Skip to main content
NIHPA Author Manuscripts logoLink to NIHPA Author Manuscripts
. Author manuscript; available in PMC: 2021 May 1.
Published in final edited form as: J Head Trauma Rehabil. 2020 May-Jun;35(3):165–174. doi: 10.1097/HTR.0000000000000545

Online family problem-solving therapy (F-PST) for executive and behavioral dysfunction after traumatic brain injury in adolescents: A randomized, multicenter, comparative effectiveness clinical trial

Brad G Kurowski a, H Gerry Taylor b, Kelly A McNally c, Michael W Kirkwood d, Amy Cassedy e, Paul S Horn f, Terry Stancin g, Shari L Wade h
PMCID: PMC7205575  NIHMSID: NIHMS1538223  PMID: 31834062

Abstract

Objective:

To examine the comparative effectiveness of three modes of family problem-solving therapy (F-PST): therapist-guided online, self-guided online, and face-to-face.

Setting:

Four children’s hospitals and a general hospital with pediatric commitment.

Participants:

150 adolescents aged 14 to 18 years, previously hospitalized with traumatic brain injury (TBI), and evidence of behavior problems at enrollment.

Design:

Multicenter, randomized clinical trial (RCT).

Main Measures:

Behavior Rating Inventory of Executive Function (BRIEF) Global Executive Composite (GEC), Behavior Regulation Index (BRI), and Metacognitive Index (MI) and Strengths and Difficulties Questionnaire total (SDQ) at baseline and 6 and 9 months later.

Results:

Mixed model intention-to-treat analyses of comparative effectiveness failed to reveal statistically significant differences among treatment groups. At six months, parent BRIEF-GEC improved for the therapist-guided and self-guided, online groups. Effects remained significant and increased in magnitude at 9 months for the self-guided online group. Scores for the Self-guided online group significantly improved from baseline to 9 months on the SDQ Total.

Conclusions:

This comparative effectiveness study supports the utility of both self- and therapist-guided online F-PST in improving executive function behaviors in adolescents following TBI. Further work regarding clinical implementation and how best to integrate telehealth with ongoing rehabilitation care is warranted.

Keywords: adolescent, traumatic brain injury, executive function, online, therapy

Introduction

Traumatic brain injury (TBI) is a world-wide health problem, one of the most common causes of acquired disability in youth and a source of significant morbidity and family burden.17 TBI results in 7,843 deaths, 46,260 hospitalizations, and 1,083,122 emergency department visits in children and young adults yearly in the United States.6 Early injuries can have a life-long impact.8 TBI often results in deficits in cognition, behavior, and social development.911 Emerging behavior problems are common,1214 yet many youth fail to receive treatment due to lack of identification and access.15,16 Linking youth with TBI to effective treatments could improve functional outcomes and reduce family burden.

Online family problem-solving therapy (F-PST) with therapist involvement has demonstrated efficacy in improving behavioral problems after pediatric TBI. F-PST, involving the adolescent with TBI, one or both parents and siblings when available, targets family-level problems with effective communication and problem-solving while providing the individual with TBI with an executive function heuristic for addressing deficits in inhibition (Stop and Think) and self-regulation.17 Results from five previous randomized controlled trials suggest that older children as well as those from families of lower socioeconomic status or with higher levels of behavior problems prior to treatment are more likely to have improved behavior and executive function relative to those who were assigned to receive access to online TBI resources only.17 Although some improvements were apparent immediately following treatment, other effects did not emerge for a full year.18

While these findings highlight the potential utility of online, therapist-guided F-PST for post-TBI behavior problems, they pose additional questions regarding how this treatment approach (online with therapist involvement) compares to traditional face-to-face or online treatment without therapist involvement. Electronic-health approaches reduce barriers such as distance, time, and cost.19 However, their comparative effectiveness versus traditional face-to-face F-PST has not been tested. Moreover, the value of therapist support for skill implementation also remains untested. Identifying families who benefit from online F-PST without therapist involvement could significantly reduce costs and expand access. Thus, a critical next step is to evaluate the benefits of differing modes of F-PST in a typical clinical setting and to identify who benefits from each delivery mode.

We evaluated the comparative effectiveness of three delivery modes of F-PST for improvement of parent-reported executive functions and behavior. We anticipated that participants in all three groups would improve from pre- to post-treatment and that these improvements would be maintained at follow-up three months later. We were particularly interested in testing for noninferiority of the self-guided group compared to other groups. We further sought to identify moderators of treatment efficacy. Specifically, we hypothesized that individuals with greater social disadvantage (lower education, lower income, and single marital status) would benefit more from the greater intensity of the therapist-guided online intervention which provided both web-based psychoeducation and synchronous therapy sessions; whereas those with greater resources would report equivalent benefit regardless of modality. We evaluated time since injury and injury severity as additional moderators given evidence that F-PST may be less effective20,21 during the acute recovery period22 and that children with severe TBI may benefit more.23 These primary study outcomes provide critically needed information about the optimal mode for delivery of online F-PST following pediatric TBI.

METHODS

Design

A multicenter, randomized clinical trial (RCT) design was used to examine the comparative effectiveness of three versions of F-PST in improving/ameliorating patient- and caregiver-reported executive dysfunction and behavioral impairment.24 The three groups (face-to-face F-PST; therapist-guided online F-PST; and self-guided online F-PST) have equivalent content but vary in delivery mode and the degree of therapist involvement. Families were randomized based on their distance from the hospital. Patients who lived ≥ 25 miles from the hospital/clinic were randomly assigned to one of the two online arms (therapist-guided online F-PST; and self-guided online F-PST). Patients who lived < 25 miles were randomly assigned to one of the three arms (therapist-guided face-to-face F-PST; therapist-guided online F-PST; and self-guided online F-PST) in a two to one ratio, with a higher proportion assigned to the face-to-face arm. The study was conducted at five Level I Trauma Centers at hospitals affiliated with academic institutions in Ohio and Colorado.

