3):153–166. doi: 10.1007/s00294-013-0396-8. [DOI] [PubMed] [Google Scholar]
- 21.Rodrigues A, Passarini MRZ, Ferro M, Nagamoto NS, Forti LC, Bacci M, Jr, Sette LD, Pagnocca FC. Fungal communities in the garden chamber soils of leaf-cutting ants. J Basic Microbiol. 2014;54(11):1186–1196. doi: 10.1002/jobm.201200458. [DOI] [PubMed] [Google Scholar]
- 22.Pereira JS, Costa RR, Nagamoto NS, Forti LC, Pagnocca FC, Rodrigues A. Comparative analysis of fungal communities in colonies of two leaf-cutting ant species with different substratum preferences. Fungal Ecol. 2016;21:68–75. doi: 10.1016/j.funeco.2016.03.004. [DOI] [Google Scholar]
- 23.Mendes SDC, Ramírez-Castrillón M, Feldberg NP, Bertoldi FC, Valente P. Environmental yeast communities in vineyards in the mountains of Santa Catarina State, Brazil. W J Microbiol Biotechnol. 2017;33(6):128. doi: 10.1007/s11274-017-2298-2. [DOI] [PubMed] [Google Scholar]
- 24.Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Bolchacova E, Voigt K, Crous PW, Miller AM, Wingfield MJ, Aime MC, An D-K, Bai F-Y, Barreto RW, Begerow D, Bergeron M-J, Blackwell M, Boekhout T, Bogale M, Boonyuen N, Burgaz AR, Buyck B, Cai L, Cai Q, Cardinali G, Chaverri P, Coppins BJ, Crespo A, Cubas P, Cummings C, Damm U, de Beer ZW, de Hoog GS, Del-Prado R, Dentinger B, Diéguez-Uribeondo J, Divakar PK, Douglas B, Dueñas M, Duong TA, Eberhardt U, Edwards JE, Elshahed MS, Fliegerova K, Furtado M, García MA, Ge Z-W, Griffith GW, Griffiths K, Groenewald JZ, Groenewald M, Grube M, Gryzenhout M, Guo L-D, Hagen F, Hambleton S, Hamelin RC, Hansen K, Harrold P, Heller G, Herrera C, Hirayama K, Hirooka Y, Ho H-M, Hoffmann K, Hofstetter V, Högnabba F, Hollingsworth PM, Hong S-B, Hosaka K, Houbraken J, Hughes K, Huhtinen S, Hyde KD, James T, Johnson EM, Johnson JE, Johnston PR, Jones EBG, Kelly LJ, Kirk PM, Knapp DG, Kõljalg U, Kovács GM, Kurtzman CP, Landvik S, Leavitt SD, Liggenstoffer AS, Liimatainen K, Lombard L, Luangsa-ard JJ, Lumbsch HT, Maganti H, Maharachchikumbura SSN, Martin MP, May TW, McTaggart AR, Methven AS, Meyer W, Moncalvo J-M, Mongkolsamrit S, Nagy LG, Nilsson RH, Niskanen T, Nyilasi I, Okada G, Okane I, Olariaga I, Otte J, Papp T, Park D, Petkovits T, Pino-Bodas R, Quaedvlieg W, Raja HA, Redecker D, Rintoul TL, Ruibal C, Sarmiento-Ramírez JM, Schmitt I, Schüßler A, Shearer C, Sotome K, Stefani FOP, Stenroos S, Stielow B, Stockinger H, Suetrong S, Suh S-O, Sung G-H, Suzuki M, Tanaka K, Tedersoo L, Telleria MT, Tretter E, Untereiner WA, Urbina H, Vágvölgyi C, Vialle A, Vu TD, Walther G, Wang K-M, Wang Y, Weir BS, Weiß M, White MM, Xu J, Yahr R, Yang ZL, Yurkov A, Zamora J-C, Zhang N, Zhuang W-Y, Schindel D. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc Natl Acad Sci USA. 2012;109(16):6241–6246. doi: 10.1073/pnas.1117018109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Wesselink J-J, Iglesia B, James SA, Dicks JL, Roberts IN, Rayward-Smith VJ. Determining a unique defining DNA sequence for yeast species using hashing techniques. Bioinformatics. 2002;18(7):1004–1010. doi: 10.1093/bioinformatics/18.7.1004. [DOI] [PubMed] [Google Scholar]
- 26.Cadete RM, Melo MA, Lopes MR, Pereira GMD, Zilli JE, Vital MJS, Gomes FCO, Lachance M-A, Rosa CA. Candida amazonensis sp. nov., an ascomycetous yeast isolated from rotting wood in the Amazonian forest. Int J Syst Evol Microbiol. 2012;62(6):1438–1440. doi: 10.1099/ijs.0.036715-0. [DOI] [PubMed] [Google Scholar]
- 27.Melo WGP, Arcuri SL, Rodrigues A, Morais PB, Meirelles LA, Pagnocca FC. Starmerella aceti f.a., sp. nov., an ascomycetous yeast species isolated from fungus garden of the leafcutter ant Acromyrmex balzani. Int J Syst Evol Microbiol. 2014;64(4):1428–1433. doi: 10.1099/ijs.0.058818-0. [DOI] [PubMed] [Google Scholar]
- 28.Thiéry O, Vasar M, Jairus T, Davison J, Roux C, Kivistik P-A, Metspalu A, Milani L, Saks Ü, Moora M, Zobel M, Öpik M. Sequence variation in nuclear ribosomal small subunit, internal transcribed spacer and large subunit regions of Rhizophagus irregularis and Gigaspora margarita is high and isolate-dependent. Mol Ecol. 2016;25(12):2816–2832. doi: 10.1111/mec.13655. [DOI] [PubMed] [Google Scholar]
- 29.Seifert KA, Samson RA, deWaard JR, Houbraken J, Lévesque CA, Moncalvo J-M, Louis-Seize G, Hebert PDN. Prospects for fungus identification using CO1 DNA barcodes, with Penicillium as a test case. Proc Natl Acad Sci U S A. 2007;104(10):3901–3906. doi: 10.1073/pnas.0611691104. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.O’Donnell K, Ward TJ, Robert VARG, Crous PW, Geiser DM, Kang S. DNA sequence-based identification of Fusarium: current status and future directions. Phytoparasitica. 2015;43(5):583–595. doi: 10.1007/s12600-015-0484-z. [DOI] [Google Scholar]
- 31.Mozley-Standridge SE, Letcher PM, Longcore JE, Porter D, Simmons DR. Cladochytriales—a new order in Chytridiomycota. Mycol Res. 2009;113(4):498–507. doi: 10.1016/j.mycres.2008.12.004. [DOI] [PubMed] [Google Scholar]
- 32.Wang Q-M, Theelen B, Groenewald M, Bai F-Y, Boekhout T. Moniliellomycetes and Malasseziomycetes, two new classes in Ustilaginomycotina. Persoonia. 2014;33:41–47. doi: 10.3767/003158514X682313. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Chen K-H, Miadlikowska J, Molnár K, Arnold AE, U’Ren JM, Gaya E, Gueidan C, François L. Phylogenetic analyses of eurotiomycetous endophytes reveal their close affinities to Chaetothyriales, Eurotiales, and a new order – Phaeomoniellales. Mol Phylog Evol. 2015;85:117–130. doi: 10.1016/j.ympev.2015.01.008. [DOI] [PubMed] [Google Scholar]
