Skip to main content
Neuro-Oncology Advances logoLink to Neuro-Oncology Advances
. 2019 Aug 12;1(Suppl 1):i6–i7. doi: 10.1093/noajnl/vdz014.026

LPTO-03. IN-VITRO & IN-VIVO CULTURE OF PATIENT (PT) DERIVED CSF-CTCs IN LEPTOMENINGEAL DISEASE (LMDz) FROM MELANOMA TO IDENTIFY NOVEL TREATMENT STRATEGIES

Vincent Law 1, Brittany Evernden 1, Rajappa Kenchappa 1, John Puskas 1, Gisela Caceres 1, Elena Ryzhova 1, Inna Smalley 1, Arnold Etame 1, Solmaz Sahebjam 1, Anthony Magliocco 1, Keiran Smalley 1, Peter Forsyth 1
PMCID: PMC7213446

Abstract

BACKGROUND: Approximately 5% of melanoma pts develop LMDz. There are essentially no models of LMDz available for therapeutic development. Here we report, the in-vitro & in-vivo culturing of CSF-CTCs. METHODS: CSF-CTCs were detected by the Veridex CellSearch® System. Cell-free DNA and cell-associated DNA were extracted, sequenced and profiled. Expanded ex-vivo CSF-CTCs were grown in-vitro and tested for drug sensitivity. CSF-CTCs were grown successfully in-vivo from 1 pt; labeled human Braf V600E WM164 cells were injected IT in as a control. RESULTS: CSF-CTCs: 12 LMDz pts and 8 melanoma pts without LMDz were studied. All but 1 LMDz pts (92%) had CSF-CTCs (avg: 2148.60; range 23 - 3055 CTCs/ml). In contrast, 3/8 (37%) melanoma Brain Mets pts without LMDz had CSF-CTCs but fewer of them (avg: 0.31; range 0.13 - 0.6 CTCs/ml CSF). CSF-CTCs Profile: These had BrafV600E (83%), and GNAQ Q209P & NRAS Q61R in 1 pt each. Ex-vivo culture of CSF-CTCs and PDX model: After lengthy optimization of conditions we successfully expanded CSF-CTCs in-vitro (~25% of pts), and in-vivo in immunodeficient mice from 1 pt (~10% of samples). Ceritinib, used as a FAK inhibitor, with MEKi was effective in-vitro (p=3.17e-6) and prolonged survival in-vivo in LMDz (median survival: >32 days vs control: 18 days; p=7.81e-5). CONCLUSIONS: Though the sample size is small, this is the first report of the successful in-vitro & in-vivo culture of CSF-CTCs from pts with LMDz. Single cell analysis to determine how representative these models are and further in-vivo testing are in progress.


Articles from Neuro-oncology Advances are provided here courtesy of Oxford University Press

RESOURCES