Participants

Participants included families of 150 youth aged 14–19 years with complicated-mild to severe TBI who were hospitalized for TBI and had evidence of behavior problems at enrollment. Potentially eligible children were identified based on trauma registry information from the previous 19 years, during an outpatient medical visit, or via referral from their medical providers. Consistent with prior research, severe TBI was defined by a lowest Glasgow Coma Scale (GCS) score of 8 or less and moderate TBI was defined by a GCS score of 9–12 or a higher GCS score accompanied by abnormalities on neuroimaging.18,2426 Exclusionary criteria included primary language other than English, parent psychiatric hospitalization during the past year, or child psychiatric hospitalization prior to their TBI. Children with moderate-to-severe preinjury cognitive disability and those who had not recovered sufficiently to verbally participate were also excluded. We included children with non-blunt trauma or a history of child abuse. Participant enrollment and study participation are detailed in Figure 1 (CONSORT flow diagram).

Figure 1.

Figure 1.

CONSORT Flow Diagram

*Note: Due to missing or incomplete data for the outcomes utilized, the number of participants utilized in mixed model analyses including the Behavior Rating of Executive Function (BRIEF) Global Executive Composite (GEC) parent report was 117 (23 face-to-face, 46 therapist-guided, 48 self-guided); the BRIEF GEC self-report was 118 (23 face-to-face, 46 therapist-guided, 49 self-guided); and the Strength and Difficulties Questionnaire (SDQ) was 120 (24 face-to-face, 46 therapist-guided, 50 self-guided)

Screening Assessment.

During the recruitment call, research coordinators administered the Impact Scale of the Strengths and Difficulties Questionnaire (SDQ).27 Children rated by parents as having current behavior problems of > 1 month duration that interfered with functioning “only a little” in two or more domains, or “a medium amount” or “a great deal” in at least one domain were invited to enroll.

Baseline interview and assessment.

Baseline assessment measures24 were administered by a research assistant naïve to group assignment either in the medical clinic or the family’s home, depending on family preference. Randomization, via sealed envelope, was done after baseline assessments were completed.

Computer installation and orientation.

Families without a computer and/or Internet services who were assigned to one of the two online arms received a tablet and/or Internet access for the program duration.

Interventions.

Participants in all three treatment arms received 10 sequential core sessions providing training in staying positive/cognitive reframing, problem-solving, communication, and self-regulation/anger management.24 Core sessions were presented in the same order to all participants, with limited flexibility in emergent circumstances. For online participants, the entire family was encouraged to view website and complete the online activities together, and the family logged who participated on the website. Families in the face-to-face group received a family workbook with handouts that corresponded to the online content. Beginning in session 2, the youth with TBI and his/her family were encouraged to apply the problem-solving heuristic to a personal problem or goal at each subsequent session. In the two therapist-guided arms, therapists met with families for approximately 60 minutes to review didactic information, practice skills, and problem-solve around family aims. Based on individual family concerns, families in the therapist-guided arms could receive up to four additional meetings with the therapist.24 The online therapist- and self-guided arms could view all 11 supplemental sessions online. The face-to-face arm participants could complete up to four additional sessions with their therapist, with hand-outs for the additional, supplemental online session content available upon request.

Study therapists all had a PhD in clinical psychology, experience treating pediatric TBI, and training in cognitive behavioral therapy. They completed a two-day F-PST training prior to delivering the intervention. Treatment was guided by a comprehensive treatment manual outlining session objectives (available on request from the last author). Fidelity was maintained through biweekly supervision calls and post-session fidelity checklists. The same therapist delivered both therapist-directed treatments ensuring good fidelity between the two approaches. Reminders of sessions were provided to all groups. To ensure similarity of reminders between the therapist-guided and self-guided groups when session were missed, families in the self-guided group who failed to log on or complete web modules also received reminders via phone, text, or e-mail. Thus, the self-guided online group received the same frequency and types of reminders as the therapist-directed groups groups.

Outcome measures:

Parents and adolescents completed the Behavior Rating Inventory of Executive Function (BRIEF), a rating of the child’s executive functioning abilities.27,28 The BRIEF provides a valid assessment of executive function in daily life and has good internal consistency, inter-rater reliability, and test-retest reliability.27,2932 The Global Executive Composite (GEC) is an overall index of executive functioning.27,2932 The Behavior Regulation Index (BRI) assesses the child’s ability to shift cognitive set and appropriately modulate their behaviors and emotions.27,2932 The Metacognitive Index (MI) provides a rating of the child’s planning, organization, and problem-solving behaviors.27,2932 Higher scores indicate poorer executive function, and a score of 65 suggests clinical impairment.27,2932 The SDQ is a parent rating of child behavior.3335 The 25-item SDQ yields summary scores for Total, Externalizing and Internalizing symptoms. The SDQ has good validity and reliability.3436 Higher scores are associated with more difficulties, with Total scores of 17 or greater indicating high difficulties.33

A priori sample size and power calculations:

Power was calculated based on comparison of change from baseline to 6 months in the two online groups.24 Assuming a standard deviation of 7 units in the change scores from baseline to 6 months and a clinically relevant group difference of 5 units,37,38 a sample size of 43 per group was needed for 90% power at α=0.05. Given our primary interest in the comparative efficacy of the two online arms, the study was powered for this comparison.