- 34.Maharachchikumbura SSN, Hyde KD, Jones EBG, McKenzie EHC, Huang S-K, Abdel-Wahab MA, Daranagama DA, Dayarathne M, D’souza MJ, Goonasekara ID, Hongsanan S, Jayawardena RS, Kirk PM, Konta S, Liu J-K, Liu J-Y, Norphanphoun C, Pang K-L, Perera RH, Senanayake IC, Shang Q, Shenoy BD, Xiao Y, Bahkali AH, Kang J, Somrothipo S, Suetrong S, Wen T, Xu J. Towards a natural classification and backbone tree for Sordariomycetes. Fungal Divers. 2015;72(1):199–301. doi: 10.1007/s13225-015-0331-z. [DOI] [Google Scholar]
- 35.van Nieuwenhuijzen EJ, Miadlikowska JM, Houbraken JAMP, Adan OCG, Lutzoni FM, Samson RA. Wood staining fungi revealed taxonomic novelties in Pezizomycotina: new order Superstratomycetales and new species. Studies Mycol. 2016;85:107–124. doi: 10.1016/j.simyco.2016.11.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Bezerra JDP, Oliveira RJV, Paiva LM, Silva GA, Groenewald JZ, Crous PW, Souza-Motta CM. Bezerromycetales and Wiesneriomycetales ord. nov. (class Dothideomycetes), with two novel genera to accommodate endophytic fungi from Brazilian cactus. Mycol Prog. 2017;16(4):297–309. doi: 10.1007/s11557-016-1254-0. [DOI] [Google Scholar]
- 37.Zhao R-L, Li G-J, Sánchez-Ramírez S, Stata M, Yang ZL, Wu G, Dai Y-C, He S-H, Cui B-K, Zhou J-L, Wu F, He M-Q, Moncalvo J-M, Hyde KD. A six-gene phylogenetic overview of Basidiomycota and allied phyla with estimated divergence times of higher taxa. Fungal Divers. 2017;84:43–74. doi: 10.1007/s13225-017-0381-5. [DOI] [Google Scholar]
- 38.Takayama A, Itano EN, Sano A, Ono MA, Kamei K. An atypical Paracoccidioides brasiliensis clinical isolate based on multiple gene analysis. Med Mycol. 2010;48(1):64–72. doi: 10.3109/13693780902718065. [DOI] [PubMed] [Google Scholar]
- 39.Salustiano ME, Rondon MN, Abreu LM, Costa SS, Machado JC, Pfenning LH. The etiological agent of cotton ramulosis represents a single phylogenetic lineage within the Colletotrichum gloeosporioides species complex. Trop Plant Pathol. 2014;39(5):357–367. doi: 10.1590/S1982-56762014000500002. [DOI] [Google Scholar]
- 40.Silva M, Barreto RW, Pereira OL, Freitas NM, Groenewald JZ, Crous PW. Exploring fungal mega-diversity: Pseudocercospora from Brazil. Persoonia. 2016;37:142–172. doi: 10.3767/003158516X691078. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41.Palacio M, Robledo GL, Reck MA, Grassi E, Góes-Neto A, Drechsler-Santos ER. Decrypting the Polyporus dictyopus complex: recovery of Atroporus Ryvarden and segregation of Neodictyopus gen. nov. (Polyporales, Basidiomyocta) PLoS ONE. 2017;12(10):e0186183. doi: 10.1371/journal.pone.0186183. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Sousa JO, Suz LM, García MA, Alfredo DS, Conrado LM, Marinho P, Ainsworth AM, Baseia IG, Martín MP. More than one fungus in the pepper pot: Integrative taxonomy unmasks hidden species within Myriostoma coliforme (Geastraceae, Basidiomycota) PLoS ONE. 2017;12(6):e0177873. doi: 10.1371/journal.pone.0177873. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43.Mondego JMC, Carazzolle MF, Costa GGL, Formighieri EF, Parizzi LP, Rincones J, Cotomacci C, Carraro DM, Cunha AF, Carrer H, Vidal RO, Estrela RC, García O, Thomazella DPT, Oliveira BV, Pires ABL, Rio MCS, Araújo MRR, Moraes MH, Castro LAB, Gramacho KP, Gonçalves MS, Moura-Neto JPM, Góes-Neto A, Barbosa LV, Guiltinan MJ, Bailey BA, Meinhardt LW, Cascardo JCM, Pereira GAG. A genome survey of Moniliophthora perniciosa gives new insights into witches’ broom disease of cacao. BMC Genomics. 2008;9:548. doi: 10.1186/1471-2164-9-548. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.Dentinger BTM, Gaya E, O'Brien H, Suz LM, Lachlan R, Díaz-Valderrama JR, Koch RA, Aime MC. Tales from the crypt: genome mining from fungarium specimens improves resolution of the mushroom tree of life. Biol J Linn Soc. 2016;117(1):11–32. doi: 10.1111/bij.12553. [DOI] [Google Scholar]
- 45.Spatafora JW, Chang Y, Benny GL, Lazarus K, Smith ME, Berbee ML, Bonito G, Corradi N, Grigoriev I, Gryganskyi A, James TY, O’Donnell K, Roberson RW, Taylor TN, Uehling J, Vilgalys R, White MM, Stajich JE. A phylum-level phylogenetic classification of zygomycetes fungi based on genome-scale data. Mycologia. 2016;108(5):1028–1046. doi: 10.3852/16-042. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.Hibbett DS, Abarenkov K, Kõljalg U, Öpik M, Chai B, Cole J, Wang Q, Crous P, Robert V, Helgason T, Herr JR, Kirk P, Lueschow S, O’Donnell K, Nilsson RH, Oono R, Schoch C, Smyth C, Walker DM, Porras-Alfaro A, Taylor JW, Geiser DM. Sequence-based classification and identification of fungi. Mycologia. 2016;108(6):1049–1068. doi: 10.3852/16-130. [DOI] [PubMed] [Google Scholar]
- 47.Nilsson RH, Ryberg M, Kristiansson E, Abarenkov K, Larsson K-H, Kõljalg U. Taxonomic reliability of DNA sequences in public sequence databases: a fungal perspective. PLoS ONE. 2006;1(1):e59. doi: 10.1371/journal.pone.0000059. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.International Nucleotide Sequence Database Collaboration (INSDC) (2018) http://www.insdc.org; 2018. Accessed 17 January 2018
- 49.Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. GenBank. Nucleic Acids Res. 2013;41(D1):D36–D42. doi: 10.1093/nar/gks1195. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50.GenBank Overview (2018) https://www.ncbi.nlm.nih.gov/genbank/. Accessed 17 Jan 2018
- 51.Nilsson RH, Larsson KH, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, Schigel D, Kennedy P, Picard K, Glöckner FO, Tedersoo L, Saar I, Kõljalg U, Abarenkov K (2019) [2018] The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res 47(D1):D259-D264. [DOI] [PMC free article] [PubMed]
- 52.GenBank and WGS Statistics (2019) https://www.ncbi.nlm.nih.gov/genbank/statistics/. Accessed 04 Nov 2019.
