Skip to main content
. 2020 Jan 31;36(10):2980–2985. doi: 10.1093/bioinformatics/btaa073

Table 1.

Comparison of four tools for pile-up analysis across a set of features: Juicer Aggregate Peak Analysis (APA) (Rao et al., 2014), HiCExplorer (hicAggregateContacts and hicAverageRegions) (Ramírez et al., 2018) and GENOVA (APA, ATA and PE-SCAn) (van der Weide, 2019) and coolpup.py

Feature Juicer HiCExplorer GENOVA coolpup.py
Aggregate loops + + +
Aggregate region pairs + + +
Interactions between two region sets + +
Local pile-ups + +
(Local) rescaled pile-ups + +
Distance normalization Expected (and z-score) Fixed shifts (for pairwise analysis) Expected or random shifts
Coverage normalization +
Anchored pile-ups/loop-ability +
Command-line interface + + +
Simple text output of pile-ups + + +
Hi-C file format .hic .cool, .h5, other? HiC-pro .cool