Analysis:

Descriptive statistics were completed to characterize continuous and categorical variables. Parametric and non-parametric comparisons among groups were made when appropriate. To evaluate comparative treatment effects, repeated measures mixed models were used. The dependent variables were the BRIEF GEC, BRI and MI and SDQ Total, Internalizing and Externalizing scores. Covariates included in all models were time since injury at baseline, site, race (Caucasian or not), and visit (i.e., baseline, 6-month or 9-month follow-up).39 The primary independent variables of interest were treatment group and the interaction of treatment group by visit. Within the mixed models, the trajectory of recovery was evaluated within each group. The outcomes were also compared among all three groups (face-to-face, online therapist-guided, and self-guided online). To determine individuals most likely to benefit from varying modes of F-PST, we evaluated the influence of parental education, income, marital status, time since injury and injury severity as potential moderators. All interaction terms among treatment group, visit, and the moderator were included in these models. Post-hoc analyses restricted to individuals who completed at least 5 sessions were done to explore whether more optimal treatment adherence analyses yielded similar findings to the intent-to-treat mixed model analysis. Significance was considered if the p-value < .05, with effect sizes reported. The effect sizes reported here are derived from the mixed model results and are similar to Cohen’s d (and Hedge’s g), with adjusted t-statistics for the pairwise differences.40 All statistical analyses were conducted using SAS® statistical software version 9.4 (SAS Institute Inc., Cary, NC).

RESULTS

One-hundred fifty participants provided informed consent, completed a baseline visit, and were randomized (Figure 1). Of these, 34 were assigned to the face-to-face treatment, 56 to the therapist-guided online treatment, and 60 to self-guided online treatment (Figure 1). These participants included 96 males with an average age at injury of 11.8 years and age at enrollment of 16.4 years, 73 of whom had severe TBI and 124 of whom were white (Table 1). There were no significant differences among treatment groups in demographic and injury characteristics, with the exception that a lower proportion of whites were in the face-to-face group compared to the therapist- and self-guided online groups (Table 1). Baseline assessments were similar among groups (Table 1).

Table 1.

Participant characteristics and baseline measures

Overall Group
Face-to-Face Online Self pValue
N = 150 n = 34 n = 56 n = 60
Site, n (%) 0.690
  • Cincinnati 41 (27.3) 12 (35.3) 15 (26.8) 14 (23.3)
  • Columbus 48 (32.0) 7 (20.6) 19 (33.9) 22 (36.7)
  • Cleveland 23 (15.3) 7 (20.6) 8 (14.3) 8 (13.3)
  • Denver 38 (25.3) 8 (23.5) 14 (25.0) 16 (26.7)
Metropolitan area, n (%) 0.004
  • Large Metro 97 (64.7) 32 (94.1) 33 (58.9) 32 (53.3)
  • Medium Metro 13 (8.7) 0 (0.0) 5 (8.9) 8 (13.3)
  • Small Metro 4 (2.7) 1 (2.9) 2 (3.6) 1 (1.7)
  • Non-metro 36 (24%) 1 (4.1) 16 (28.6) 19 (31.7)
Patient
Age (years), mean (SD) 16.5 (1.1) 16.7 (1.4) 16.4 (1.5) 16.4 (1.5) 0.632
Age at Injury recoded into 3 categories, n (%) 0.71
  • Less than 7 years of age 32 (21.2) 5 (14.7) 11 (20.0) 16 (26.7)
  • 7 to 14 years of age 40 (26.7) 10 (29.4) 16 (28.6) 14 (23.3)
  • 14 years old or older 78 (52.0) 19 (55.9) 29 (51.8) 30 (50.0)
Male, n (%) 96 (64.0) 20 (58.8) 38 (67.9) 39 (63.3) 0.681
Caucasian, n (%)* 124 (82.7) 22 (64.7) 51 (91.1) 51 (85.0) 0.005
Severe TBI, n (%) 73 (49.0) 15 (44.1) 30 (53.6) 28 (47.5) 0.654
Time since injury (years), mean (SD) 4.6 (5.1) 4.3 (4.6) 4.5 (5.2) 4.9 (5.3) 0.860
Parent
Married, n (%) 83 (55.3) 18 (52.9) 33 (58.9) 32 (53.3) 0.791
Education, n (%) 0.923
  • Less than HS 14 (9.3) 4 (11.8) 6 (10.7) 4 (6.7)
  • HS degree 46 (30.7) 9 (26.6) 19 (33.9) 18 (30.0)
  • Some College 48 (32.0) 11 (32.4) 18 (32.1) 19 (31.7)
  • College Degree 42 (28.0) 10 (29.4) 13 (23.4) 19 (31.7)
Income in thousands, mean (SD) 61.4 (37.8) 57.4 (39.1) 65.0 (37.3) 60.5 (37.9) 0.656
Outcome Measures
Parent – reported BRIEF, mean (SD)
  • Global Executive Functioning (GEC) 62.7 (11.8) 64.5 (13.7) 62 (10.6) 62.3 (11.8) 0.59
  • Behavioral Regulation Index (BRI) 60.7 (12.5) 60.6 (14.7) 60.4 (11.2) 61.1 (12.6) 0.96
  • Metacognition Index (MI) 62.5 (11.5) 65.2 (12.6) 62 (11.1) 61.5 (11.2) 0.30
Teen-reported BRIEF, mean (SD)
  • Global Executive Functioning (GEC) 56.1 (12.5) 56.8 (11.3) 54.4 (11.9) 57.3 (13.6) 0.42
  • Behavioral Regulation Index (BRI) 55.8 (12.8) 55.6 (11.5) 54.2 (12.4) 57.4 (14.0) 0.42
  • Metacognition Index (MI) 55.4 (11.6) 56.8 (10.5) 54 (11.0) 56.0 (12.8) 0.47
SDQ, means (SD)
  • Externalizing 6.8 (3.7) 6.8 (3.2) 6.7 (3.4) 6.9 (4.3) 0.95
  • Internalizing 6.1 (3.9) 6.5 (4.1) 5.4 (3.7) 6.5 (4.0) 0.31
  • Total 12.9 (6.4) 13.2 (6.7) 12.2 (6.0) 13.4 (6.6) 0.56

Note: n = frequency; (%) = percent; SD = Standard Deviation; TBI = Traumatic Brain Injury; BRIEF = Behavior Rating of Executive Functioning; GEC = Global Executive Composite; BRI = Behavioral Regulation Index; MI = Metacognition Index; SDQ = Strengths and Difficulties Questionnaire; BRIEF – T-scores with a mean of 50 and standard deviation of 10. T-score > 65 considered clinically elevated. Higher = more executive dysfunction; SDQ - Higher scores are associated with more difficulties, with total scores of 17 or higher indicating greater difficulties. Large Metro = counties in metro areas of 1 million population or more, Medium Metro = counties in metro areas of 250,000 to 1 million population, Small metro = counties in metro areas of fewer than 250,000 population, Nonmetro = a combination of rural and urban populations, could be adjacent to metro area, population range of less than 2,500 to more than 20,000.