- 53.Seifert KA, Rossman AY. How to describe a new fungal species. IMA Fungus. 2010;1(2):109–116. doi: 10.5598/imafungus.2010.01.02.02. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54.Turland NJ, Wiersema JH, Barrie FR, Greuter W, Hawksworth DL, Herendeen PS, Knapp S, Kusber W-H, Li D-Z, Marhold K, May TW, McNeill J, Monro AM, Prado J, Price MJ, Smith GF (eds.) (2018) International Code of Nomenclature for algae, fungi, and plants (Shenzhen Code) adopted by the Nineteenth International Botanical Congress Shenzhen, China, July 2017. Regnum Vegetabile 159. Koeltz Botanical Books, GlashÜtten
- 55.Delalibera I, Jr, Hajek AE, Humber RA. Neozygites tanajoae sp. nov., a pathogen of the cassava green mite. Mycologia. 2004;96(5):1002–1009. doi: 10.1080/15572536.2005.11832900. [DOI] [PubMed] [Google Scholar]
- 56.Lima MLA, Asai T, Capelari M. Armillaria paulensis: a new South American species. Mycol Res. 2008;112(9):1122–1128. doi: 10.1016/j.mycres.2008.03.006. [DOI] [PubMed] [Google Scholar]
- 57.Jerônimo GH, Jesus AL, Marano AV, James TY, Souza JY, Rocha SCO, Pires-Zottarelli CLA. Diversidade de Blastocladiomycota e Chytridiomycota do Parque Estadual da Ilha do Cardoso, Cananéia, SP, Brasil. Hoehnea. 2015;42(1):135–163. doi: 10.1590/2236-8906-32/2014. [DOI] [Google Scholar]
- 58.Almeida DAC, Gusmão LFP, Miller AN. Taxonomy and molecular phylogeny of Diatrypaceae (Ascomycota, Xylariales) species from the Brazilian semi-arid region, including four new species. Mycol Prog. 2016;15(6):53. doi: 10.1007/s11557-016-1194-8. [DOI] [Google Scholar]
- 59.Pereira CMR, Maia LC, Sánchez-Castro I, Palenzuela J, Silva DKA, Sudová R, Kolaříková Z, Rydlová J, Čtvrtlíková M, Goto BT, Silva GA, Oehl F. Acaulospora papillosa, a new mycorrhizal fungus from NE Brazil, and Acaulospora rugosa from Norway. Phytotaxa. 2016;260(1):14–24. doi: 10.11646/phytotaxa.260.1.2. [DOI] [Google Scholar]
- 60.Forzza RC (org.) (2010) Catálogo de plantas e fungos do Brasil. v. 1/2. Andrea Jakobsson Estúdio, Instituto de Pesquisa Jardim Botânico do Rio de Janeiro, Rio de Janeiro
- 61.Flora do Brasil 2020 under construction (2018) Jardim Botânico do Rio de Janeiro. http://floradobrasil.jbrj.gov.br/. Accessed 17 Jan 2018.
- 62.Maia LC, Carvalho Júnior AA, Cavalcanti LH, Gugliotta AM, Drechsler-Santos ER, Santiago ALMA, Caceres MES, Gibertoni TB, Aptroot A, Giachini AJ, Soares AMS, Silva ACG, Goto BT, Lira CRS, Montoya CAS, Pires-Zottarelli CLA, Silva DKA, Soares DJ, Rezende DHC, Luz EDMN, Gumboski EL, Wartchow F, Karstedt F, Freire FM, Coutinho FP, Melo GSN, Sotão HMP, Baseia IG, Pereira J, Oliveira JJS, Souza JF, Bezerra JL, Araujo-Neta LS, Pfenning LH, Gusmão LFP, Neves MA, Capelari M, Jaeger MCW, Pulgarin MP, Menolli N, Jr, Medeiros PS, Friedrich RCS, Chikowski RS, Pires RM, Melo RF, Silveira RMB, Urrea-Valencia S, Cortez VG, Silva VF. Diversity of Brazilian fungi. Rodriguésia. 2015;64(4):1033–1045. doi: 10.1590/2175-7860201566407. [DOI] [Google Scholar]
- 63.Lewinsohn TM, Prado PI. How many species are there in Brazil? Conserv Biol. 2005;19(3):619–624. doi: 10.1111/j.1523-1739.2005.00680.x. [DOI] [Google Scholar]
- 64.James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V, Cox CJ, Celio G, Gueidan C, Fraker E, Miadlikowska J, Lumbsch HT, Rauhut A, Reeb V, Arnold AE, Amtoft A, Stajich JE, Hosaka K, Sung GH, Johnson D, O'Rourke B, Crockett M, Binder M, Curtis JM, Slot JC, Wang Z, Wilson AW, Schüssler A, Longcore JE, O'Donnell K, Mozley-Standridge S, Porter D, Letcher PM, Powell MJ, Taylor JW, White MM, Griffith GW, Davies DR, Humber RA, Morton JB, Sugiyama J, Rossman AY, Rogers JD, Pfister DH, Hewitt D, Hansen K, Hambleton S, Shoemaker RA, Kohlmeyer J, Volkmann-Kohlmeyer B, Spotts RA, Serdani M, Crous PW, Hughes KW, Matsuura K, Langer E, Langer G, Untereiner WA, Lücking R, Büdel B, Geiser DM, Aptroot A, Diederich P, Schmitt I, Schultz M, Yahr R, Hibbett DS, Lutzoni F, McLaughlin DJ, Spatafora JW, Vilgalys R. Reconstructing the early evolution of fungi using a six-gene phylogeny. Nature. 2006;443(7113):818–822. doi: 10.1038/nature05110. [DOI] [PubMed] [Google Scholar]
- 65.Jones MDM, Forn I, Gadelha C, Egan MJ, Bass D, Massana R, Richards TA. Discovery of novel intermediate forms redefines the fungal tree of life. Nature. 2011;474(7350):200–203. doi: 10.1038/nature09984. [DOI] [PubMed] [Google Scholar]
- 66.Bauer R, Garnica S, Oberwinkler F, Riess K, Weiß M, Begerow D. Entorrhizomycota: a new fungal phylum reveals new perspectives on the evolution of fungi. PLoS ONE. 2015;10(7):e0128183. doi: 10.1371/journal.pone.0128183. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 67.Weizhong L, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006;22(13):1658–16599. doi: 10.1093/bioinformatics/btl158. [DOI] [PubMed] [Google Scholar]
- 68.Katoh K, Toh H. Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform. 2008;9(4):286–298. doi: 10.1093/bib/bbn013. [DOI] [PubMed] [Google Scholar]
- 69.Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22(21):2688–2690. doi: 10.1093/bioinformatics/btl446. [DOI] [PubMed] [Google Scholar]
- 70.Maside X, Gómez-Moracho T, Jara L, Martín-Hernández R, De la Rúa P, Higes M, Bartolomé C. Population genetics of Nosema apis and Nosema ceranae: one host (Apis mellifera) and two different histories. PloS ONE. 2015;10(12):e0145609. doi: 10.1371/journal.pone.0145609. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 71.Winters AD, Langohr IM, Souza MA, Colodel EM, Soares MP, Faisal M. Ultrastructure and molecular phylogeny of Pleistophora hyphessobryconis (Microsporidia) infecting hybrid jundiara (Leiarius marmoratus × Pseudoplatystoma reticulatum) in a Brazilian aquaculture facility. Parasitology. 2015;143(1):1–9. doi: 10.1017/S0031182015001420. [DOI] [PubMed] [Google Scholar]