Of the participants randomized, 24 in the face-to-face, 47 in the therapist-guided online, and 53 in the self-guided online received the allocated intervention and completed at least part of the 6 and/or 9 month assessments. A similar (p = 0.30) mean number of sessions were completed by participants in the face-to-face (7.0 (SD = 4.5)), therapist-guided online (7.7 (SD = 4.3)), and self-guided online groups (7.1 (SD = 5.0)).

Mixed model analyses of comparative effectiveness failed to reveal differences among treatment groups on the parent- or self-report BRIEF scores or SDQ scales. Additionally, when restricting the analyses to individuals who completed at least 5 sessions, comparative analyses indicated that the groups were similar in their effectiveness.

However, in pairwise comparisons of treatment groups (face-to-face versus therapist-guided online; face-to-face versus self-guided online; and therapist-guided online versus self-guided online) using intent-to-treat mixed models, the self-guided group had better outcomes on the BRIEF MI at 6 months than the face-to-face group (t=2.11, effect size = .59, p=.037), with this difference approaching significance at 9 months (t=1.94, effect size = .51, p=.055).

Within group analysis demonstrated benefits of treatment on the parent-BRIEF-GEC, MI, and BRI. Benefits on the parent BRIEF-GEC at 6 months were found for the therapist-guided (t=1.95, effect size = .41, p=.053) and self-guided (t=2.52, effect size = .50, p=.013) online groups, with the effects remaining significant and increasing in magnitude at 9 months for only the self-guided online group (t=4.29, effect size = .86, p < .001). Improvement on the parent BRIEF BRI from baseline to 6 months was evident for the therapist and self-guided online groups (therapist-guided: t=2.56, effect size = .53, p=.012; self-guided: t=2.51, effect size = .50, p=.014), with the benefits of the therapist-guided intervention (t=2.06, effect size=.42, p=.042) remaining relatively stable and benefits of the self-guided intervention (t=3.83, effect size .77, p<.001) increasing at 9 months. Benefits on the parent BRIEF MI were also found for the self-guided group at 9 months (t=3.67, effect size =.73, p<.001). Analysis failed to reveal significant changes for any of the treatment groups on the self-report BRIEF GEC, BRI, or MI at either the 6 or 9 month visit (p all > .05).

Scores for the Self-guided group significantly improved from baseline to 9 months on the SDQ Total (t=3.67, effect size = .73, p<.001), Externalizing (t=3.20, effect size = .63, p=.002), and Internalizing (t=2.85, effect size =.56, p=.005) scales. However, there were no significant improvements on these measures from baseline to 6 months or 9 months for the face-to-face or therapist-guided online groups.

Examination of potential moderators of differences in outcomes revealed that only marital status (married versus unmarried) was statistically significant and only for the SDQ externalizing scale. Post hoc analyses indicated that this moderation effect was driven by differences within the self-guided online group. Specifically, married-caregiver status was associated with significant improvements in externalizing symptoms from baseline to 9 months with corresponding large effect sizes (t=3.50, effect size = .95, p=.001), whereas unmarried participants in this and the other treatment groups did not.

DISCUSSION

This comparative effectiveness study of three modes of problem solving suggests that effectiveness among varying treatment modalities is similar. Both self-guided online and therapist-guided online approaches were associated with improvements in parent-reported executive-function behaviors, with only the self-guided online found to improve on broad-based parent-reported behavior problems. Importantly, we found minimal/no support for the efficacy of the face-to-face approach in improving either parent- or self-reported outcomes. Although evidence of hypothesized moderation effects was limited, being married was associated with a better response to self-guided delivery mode on parent-reported behavioral outcomes, which is consistent with the expectation that families with more resources may benefit more readily from self-directed treatment.41 While confirming previous research supporting the effectiveness of problem solving therapy for management of executive and behavioral dysfunction in individuals hospitalized with complicated mild to severe TBI,17,37,42 results from this study suggest that the current standard of care (i.e., face-to-face intervention) may not be superior to online treatment delivery.

These findings also suggest that the benefits of problem solving therapy may be equal or greater when families complete treatment independently of a therapist. The lack of significant changes in problem behaviors on the SDQ within the therapist-guided online group need to be interpreted in the context of differences in the population enrolled and the measure (SDQ versus Child Behavior Checklist) examined in this study compared to prior research.42 Participants in the current study varied more widely in time since injury than in previous studies and included children with abusive head trauma. Additionally, eligibility criteria required parental concern about behavioral functioning. Importantly, the findings underscore the promise of self-guided online F-PST in this vulnerable population with identified behavioral impairments who often fail to receive needed behavioral treatments.

The lack of efficacy in the face-to-face group compared to online groups on these primary outcomes raises important questions regarding how we clinically address behavioral concerns with families following TBI. Despite identical content and providers and a similar number of session completed among groups, there was not significant improvement in the face-to-face arm on either parent- or self-reported executive function or problem behaviors. This may be due in part to differences in the population of those living closest to the participating hospitals (who were disproportionately represented in the face-to-face group). It may also have to do with how content is delivered, with both online treatments allowing participants to digest content at their own pace and review videos or pages as needed. Although the number of sessions completed did not differ significantly among groups, online participants may have had greater exposure due to their ability to review content again as desired. Adolescents are virtually constant consumers of online content and this approach to intervention delivery may more closely dovetail with their learning style and preferred modes of information consumption.43 Coming to the hospital for therapy may have also been associated with memories of the original hospitalization raising the potential for post-traumatic stress symptoms and expectations regarding complete recovery.44 These findings suggest the potential need to optimize how care is delivered to patients and their families and consider greater use of electronic-health interventions as a first line of psychosocial care. There is high likelihood that this trend will emerge in adult rehabilitation care as well.4547

Hypothesized heterogeneity in treatment effects was largely unsupported, specifically families with fewer resources did not benefit more from the therapist-involved treatments. Some families may require additional supports to derive optimal benefits from the self-guided F-PST. The finding of differing perceptions between parents and adolescents regarding improvements is consistent with prior research with this population and evidence that adolescents with TBI may have limited self-awareness of their deficits.23,4850 In the latter case, improvements in self-awareness may result in ratings of more rather than fewer concerns post treatment.

Study Limitations

Due to the randomization scheme that was stratified by distance, the face-to-face group was smaller than the other groups which may have limited the power to detect differences between it and the other groups. Although assessors at baseline were naïve to group assignment and follow-up assessments were completed online, it was not possible to conceal group assignment from parents or adolescents. Due to the high proportion of individuals from large metropolitan areas in the face-to-face group and overall limited number of families from rural areas in the study, examination of urban versus rural residence as a moderator of treatment effects was precluded. However, a higher proportion of parents indicated that they preferred one of the online treatments prior to group assignment and this may have biased their perceptions of and participation in the face-to-face arm.51 Treatment sessions were not recorded and coded for fidelity; therefore, we are not able to provide more details on fidelity. We selected a briefer assessment (SDQ) of behavior problems in response to stakeholder input. However, it is possible that it was less sensitive to change than the Child Behavior Checklist which was used in prior studies. Additionally, follow up was limited to 3 months following treatment completion, precluding our ability to assess lagged effects.

CONCLUSIONS

This unique comparative effectiveness study supports the utility of both self- and therapist-guided online F-PST in improving executive function behaviors in adolescents who sustained a TBI. They provide exciting new evidence regarding the efficacy of online F-PST without therapist involvement suggesting a potentially fruitful and currently under-utilized avenue for addressing behavioral needs in this underserved population. Given the rapidly evolving regulations regarding telehealth or e-health interventions, further work regarding clinical implementation and how best to integrate telehealth with ongoing rehabilitation care is warranted.

Table 2.

Within group changes in outcomes from baseline to immediate post-treatment visit (6-months) and delayed post-treatment visit (9-months)

LSMean (SE) Baseline to 6 Months Baseline to 9 Months
Outcome Group Baseline 6 Months 9 Months Difference 95% CI t-value p-value “Effect Size” Difference 95% CI t-value p-value “Effect Size”
BRIEF Parent Outcomes
BRIEF Parent GEC Face-to-Face 64.6 (2.1) 65.1 (2.5) 61.3 (2.5) −0.5 (−4.0, 3.0) −0.27 0.789 0.08 3.3 (−0.3, 6.9) 1.78 0.078 0.50
Therapist-Guided Online 62.3 (1.9) 59.9 (2.1) 60.0 (2.1) 2.4 (−0.0, 4.8) 1.95 0.053 0.41 2.2 (−0.2, 4.7) 1.76 0.082 0.36
Self-Guided Online 62.4 (1.8) 59.5 (2.0) 57.0 (2.0) 2.9 (0.6, 5.2) 2.52 0.013 0.50 5.4 (2.9, 7.9) 4.29 <0.001 0.86
BRIEF Parent BRI Face-to-Face 60.8 (2.2) 61.8 (2.6) 57.8 (2.6) −1.0 (−4.7, 2.6) −0.54 0.591 0.16 2.9 (−0.9, 6.8) 1.51 0.135 0.42
Therapist-Guided Online 60.9 (2.1) 57.6 (2.2) 58.1 (2.2) 3.3 (0.7, 5.7) 2.56 0.012 0.53 2.8 (0.1, 5.5) 2.06 0.042 0.42
Self-Guided Online 61.8 (2.0) 58.8 (2.1) 56.6 (2.1) 3.0 (0.6, 5.4) 2.51 0.014 0.50 5.2 (2.5, 7.9) 3.83 <0.001 0.77
BRIEF Parent MI Face-to-Face 65.4 (2.0) 65.5 (2.4) 62.6 (2.3) −0.1 (−3.7, 3.5) −0.05 0.957 0.02 2.8 (−0.7, 6.4) 1.56 0.121 0.44
Therapist-Guided Online 62.2 (1.8) 60.6 (2.0) 60.6 (2.0) 1.7 (−0.8, 4.1) 1.34 0.184 0.28 1.7 (−0.8, 4.1) 1.31 0.193 0.27
Self-Guided Online 61.4 (1.7) 59.1 (1.9) 56.8 (1.9) 2.3 (−0.0, 4.6) 1.93 0.056 0.38 4.6 (2.1, 7.0) 3.67 <0.001 0.73
BRIEF Self-Report Outcomes
BRIEF Self-Report GEC Face-to-Face 56.7 (2.2) 57.8 (2.8) 58.2 (2.8) −1.1 (−5.9, 3.7) −0.46 0.648 0.14 −1.4 (−6.2, 3.3) −0.59 0.554 0.16
Therapist-Guided Online 53.1 (2.0) 54.1 (2.2) 52.5 (2.3) −1.0 (−4.2, 2.2) −0.61 0.541 0.13 0.5 (−2.8, 3.9) 0.30 0.761 0.06
Self-Guided Online 56.3 (1.9) 54.3 (2.1) 55.8 (2.2) 1.9 (−1.2, 5.0) 1.22 0.225 0.24 0.5 (−2.8, 3.7) 0.27 0.785 0.05
BRIEF Self-Report BRI Face-to-Face 55.3 (2.2) 57.8 (2.8) 56.8 (2.7) −2.5 (−7.2, 2.1) −1.06 0.290 0.32 −1.5 (−6.0, 3.0) −0.64 0.523 0.18
Therapist-Guided Online 52.4 (2.0) 52.2 (2.2) 51.4 (2.2) 0.2 (−3.0, 3.3) 0.11 0.916 0.02 1.0 (−2.2, 4.1) 0.58 0.560 0.12
Self-Guided Online 56.0 (1.9) 54.0 (2.1) 55.4 (2.1) 2.0 (−1.0, 5.1) 1.28 0.201 0.26 0.6 (−2.5, 3.7) 0.39 0.700 0.08
BRIEF Self-Report MI Face-to-Face 57.0 (2.0) 57.0 (2.7) 58.1 (2.7) 0.0 (−4.6, 4.7) 0.01 0.994 0.00 −1.1 (−5.9, 3.6) −0.47 0.641 0.13
Therapist-Guided Online 53.3 (1.8) 55.2 (2.1) 53.2 (2.2) −1.9 (−5.0, 1.3) −1.16 0.247 0.24 0.1 (−3.2, 3.5) 0.08 0.935 0.02
Self-Guided Online 55.5 (1.7) 54.2 (2.0) 55.4 (2.1) 1.3 (−1.7, 4.3) 0.84 0.402 0.17 0.1 (−3.1, 3.3) 0.06 0.949 0.01
SDQ Outcomes
SDQ Total Difficulties Face-to-Face 13.5 (1.1) 14.1 (1.2) 13.1 (1.3) −0.6 (−2.7, 1.5) −0.57 0.570 0.16 0.4 (−1.7, 2.5) 0.36 0.719 0.10
Therapist-Guided Online 12.5 (1.0) 11.7 (1.0) 11.6 (1.1) 0.8 (−0.6, 2.3) 1.10 0.273 0.22 0.9 (−0.6, 2.5) 1.17 0.244 0.24
Self-Guided Online 13.7 (0.9) 12.6 (1.0) 10.8 (1.0) 1.1 (−0.3, 2.5) 1.52 0.132 0.29 2.8 (1.3, 4.3) 3.67 <0.001 0.73
SDQ Externalizing Face-to-Face 6.8 (0.6) 7.9 (0.7) 7.0 (0.7) −1.1 (−2.3, 0.1) −1.80 0.075 0.51 −0.2 (−1.4, 1.0) −0.36 0.721 0.10
Therapist-Guided Online 6.9 (0.6) 6.4 (0.6) 6.4 (0.6) 0.5 (−0.4, 1.3) 1.06 0.290 0.22 0.5 (−0.4, 1.3) 1.05 0.296 0.21
Self-Guided Online 7.1 (0.5) 6.5 (0.5) 5.7 (0.6) 0.6 (−0.2, 1.4) 1.44 0.153 0.28 1.4 (0.5, 2.2) 3.20 0.002 0.63
SDQ Internalizing Face-to-Face 6.6 (0.6) 6.1 (0.7) 6.1 (0.7) 0.5 (−0.8, 1.8) 0.69 0.493 0.19 0.5 (−0.8, 1.9) 0.77 0.445 0.21
Therapist-Guided Online 5.5 (0.6) 5.2 (0.6) 5.0 (0.6) 0.3 (−0.6, 1.2) 0.72 0.474 0.15 0.5 (−0.4, 1.5) 1.02 0.309 0.21
Self-Guided Online 6.5 (0.5) 6.0 (0.6) 5.1 (0.6) 0.5 (−0.4, 1.4) 1.09 0.276 0.21 1.4 (0.4, 2.3) 2.85 0.005 0.56