- 72.Videira M, Casal G, Rocha S, Gonçlaves E, Azevedo C, Velasco M, Matos ER. Potaspora aequidens n. sp. (Microsporidia, Tetramicridae), a parasite infecting the freshwater fish Aequidens plagiozonatus (Teleostei, Cichlidae) from Brazil. Parasitol Res. 2015;114(7):2435–2442. doi: 10.1007/s00436-015-4438-7. [DOI] [PubMed] [Google Scholar]
- 73.James TY, Letcher PM, Longcore JE, Mozley-Standridge SE, Porter D, Powell MJ, Griffith GW, Vilgalys R. A molecular phylogeny of the flagellated fungi (Chytridiomycota) and description of a new phylum (Blastocladiomycota) Mycologia. 2006;98(6):860–871. doi: 10.1080/15572536.2006.11832616. [DOI] [PubMed] [Google Scholar]
- 74.Vilela R, Silva SM, Riet-Correa F, Dominguez E, Mendoza L. Morphologic and phylogenetic characterization of Conidiobolus lamprauges recovered from infected sheep. J Clin Microbiol. 2010;48(2):427–432. doi: 10.1128/JCM.01589-09. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 75.Tretter ED, Johnson EM, Benny GL, Lichtwardt RW, Wang Y, Kandel P, Novak SJ, Smith JF, White MM. An eight-gene molecular phylogeny of the Kickxellomycotina, including the first phylogenetic placement of Asellariales. Mycologia. 2014;106(5):912–935. doi: 10.3852/13-253. [DOI] [PubMed] [Google Scholar]
- 76.Schloegel LM, Toledo LF, Longcore JE, Greenspan SE, Vieira CA, Lee M, Zhao S, Wangen C, Ferreira CM, Hipolito M, Davies AJ, Cuomo CA, Daszak P, James TY. Novel, panzootic and hybrid genotypes of amphibian chytridiomycosis associated with the bullfrog trade. Mol Ecol. 2012;21(21):5162–5177. doi: 10.1111/j.1365-294X.2012.05710.x. [DOI] [PubMed] [Google Scholar]
- 77.Simmons DR. Phylogeny of Powellomycetaceae fam. nov. and description of Geranomyces variabilis gen. et comb. nov. Mycologia. 2011;103(6):1411–1420. doi: 10.3852/11-039. [DOI] [PubMed] [Google Scholar]
- 78.Herrera-Vásquez JA, Cebrián MC, Alfaro-Fernández A, Córdoba-Sellés MC, Jordá C. Multiplex PCR assay for the simultaneous detection and differentiation of Olpidium bornovanus, O. brassicae, and O. virulentus. Mycol Res. 2009;113(5):602–610. doi: 10.1016/j.mycres.2009.01.007. [DOI] [PubMed] [Google Scholar]
- 79.Herrera-Vásquez JA, Córdoba-Sellés MC, Cebrián MC, Rosselló JA, Alfaro-Fernaández A, Jordá C. Genetic diversity of Melon necrotic spot virus and Olpidium isolates from different origins. Plant Pathol. 2010;59(2):240–251. doi: 10.1111/j.1365-3059.2009.02208.x. [DOI] [Google Scholar]
- 80.Mueller UG, Rehner SA, Schultz TR. The evolution of agriculture in ants. Science. 1998;281(5385):2034–2038. doi: 10.1126/science.281.5385.2034. [DOI] [PubMed] [Google Scholar]
- 81.Myburg H, Wingfield BD, Wingfield MJ. Phylogeny of Cryphonectria cubensis and allied species inferred from DNA analysis. Mycologia. 1999;91(2):243–250. doi: 10.1080/00275514.1999.12061014. [DOI] [Google Scholar]
- 82.Samuels GJ, Pardo-Schultheiss R, Hebbar KP, Lumsben RD, Bastos CN, Costa JC, Bezerra JL. Trichoderma stromaticum sp. nov., a parasite of the cacao witches broom pathogen. Mycol Res. 2000;104(6):760–764. doi: 10.1017/S0953756299001938. [DOI] [Google Scholar]
- 83.Ceresini PC, Costa-Souza E, Zala M, Furtado EL, Souza NL. Evidence that the Ceratobasidium-like white-thread blight and black rot fungal pathogens from persimmon and tea crops in the Brazilian Atlantic Forest agroecosystem are two distinct phylospecies. Genet Mol Biol. 2012;35(2):480–497. doi: 10.1590/S1415-47572012005000032. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 84.Gazis RO (2015) Fungi of Peru. Peruvian fungi @ NCBI nucleotide database. https://fungiperu.wordpress.com/2015/06/08/peruvian-fungi-ncbi-nucleotide-database/. Accessed 15 Mar 2018
- 85.Cryptomycota in Flora do Brasil 2020 under construction (2018) Jardim Botânico do Rio de Janeiro. http://floradobrasil.jbrj.gov.br/reflora/floradobrasil/FB101825. Accessed 15 Mar 2018
- 86.Milanez AI, Pires-Zotarelli CLA, Gomes AL. Brazilian zoosporic fungi. São Paulo: Seção de Micologia/IBt; 2007. [Google Scholar]
- 87.Nascimento CA, Pires-Zottarelli CLA. Blastocladiales e Spizellomycetales do Parque Estadual da Serra da Cantareira, São Paulo, Brasil. Rev Brasil Bot. 2010;33(4):693–704. doi: 10.1590/S0100-84042010000400016. [DOI] [Google Scholar]
- 88.Letcher PM, Longcore JE, Quandt A, Leite DS, Jamesc TY, Powell MJ. Morphological, molecular, and ultrastructural characterization of Rozella rhizoclosmatii, a new species in Cryptomycota. Fungal Biol. 2017;121(1):1–10. doi: 10.1016/j.funbio.2016.08.008. [DOI] [PubMed] [Google Scholar]
- 89.Foust FK. A new species of Rozella parasitic on Allomyces. J Elisha Mitchell Sci Soc. 1937;53:197–204. [Google Scholar]
- 90.Held AA. The zoospore of Rozella allomycis: ultrastructure. Canadian J Botany. 1975;53(19):2212–2232. doi: 10.1139/b75-245. [DOI] [Google Scholar]
- 91.Riess K, Bauer R, Kellner R, Kemler M, Piątek M, Vánky K, Begerow D. Identification of a new order of root-colonising fungi in the Entorrhizomycota: Talbotiomycetales ord. nov. on eudicotyledons. IMA Fungus. 2015;6(1):129–133. doi: 10.5598/imafungus.2015.06.01.07. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 92.Kirk PM, Cannon PF, Minter DW, Stalpers JA, editors. Ainsworth & Bisby’s dictionary of the fungi. 10. CAB International: Wallingford; 2008. [Google Scholar]
- 93.Fungi in Flora do Brasil 2020 under construction (2018). Jardim Botânico do Rio de Janeiro. http://floradobrasil.jbrj.gov.br/reflora/floradobrasil/FB128479. Accessed 17 January 2018