Notes: SE = Standard Error; LSMean = Least Square Means; CI = Confidence Interval; BRIEF = Behavior Rating of Executive Functioning; GEC = Global Executive Composite; BRI = Behavioral Regulation Index; MI = Metacognition Index; SDQ = Strengths and Difficulties Questionnaire

Acknowledgements

We acknowledge the contributions of the study therapists, Megan Narad, Ph.D, Nicole Eberle, Ph.D, Britt Nielsen, Ph.D, Kristin Robinson, Ph.D, Cynthia Austen Ph.D, and Heather Yardley, Ph.D. We also acknowledge the contributions of the research coordinators, McKenna Sklut, B.A., Jennifer Taylor, B.A., Hanna Schultz, M.A., Katherine Atkinson, B.A., Anne Birnbaum, B.A., Jacob LaFleur, B.A., Robert Blaha, M.A., and Maria Crossland, B.S., in recruitment, data collection and entry, Donyielle Godfrey, B.A., Adriane Davis-Jordan, B.S., and Nori Minich, B.S., in data management.

Funding Disclosure: Funding for this study was provided by the Patient Center Outcomes Research Institute. Information reported in this work/publication was funded through a Patient-Centered Outcomes Research Institute (PCORI) Award (PCORI-CER-1306-02435). The views, statements, opinions in this work/publication are solely the responsibility of the authors and do not necessarily represent the views of the Patient-Centered Outcomes Research Institute (PCORI), its Board of Governors or Methodology Committee.

Abbreviations:

TBI

traumatic brain injury

F-PST

family problem-solving therapy

RCT

randomized clinical trial

GCS

Glasgow Coma Scale

SDQ

Strengths and Difficulties Questionnaire

BRIEF

Behavior Rating Inventory of Executive Function

GEC

Global Executive Composite

BRI

Behavior Regulation Index

MI

Metacognitive Index

Footnotes

Conflicts of Interest: The authors have indicated that they have no potential conflicts of interest to disclose.

References

  • 1.Maas AI, Stocchetti N, Bullock R. Moderate and severe traumatic brain injury in adults. Lancet Neurol 2008;7(8):728–741. [DOI] [PubMed] [Google Scholar]
  • 2.Styrke J, Stalnacke BM, Sojka P, Bjornstig U. Traumatic brain injuries in a well-defined population: Epidemiological aspects and severity. J Neurotrauma 2007;24(9):1425–1436. [DOI] [PubMed] [Google Scholar]
  • 3.Tagliaferri F, Compagnone C, Korsic M, Servadei F, Kraus J. A systematic review of brain injury epidemiology in Europe. Acta Neurochir (Wien) 2006;148(3):255–268. [DOI] [PubMed] [Google Scholar]
  • 4.Langlois J, Rutland-Brown W, Thomas K. Traumatic brain injury in the United States: Emergency department visits, hospitalizations, and deaths Atlanta, GA: US Department of Health and Human Servicies, CDC; 2004. [Google Scholar]
  • 5.Faul M, Xu L, Wald M, Coronado V. Traumatic brain injury in the United States: Emergency department visits, hospitalizations and deaths 2002–2006 Atlanta (GA): Centers for Disease Control and Prevention, National Center for Injury Prevention and Control; 2010. http://www.cdc.gov/traumaticbraininjury/pdf/blue_book.pdf. Accessed May 17, 2019. [Google Scholar]
  • 6.Taylor CA, Bell JM, Breiding MJ, Xu L. Traumatic brain injury-related emergency department visits, hospitalizations, and deaths - United States, 2007 and 2013. MMWR Surveill Summ 2017;66(9):1–16. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Johnson WD, Griswold DP. Traumatic brain injury: A global challenge. Lancet Neurol 2017;16(12):949–950. [DOI] [PubMed] [Google Scholar]
  • 8.Babikian T, Merkley T, Savage RC, Giza CC, Levin H. Chronic aspects of pediatric traumatic brain injury: Review of the literature. J Neurotrauma 2015;32:1849–1860. [DOI] [PubMed] [Google Scholar]
  • 9.Anderson V, Brown S, Newitt H, Hoile H. Long-term outcome from childhood traumatic brain injury: Intellectual ability, personality, and quality of life. Neuropsychol 2011;25(2):176–184. [DOI] [PubMed] [Google Scholar]
  • 10.Anderson V, Catroppa C, Godfrey C, Rosenfeld JV. Intellectual ability 10 years after traumatic brain injury in infancy and childhood: What predicts outcome? J Neurotrauma 2012;29(1):143–153. [DOI] [PubMed] [Google Scholar]
  • 11.Karver CL, Wade SL, Cassedy A, et al. Age at injury and long-term behavior problems after traumatic brain injury in young children. Rehabil Psychol 2012;57(3):256–265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Chapman L, Wade SL, Walz NC, Taylor HG, Stancin T, Yeates KO. Clinically significant behavior problems during the intial 18 months following early childhood traumatic brain injury. Rehabil Psychol 2010;55(1):48–57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Schwartz L, Taylor HG, Drotar D, Yeates KO, Wade SL, Stancin T. Long-term behavior problems following pediatric traumatic brain injury: Prevalence, predictors, and correlates. J Pediatr Psychol 2003;28(4):251–263. [DOI] [PubMed] [Google Scholar]
  • 14.Ganesalingam K, Sanson A, Anderson V, Yeates KO. Self-regulation and social and behavioral functioning following childhood traumatic brain injury. J Int Neuropsychol Soc 2006;12(5):609–621. [DOI] [PubMed] [Google Scholar]
  • 15.Slomine BS, McCarthy ML, Ding R, et al. Health care utilization and needs after pediatric traumatic brain injury. Pediatrics 2006;117(4):e663–674. [DOI] [PubMed] [Google Scholar]
  • 16.Fuentes MM, Wang J, Haarbauer-Krupa J, et al. Unmet rehabilitation needs after hospitalization for traumatic brain injury. Pediatrics 2018;141(5). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Wade SL, LeBlond EL, Shultz E. Family-based interventions In: Slomine BLG, ed. Cognitive rehabilitation for children with acquired brain injury Cambridge; 2018:100–121. [Google Scholar]
  • 18.Wade SL, Kurowski BG, Kirkwood MW, et al. Online problem-solving therapy after traumatic brain injury: A randomized controlled trial. Pediatrics 2015;135(2):e487–e495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Office of Health Policy OotASfPaEA. Report to Congress: E-health and Telemedicine Washington D.C.: U.S. Department of Health and Human Services;2016. [Google Scholar]
  • 20.Wade SL, Walz NC, Carey J, McMullen KM. A randomized trial of teen online problem solving: Efficacy in improving caregiver outcomes after brain injury. Health Psychol 2012;31(6):767. [DOI] [PubMed] [Google Scholar]
  • 21.Wade SL, Taylor HG, Yeates KO, et al. Online problem solving for adolescent brain injury: A randomized trial of 2 approaches. J Dev Behav Pediatr 2018;39(2):154–162. [DOI] [PubMed] [Google Scholar]
  • 22.Wade SL, Cassedy AE, McNally KA, et al. A randomized comparative effectiveness trial of family-problem-solving treatment for adolescent brain injury: Parent outcomes from the coping with head injury through problem solving (CHIPS) study [published online ahead of print April 2019]. J Head Trauma Rehabil 2019. [DOI] [PubMed]
  • 23.Wade SL, Walz NC, Carey J, et al. A randomized trial of teen online problem solving for improving executive function deficits following pediatric traumatic brain injury. J Head Trauma Rehabil 2010;25(6):409–415. [DOI] [PubMed] [Google Scholar]
  • 24.Kurowski BG, Stancin T, Taylor HG, et al. Comparative effectiveness of family problem-solving therapy (F-PST) for adolescents after traumatic brain injury: Protocol for a randomized, multicenter, clinical trial. Contemp Clin Trials Commun 2018;10:111–120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Teasdale G, Jennett B. Assessment of coma and impaired consciousness: A practical scale. Lancet 1974;2(7872):81–84. [DOI] [PubMed] [Google Scholar]