- 94.Cendejas-Bueno E, Kolecka A, Alastruey-Izquierdo A, Theelen B, Groenewald M, Kostrzewa M, Cunca-Estrella M, Gómez-López A, Boekhout T. Reclassification of the Candida haemulonii complex as Candida haemulonii (C. haemulonii group I), C. duobushaemulonii sp. nov. (C. haemulonii group II), and C. haemulonii var. vulnera var. nov.: three multiresistant human pathogenic yeasts. J Clin Microbiol. 2012;50(11):3641–3651. doi: 10.1128/JCM.02248-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 95.Badotti F, Silva PA, Mendonça MC, Gomes FC, Morais PB, Lachance MA, Rosa CA. Wickerhamiella dulcicola sp. nov. and Wickerhamiella cachassae sp. nov., yeasts isolated from cachaça fermentation in Brazil. Int J Syst Evol Microbiol. 2013;63(3):1169–1173. doi: 10.1099/ijs.0.048306-0. [DOI] [PubMed] [Google Scholar]
- 96.Chaves GM, Terçarioli GR, Padovan ACB, Rosas RC, Ferreira RC, Melo AS, Colombo AL. Candida mesorugosa sp. nov., a novel yeast species similar to Candida rugosa, isolated from a tertiary hospital in Brazil. Sabouraudia. 2013;51(3):231–242. doi: 10.3109/13693786.2012.710345. [DOI] [PubMed] [Google Scholar]
- 97.Dayo-Owoyemi I, Rosa CA, Rodrigues A, Pagnocca FC. Wickerhamiella kiyanii fa, sp. nov. and Wickerhamiella fructicola fa, sp. nov., two yeasts isolated from native plants of Atlantic rainforest in Brazil. Int J Syst Evol Microbiol. 2014;64(6):2152–2158. doi: 10.1099/ijs.0.058784-0. [DOI] [PubMed] [Google Scholar]
- 98.Robl D, Thimoteo SS, de Souza GCCF, Beux MR, Dalzoto PR, Pinheiro RL, Pimentel IC. Occurrence of Candida orthopsilosis in Brazilian tomato fruits (Lycopersicum esculentum Mill.) Braz J Microbiol. 2014;45(1):105–109. doi: 10.1590/S1517-83822014000100015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 99.Lopes MR, Ferreira MC, Carvalho TF, Pagnocca FC, Chagas RA, Morais PB, Rosa LH, Lachance M-A, Rosa CA. Yamadazyma riverae sp. nov., a yeast species isolated from plant materials. Int J Syst Evol Microbiol. 2015;65(12):4469–4473. doi: 10.1099/ijsem.0.000597. [DOI] [PubMed] [Google Scholar]
- 100.Santos ARO, Faria ES, Lachance MA, Rosa CA. Ogataea mangiferae sp. nov., a methylotrophic yeast isolated from mango leaves. Int J Syst Evol Microbiol. 2015;65(6):1855–1859. doi: 10.1099/ijs.0.000194. [DOI] [PubMed] [Google Scholar]
- 101.Boontham W, Limtong S, Rosa CA, Lopes MR, Vital MJ, Srisuk N. Cyberlindnera tropicalis f.a., sp. nov., a novel yeast isolated from tropical regions. Int J Syst Evol Microbiol. 2017;67(8):2569–2573. doi: 10.1099/ijsem.0.001970. [DOI] [PubMed] [Google Scholar]
- 102.Pereira GVM, Magalhães KT, Almeida EG, Coelho IS, Schwan RF. Spontaneous cocoa bean fermentation carried out in a novel-design stainless steel tank: influence on the dynamics of microbial populations and physical–chemical properties. Int J Food Microbiol. 2013;161(2):121–133. doi: 10.1016/j.ijfoodmicro.2012.11.018. [DOI] [PubMed] [Google Scholar]
- 103.Rambold G (2015) LIAS: A global information system for lichenized and non-lichenized ascomycetes (version Dec 2015). In: Roskov Y, Abucay L, Orrell T, Nicolson D, Bailly N, Kirk P.M, Bourgoin T, DeWalt R.E, Decock W, De Wever A, Nieukerken E van, Zarucchi J, Penev L (eds.). Species 2000 & ITIS catalogue of life, 26th February 2018. Digital resource at www.catalogueoflife.org/col. Species 2000: Naturalis, Leiden, the Netherlands.
- 104.Lecanorales in Flora do Brasil 2020 under construction (2018) Jardim Botânico do Rio de Janeiro. http://floradobrasil.jbrj.gov.br/reflora/floradobrasil/FB138189. Accessed 15 March 2018
- 105.Stenroos S, Hyvönen J, Myllys L, Thell A, Ahti T. Phylogeny of the genus Cladonia s.lat. (Cladoniaceae, Ascomycetes) inferred from molecular, morphological, and chemical data. Cladistics. 2002;18(3):237–278. doi: 10.1111/j.1096-0031.2002.tb00151.x. [DOI] [PubMed] [Google Scholar]
- 106.Schmull M, Miadlikowska J, Pelzer M, Stocker-Wörgötter E, Hofstetter V, Fraker E, Hodkinson BP, Reeb V, Kukwa M, Lumbsch HT, Kauff F. Phylogenetic affiliations of members of the heterogeneous lichen-forming fungi of the genus Lecidea sensu Zahlbruckner (Lecanoromycetes, Ascomycota) Mycologia. 2011;103(5):983–1003. doi: 10.3852/10-234. [DOI] [PubMed] [Google Scholar]
- 107.Kalb K, Staiger B, Elix JA, Lange U, Lumbsch HT. A new circumscription of the genus Ramboldia (Lecanoraceae, Ascomycota) based on morphological and molecular evidence. Nova Hedwigia. 2008;86(1–2):23–42. doi: 10.1127/0029-5035/2008/0086-0023. [DOI] [Google Scholar]
- 108.Vaz AB, Mota RC, Bomfim MRQ, Vieira ML, Zani CL, Rosa CA, Rosa LH. Antimicrobial activity of endophytic fungi associated with Orchidaceae in Brazil. Can J Microbiol. 2009;55(12):1381–1391. doi: 10.1139/W09-101. [DOI] [PubMed] [Google Scholar]
- 109.Vu D, Groenewald M, Szöke S, Cardinali G, Eberhardt U, Stielow B, de Vries M, Verkleij GJ, Crous PW, Boekhout T, Robert V. DNA barcoding analysis of more than 9000 yeast isolates contributes to quantitative thresholds for yeast species and genera delimitation. Stud Mycol. 2016;85:91–105. doi: 10.1016/j.simyco.2016.11.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 110.Sette LD, Passarini MRZ, Rodrigues A, Leal RR, Simioni KCM, Nobre FS, Brito BR, Rocha AJ, Pagnocca FC. Fungal diversity associated with Brazilian energy transmission towers. Fungal Divers. 2010;44(1):53–63. doi: 10.1007/s13225-010-0048-y. [DOI] [Google Scholar]
- 111.Arcuri SL, Pagnocca FC, Melo WGP, Nagamoto NS, Komura DL, Rodrigues A. Yeasts found on an ephemeral reproductive caste of the leaf-cutting ant Atta sexdens rubropilosa. Antonie van Leeuwenhoek. 2014;106(3):475–487. doi: 10.1007/s10482-014-0216-2. [DOI] [PubMed] [Google Scholar]
- 112.Hirai A, Kano R, Makimura K, Duarte ER, Hamdan JS, Lachance MA, Yamaguchi H, Hasegawa A. Malassezia nana sp. nov., a novel lipid-dependent yeast species isolated from animals. Int J Syst Evol Microbiol. 2004;54(2):623–627. doi: 10.1099/ijs.0.02776-0. [DOI] [PubMed] [Google Scholar]
- 113.Sperandio EM, Vale HMM, Moreira GAM. Yeasts from native Brazilian Cerrado plants: occurrence, diversity and use in the biocontrol of citrus green mould. Fungal Biol. 2015;119(11):984–993. doi: 10.1016/j.funbio.2015.06.011. [DOI] [PubMed] [Google Scholar]