  • 26.Wade SL, Narad ME, Kingery KM, et al. Teen online problem solving for teens with traumatic brain injury: Rationale, methods, and preliminary feasibility of a teen only intervention. Rehabil Psychol 2017;62(3):290–299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Gioia G, Isquith PK, Guy SC, Kenworthy L. BRIEF: behavior rating inventory of executive function Lutz, FL: Psychological Assessment Resources, Inc.; 2000. [Google Scholar]
  • 28.Roth RM, Isquith PK, Gioia GA. BRIEF-A: behavior rating inventory of executive function -adult version Lutz, FL: Psychological Assessment Resources, Inc.;2005. [Google Scholar]
  • 29.Gioia GA, Isquith PK, Guy SC, Kenworthy L. Behavior rating inventory of executive function. Child Neuropsychol 2000;6(3):235–238. [DOI] [PubMed] [Google Scholar]
  • 30.Gioia GA, Espy K, Isquith P. BRIEF-P: behavior rating inventory of executive function-preschool version Lutz, FL: Psychological Assessment Resources, Inc.; 2003. [Google Scholar]
  • 31.Gioia GA, Isquith PK. Ecological assessment of executive function in traumatic brain injury. Dev Neuropsychol 2004;25(1–2):135–158. [DOI] [PubMed] [Google Scholar]
  • 32.Donders J, DenBraber D, Vos L. Construct and criterion validity of the behaviour rating inventory of executive function (BRIEF) in children referred for neuropsychological assessment after paediatric traumatic brain injury. J Neuropsychol 2010;4(Pt 2):197–209. [DOI] [PubMed] [Google Scholar]
  • 33.Bourdon KH, Goodman R, Rae DS, Simpson G, Koretz DS. The strengths and difficulties questionnaire: U.S. normative data and psychometric properties. J Am Acad Child & Adolesc Psychiatry 2005;44(6):557–564. [DOI] [PubMed] [Google Scholar]
  • 34.Goodman R The extended version of the strengths and difficulties questionnaire as a guide to child psychiatric caseness and consequent burden. J Child Psychol Psychiatry 1999;40(5):791–799. [PubMed] [Google Scholar]
  • 35.Goodman R, Scott S. Comparing the strengths and difficulties questionnaire and the child behavior checklist: Is small beautiful? J Abnorm Child Psychol 1999;27(1):17–24. [DOI] [PubMed] [Google Scholar]
  • 36.Goodman R, Meltzer H, Bailey V. The strengths and difficulties questionnaire: A pilot study on the validity of the self-report version. Eur Child Adolesc Psychiatry 1998;7:125–130. [DOI] [PubMed] [Google Scholar]
  • 37.Wade SL, Stancin T, Kirkwood M, Brown TM, McMullen KM, Taylor HG. Counselor-assisted problem solving (CAPS) improves behavioral outcomes in older adolescents with complicated mild to severe TBI. J Head Trauma Rehabil 2014;29(3):198–207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Kurowski BG, Wade SL, Kirkwood MW, Brown TM, Stancin T, Taylor HG. Online problem-solving therapy for executive dysfunction after child traumatic brain injury. Pediatrics 2013;132(1):e158–166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Brown H, Prescott R. Applied Mixed Models in Medicine New York: John Wiley & Sons, Ltd.; 1999. [Google Scholar]
  • 40.Hedges L Distribution theory for glass’s estimator of effect size and related estimators. J Educ Behav Stat 1981;6(2):107–128. [Google Scholar]
  • 41.Raj SP, Zhang N, Kirkwood MW, et al. Online family problem solving for pediatric traumatic brain injury: Influences of parental marital status and participation on adolescent outcomes. J Head Trauma Rehabil 2017;33:158–166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Wade SL, Taylor HG, Cassedy A, et al. Long-term behavioral outcomes after a randomized, clinical trial of counselor-assisted problem solving for adolescents with complicated mild-to-severe traumatic brain injury. J Neurotrama 2015;32(13):967–975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.PR C. Teens, social media, and technology 2018. Accessed May 17, 2019. [Google Scholar]
  • 44.Rhine T, Cassedy A, Yeates KO, Taylor HG, Kirkwood MW, Wade SL. Investigating the connection between traumatic brain injury and posttraumatic stress symptoms in adolescents. J Head Trauma Rehabil 2017;33(3):210–218. [DOI] [PubMed] [Google Scholar]
  • 45.Musiat P, Tarrier N. Collateral outcomes in e-mental health: a systematic review of the evidence for added benefits of computerized cognitive behavior therapy interventions for mental health. Psychol Med 2014;44(15):3137–3150. [DOI] [PubMed] [Google Scholar]
  • 46.Tran V, Lam MK, Amon KL, et al. Interdisciplinary eHealth for the care of people living with traumatic brain injury: A systematic review. Brain Inj 2017;31(13–14):1701–1710. [DOI] [PubMed] [Google Scholar]
  • 47.Ownsworth T, Arnautovska U, Beadle E, Shum DHK, Moyle W. Efficacy of Telerehabilitation for Adults With Traumatic Brain Injury: A Systematic Review. J Head Trauma Rehabil 2018;33(4):E33–E46. [DOI] [PubMed] [Google Scholar]
  • 48.Hanten G, Bartha M, Levin HS. Metacognition following pediatric traumatic brain injury: a preliminary study. Dev Neuropsychol 2000;18(3):383–398. [DOI] [PubMed] [Google Scholar]
  • 49.Wilson KR, Donders J, Nguyen L. Self and parent ratings of executive functioning after adolescent traumatic brain injury. Rehabil Psychol 2011;56(2):100–106. [DOI] [PubMed] [Google Scholar]
  • 50.Wolfe KR, Bigler E, Dennis M, et al. Self-awareness of social attributes in children with traumatic brain injury. J Pediatr Psychol 2015;40:272–284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Wade S, Cassedy A, Sklut M, et al. The relationship of adolescent and parent preferences for treatment modality with satisfaction, attrition, adherence and efficacy: The coping with head injury through problem solving (CHIPS) study. J Pediatr Psychol 2019; 44(3):388–401. [DOI] [PubMed] [Google Scholar]

RESOURCES