- 114.Hamamoto M, Nakase T. Phylogenetic analysis of the ballistoconidium-forming yeast genus Sporobolomyces based on 18S rDNA sequences. Int J Syst Evol Microbiol. 2000;50(3):1373–1380. doi: 10.1099/00207713-50-3-1373. [DOI] [PubMed] [Google Scholar]
- 115.Jančič S, Nguyen HD, Frisvad JC, Zalar P, Schroers HJ, Seifert KA, Gunde-Cimerman N. A taxonomic revision of the Wallemia sebi species complex. PloS ONE. 2015;10(5):e0125933. doi: 10.1371/journal.pone.0125933. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 116.Guatimosim E, Firmino AL, Bezerra JL, Pereira OL, Barreto RW, Crous PW. Towards a phylogenetic reappraisal of Parmulariaceae and Asterinaceae (Dothideomycetes) Persoonia. 2015;35:230–241. doi: 10.3767/003158515X688046. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 117.Maharachchikumbura SS, Hyde KD, Jones EG, McKenzie EH, Huang SK, Abdel-Wahab MA, Daranagama DA, Dayarathne M, D’souza MJ, Goonasekara ID, Hongsanan S, Jayawardena RS, Kirk PM, Konta S, Liu J-K, Liu Z-Y, Norphanphoun C, Pang K-L, Perera RH, Senanayake IC, Shang Q, Shenoy BD, Xiao Y, Bahkali AH, Kang J, Somrothipo S, Suetrong S, Wen T, Xu J. Towards a natural classification and backbone tree for Sordariomycetes. Fungal Divers. 2015;72(1):199–301. doi: 10.1007/s13225-015-0331-z. [DOI] [Google Scholar]
- 118.Hodkinson BP, Moncada B, Lücking R. Lepidostromatales, a new order of lichenized fungi (Basidiomycota, Agaricomycetes), with two new genera, Ertzia and Sulzbacheromyces, and one new species, Lepidostroma winklerianum. Fungal Divers. 2014;64(1):165–179. doi: 10.1007/s13225-013-0267-0. [DOI] [Google Scholar]
- 119.Chen KH, Miadlikowska J, Molnár K, Arnold AE, U’Ren JM, Gaya E, Gueidan C, Lutzoni F. Phylogenetic analyses of eurotiomycetous endophytes reveal their close affinities to Chaetothyriales, Eurotiales, and a new order – Phaeomoniellales. Mol Phylog Evol. 2015;85:117–130. doi: 10.1016/j.ympev.2015.01.008. [DOI] [PubMed] [Google Scholar]
- 120.Almeida DAC, Gusmão LFP, Miller AN. Brazilian semi-arid Ascomycetes II: new and interesting records of Bertiaceae, Nitschkiaceae and Scortechiniaceae (Coronophorales, Sordariomycetes) Nova Hedwigia. 2016;102(3–4):513–522. doi: 10.1127/nova_hedwigia/2016/0324. [DOI] [Google Scholar]
- 121.Wartchow F, Sulzbacher MA, Selosse MA, Grebenc T, Aime MC, Sá MC, Pinheiro FG, Baseia IG, Ovrebo CL. Sebacina aureomagnifica, a new heterobasidiomycete from the Atlantic Forest of northeast Brazil. Mycol Prog. 2015;14(11):109. doi: 10.1007/s11557-015-1132-1. [DOI] [Google Scholar]
- 122.Santos SG, Silva PR, Garcia AC, Zilli JÉ, Berbara RL. Dark septate endophyte decreases stress on rice plants. Braz J Microbiol. 2017;48(2):333–341. doi: 10.1016/j.bjm.2016.09.018. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 123.Úrbez-Torres JR, Haag P, Bowen P, O'Gorman DT. Grapevine trunk diseases in British Columbia: incidence and characterization of the fungal pathogens associated with black foot disease of grapevine. Plant Dis. 2014;98(4):456–468. doi: 10.1094/PDIS-05-13-0524-RE. [DOI] [PubMed] [Google Scholar]
- 124.Silva MA, Correia KC, Barbosa MA, Câmara MP, Gramaje D, Michereff SJ. Characterization of Phaeoacremonium isolates associated with Petri disease of table grape in Northeastern Brazil, with description of Phaeoacremonium nordesticola sp. nov. Eur J Plant Pathol. 2017;149(3):695–709. doi: 10.1007/s10658-017-1219-4. [DOI] [Google Scholar]
- 125.Lima JR, Gonçalves LR, Brandão LR, Rosa CA, Viana FM. Isolation, identification, and activity in vitro of killer yeasts against Colletotrichum gloeosporioides isolated from tropical fruits. J Basic Microbiol. 2013;53(7):590–599. doi: 10.1002/jobm.201200049. [DOI] [PubMed] [Google Scholar]
- 126.Madrid H, Gené J, Cano J, Silvera C, Guarro J. Sporothrix brunneoviolacea and Sporothrix dimorphospora, two new members of the Ophiostoma stenoceras-Sporothrix schenckii complex. Mycologia. 2010;102(5):1193–1203. doi: 10.3852/09-320. [DOI] [PubMed] [Google Scholar]
- 127.Fernandes GF, dos Santos PO, Rodrigues AM, Sasaki AA, Burger E, de Camargo ZP. Characterization of virulence profile, protein secretion and immunogenicity of different Sporothrix schenckii sensu stricto isolates compared with S. globosa and S. brasiliensis species. Virulence. 2013;4(3):241–249. doi: 10.4161/viru.23112. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 128.Rodrigues AM, de Melo TM, de Hoog GS, Schubach TM, Pereira SA, Fernandes GF, Bezerra LM, Felipe MS, de Camargo ZP. Phylogenetic analysis reveals a high prevalence of Sporothrix brasiliensis in feline sporotrichosis outbreaks. PloS Negl Trop Dis. 2013;7(6):e2281. doi: 10.1371/journal.pntd.0002281. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 129.Rodrigues AM, De Hoog G, Zhang Y, De Camargo ZP. Emerging sporotrichosis is driven by clonal and recombinant Sporothrix species. Emerg Microbes Infect. 2014;3(5):e32. doi: 10.1038/emi.2014.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 130.Sasaki AA, Fernandes GF, Rodrigues AM, Lima FM, Marini MM, Feitosa LD, de Melo TM, Felipe MS, da Silveira JF, de Camargo ZP. Chromosomal polymorphism in the Sporothrix schenckii complex. PloS ONE. 2014;9(1):e86819. doi: 10.1371/journal.pone.0086819. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 131.Araujo ML, Rodrigues AM, Fernandes GF, Camargo ZP, Hoog GS. Human sporotrichosis beyond the epidemic front reveals classical transmission types in Espírito Santo, Brazil. Mycoses. 2015;58(8):485–490. doi: 10.1111/myc.12346. [DOI] [PubMed] [Google Scholar]
- 132.Gomes FC, Safar SV, Marques AR, Medeiros AO, Santos AR, Carvalho C, Lachance MA, Sampaio JP, Rosa CA. The diversity and extracellular enzymatic activities of yeasts isolated from water tanks of Vriesea minarum, an endangered bromeliad species in Brazil, and the description of Occultifur brasiliensis fa, sp. nov. Antonie van Leeuwenhoek. 2015;107(2):597–611. doi: 10.1007/s10482-014-0356-4. [DOI] [PubMed] [Google Scholar]
- 133.Oliveira JVC, Borges TA, Santos RA, Freitas LF, Rosa CA, Goldman GH, Riaño-Pachón DM. Pseudozyma brasiliensis sp. nov., a xylanolytic, ustilaginomycetous yeast species isolated from an insect pest of sugarcane roots. Int J Syst Evol Microbiol. 2014;64(6):2159–2168. doi: 10.1099/ijs.0.060103-0. [DOI] [PubMed] [Google Scholar]
- 134.Stenroos S, Myllys L, Thell A, Hyvönen J. Phylogenetic hypotheses: Cladoniaceae, Stereocaulaceae, Baeomycetaceae, and Icmadophilaceae revisited. Mycol Prog. 2002;1(3):267–282. doi: 10.1007/s11557-006-0024-9. [DOI] [Google Scholar]
- 135.Schüßler A, Gehrig H, Schwarzott D, Walker C. Analysis of partial Glomales SSU rRNA gene sequences: implications for primer design and phylogeny. Mycol Res. 2001;105(1):5–15. doi: 10.1017/S0953756200003725. [DOI] [Google Scholar]
- 136.Jensen AB, Gargas A, Eilenberg J, Rosendahl S. Relationships of the insect-pathogenic order Entomophthorales (Zygomycota, Fungi) based on phylogenetic analyses of nuclear small subunit ribosomal DNA sequences (SSU rDNA) Fungal Genet Biol. 1998;24(3):325–334. doi: 10.1006/fgbi.1998.1063. [DOI] [PubMed] [Google Scholar]
- 137.Tretter ED, Johnson EM, Wang Y, Kandel P, White MM. Examining new phylogenetic markers to uncover the evolutionary history of early-diverging fungi: comparing MCM7, TSR1 and rRnA genes for single- and multi-gene analyses of the Kickxellomycotina. Persoonia. 2013;30:106–125. doi: 10.3767/003158513X666394. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 138.James TY, Porter D, Leander CA, Vilgalys R, Longcore JE. Molecular phylogenetics of the Chytridiomycota support the utility of ultrastructural data in chytrid systematics. Can J Bot. 2000;78(3):336–350. [Google Scholar]
- 139.Dong S, Shen Z, Xu L, Zhu F. Sequence and phylogenetic analysis of SSU rRNA gene of five Microsporidia. Curr Microbiology. 2010;60(1):30–37. doi: 10.1007/s00284-009-9495-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 140.Radek R, Wurzbacher C, Gisder S, Nilsson RH, Owerfeldt A, Genersch E, Kirk PM, Voigt K. Morphologic and molecular data help adopting the insect-pathogenic nephridiophagids (Nephridiophagidae) among the early diverging fungal lineages, close to the Chytridiomycota. MycoKeys. 2017;25:31–50. doi: 10.3897/mycokeys.25.12446. [DOI] [Google Scholar]
- 141.Nilsson RH, Kristiansson E, Ryberg M, Hallenberg N, Larsson KH. Intraspecific ITS variability in the kingdom fungi as expressed in the international sequence databases and its implications for molecular species identification. Evol Bioinform. 2008;4:193–201. doi: 10.4137/EBO.S653. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 142.Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M, Bates ST, Bruns TD, Bengtsson-Palme J, Callaghan TM, Douglas B, Drenkhan T, Eberhardt U, Dueñas M, Grebenc T, Griffith GW, Hartmann M, Kirk PM, Kohout P, Larsson E, Lindahl BD, Lücking R, Martin MP, Matheny PB, Nguyen NH, Niskanen T, Oja J, Peay KG, Peintner U, Peterson M, Põldmaa K, Saag L, Saar I, Schüßler A, Scott JA, Senés C, Smith ME, Suija A, Taylor DL, Telleria MT, Weiß M, Larsson K-H. Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol. 2013;22(21):5271–5277. doi: 10.1111/mec.12481. [DOI] [PubMed] [Google Scholar]
- 143.Ryberg M. Molecular operational taxonomic units as approximations of species in the light of evolutionary models and empirical data from fungi. Mol Ecol. 2015;24(23):5770–5777. doi: 10.1111/mec.13444. [DOI] [PubMed] [Google Scholar]
- 144.Badotti F, Oliveira FS, Garcia CF, Vaz AB, Fonseca PL, Nahum LA, Oliveira G, Góes-Neto A. Effectiveness of ITS and sub-regions as DNA barcode markers for the identification of Basidiomycota (fungi) BMC Microbiol. 2017;17(1):42. doi: 10.1186/s12866-017-0958-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 145.Callahan EJ, McMurdie PJ, Holmes S. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017;11(12):2639–2643. doi: 10.1038/ismej.2017.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 146.Hennings P. Fungi mattogrossenses a Dr. R. Pilger collecti 1899. Beiblatt zur Hedwigia. 1900;39:134–139. [Google Scholar]
- 147.Singer R. Contributions toward a monograph of the genus Pluteus. Trans Br Mycol Soc. 1956;39(2):145–232. doi: 10.1016/S0007-1536(56)80001-6. [DOI] [Google Scholar]
- 148.Singer R. [1958] Monographs of South American Basidiomycetes, especially those of the east slope of the Andes and Brazil 1. The genus Pluteus in South America. Lloydia. 1959;21:195–299. [Google Scholar]
- 149.Singer R. New taxa and new combinations of Agaricales (diagnoses fungorum novorum Agaricalium IV) Fieldiana Bot. 1989;21:1–133. [Google Scholar]
- 150.Wartchow F, Cortez VG, Coelho G. Pluteus thomsonii (Pluteaceae): a northern agaric found in South America. Mycotaxon. 2004;89(2):349–353. [Google Scholar]
- 151.Wartchow F, Cortez VG, Coelho G. New records of Pluteus (Pluteaceae, Agaricales) from Brazil. Mycotaxon. 2006;96:241–252. [Google Scholar]
- 152.Menolli N, Jr, Capelari M. Notes on Pluteus (Pluteaceae, Agaricales) from Brazil including two new species and a new record. Mycologia. 2010;102(3):697–707. doi: 10.3852/09-200. [DOI] [PubMed] [Google Scholar]
- 153.Menolli N, Jr, Capelari M. [2013] One hundred fourteen years of Pluteus in Brazil: collections studied by Hennings and Rick. Mycotaxon. 2014;126(1):191–226. doi: 10.5248/126.191. [DOI] [Google Scholar]
- 154.Menolli N, Jr, Capelari M. [2016] Pluteus section Celluloderma (Pluteaceae, Agaricales) in Brazil: additional morphological studies and an annotated checklist of all named taxa. Iheringia Ser Bot. 2017;71(3):316–330. [Google Scholar]
- 155.Menolli N, Jr, de Meijer AA, Capelari M. The genus Pluteus (Pluteaceae, Agaricales) from the state of Paraná, Brazil. Nova Hedwigia. 2015;100(1–2):101–157. doi: 10.1127/nova_hedwigia/2014/0224. [DOI] [Google Scholar]
- 156.Menolli N, Jr, Asai T, Capelari M. Records and new species of Pluteus from Brazil based on morphological and molecular data. Mycology. 2010;1(2):130–153. doi: 10.1080/21501203.2010.493531. [DOI] [Google Scholar]
- 157.Menolli N, Jr, Justo A, Arrillaga P, Pradeep CK, Minnis AM, Capelari M. Taxonomy and phylogeny of Pluteus glaucotinctus sensu lato (Agaricales, Basidiomycota), a multicontinental species complex. Phytotaxa. 2014;188(2):78–90. doi: 10.11646/phytotaxa.188.2.2. [DOI] [Google Scholar]
- 158.Menolli N, Jr, Justo A, Capelari M. Pluteus section Hispidoderma in Brazil with new records based on morphological and molecular data. Cryptogam Mycol. 2015;36(3):331–354. doi: 10.7872/crym/v36.iss3.2015.331. [DOI] [Google Scholar]
- 159.Menolli N, Jr, Justo A, Capelari M. [2015] Phylogeny of Pluteus section Celluloderma including eight new species from Brazil. Mycologia. 2016;107(6):1205–1220. doi: 10.3852/14-312. [DOI] [PubMed] [Google Scholar]
- 160.Justo A, Minnis AM, Ghignone S, Menolli N, Jr, Capelari M, Rodríguez O, Malysheva E, Contu M, Vizzini A. Species recognition in Pluteus and Volvopluteus (Pluteaceae, Agaricales): morphology, geography and phylogeny. Mycol Prog. 2011;10(4):453–479. doi: 10.1007/s11557-010-0716-z. [DOI] [Google Scholar]
- 161.Justo A, Vizzini A, Minnis AM, Menolli N, Jr, Capelari M, Rodríguez O, Malysheva E, Contu M, Ghignone S, Hibbett DS. Phylogeny of Pluteaceae (Agaricales, Basidio-mycota): taxonomy and character evolution. Fungal Biol. 2011;115(1):1–20. doi: 10.1016/j.funbio.2010.09.012. [DOI] [PubMed] [Google Scholar]
- 162.Lücking R, Dal-Forno M, Sikaroodi M, Gillevet PM, Bungartz F, Moncada B, Yánez-Ayabaca A, Chaves JL, Coca LF, Lawrey JD. A single macrolichen constitutes hundreds of unrecognized species. Proc Natl Acad Sci U S A. 2014;111(30):11091–11096. doi: 10.1073/pnas.1403517111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 163.Guarro J, Severo LC, Gené J, de Mattos OF, Cano J, Franche G, Cantarelli VV, Schell WA. Sinusitis caused by the fungus Xylaria enteroleuca in a lung transplant recipient. Diagn Microbiol Infect Dis. 2006;56(2):207–212. doi: 10.1016/j.diagmicrobio.2006.06.002. [DOI] [PubMed] [Google Scholar]
- 164.Rodrigues A, Bacci M, Jr, Mueller UG, Ortiz A, Pagnocca FC. Microfungal “weeds” in the leafcutter ant symbiosis. Microbial Ecol. 2008;56(4):604–614. doi: 10.1007/s00248-008-9380-0. [DOI] [PubMed] [Google Scholar]
- 165.Passarini MR, Santos C, Lima N, Berlinck RG, Sette LD. Filamentous fungi from the Atlantic marine sponge Dragmacidon reticulatum. Arch Microbiol. 2013;195(2):99–111. doi: 10.1007/s00203-012-0854-6. [DOI] [PubMed] [Google Scholar]
- 166.Vaz AB, Fontenla S, Rocha FS, Brandão LR, Vieira ML, De Garcia V, Góes-Neto A, Rosa CA. Fungal endophyte β-diversity associated with Myrtaceae species in an Andean Patagonian forest (Argentina) and an Atlantic forest (Brazil) Fungal Ecol. 2014;8:28–36. doi: 10.1016/j.funeco.2013.12.008. [DOI] [Google Scholar]
- 167.Menezes JP, Lupatini M, Antoniolli ZI, Blume E, Junges E, Manzoni CG. Genetic variability in rDNA ITS region of Trichoderma spp. (biocontrole agent) and Fusarium oxysporum f. sp. chrysanthemi isolates. Ciênc Agrotec. 2010;34(1):132–139. doi: 10.1590/S1413-70542010000100017. [DOI] [Google Scholar]
- 168.Gazis R, Rehner S, Chaverri P. Species delimitation in fungal endophyte diversity studies and its implications in ecological and biogeographic inferences. Molecular Ecol. 2011;20(14):3001–3013. doi: 10.1111/j.1365-294X.2011.05110.x. [DOI] [PubMed] [Google Scholar]
- 169.Hypocreales in Flora do Brasil 2020 under construction (2019) Jardim Botânico do Rio de Janeiro. http://www.floradobrasil.jbrj.gov.br/reflora/floradobrasil/FB93733. Accessed 19 June 2019.
- 170.Sreenivasaprasad S, Meehan BM, Mills PR, Brown AE. Phylogeny and systematics of 18 Colletotrichum species based on ribosomal DNA spacer sequences. Genome. 1996;39(3):499–512. doi: 10.1139/g96-064. [DOI] [PubMed] [Google Scholar]
- 171.Henry T, Iwen PC, Hinrichs SH. Identification of Aspergillus species using internal transcribed spacer regions 1 and 2. J Clin Microbiol. 2000;38(4):1510–1515. doi: 10.1128/JCM.38.4.1510-1515.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 172.Van Gent-Pelzer MPE, Van Brouwershaven IR, Kox LFF, Bonants PJM. A TaqMan PCR method for routine diagnosis of the quarantine fungus Guignardia citricarpa on citrus fruit. J Phytopathol. 2007;155(6):357–363. doi: 10.1111/j.1439-0434.2007.01244.x. [DOI] [Google Scholar]
- 173.Crouch JA, Clarke BB, Hillman BI. What is the value of ITS sequence data in Colletotrichum systematics and species diagnosis? A case study using the falcate-spored graminicolous Colletotrichum group. Mycologia. 2009;101(5):648–656. doi: 10.3852/08-231. [DOI] [PubMed] [Google Scholar]
- 174.Wulandari NF, To-Anun C. Hyde KD, Duong LM, De Gruyter J, Meffert JP, Groenewald JZ, Crous PW. Phyllosticta citriasiana sp. nov., the cause of Citrus tan spot of Citrus maxima in Asia. Fungal Divers. 2009;34(1):23–39. [Google Scholar]
- 175.Santos JM, Correia VG, Phillips AJ. Primers for mating-type diagnosis in Diaporthe and Phomopsis: their use in teleomorph induction in vitro and biological species definition. Fungal Biol. 2010;114(2-3):255–270. doi: 10.1016/j.funbio.2010.01.007. [DOI] [PubMed] [Google Scholar]
- 176.Weir BS, Johnston PR, Damm U. The Colletotrichum gloeosporioides species complex. Studies in Mycology. 2012;73:115–180. doi: 10.3114/sim0011. [DOI] [PMC free article] [PubMed] [Google Scholar]




