Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2020 Feb 17;85(2):147–166. doi: 10.1134/S0006297920020030

Isothermal Nucleic Acid Amplification Techniques and Their Use in Bioanalysis

O L Bodulev 1, I Yu Sakharov 1,
PMCID: PMC7223333  PMID: 32093592

Abstract

Recently, there has been a rapid progress in the development of techniques for isothermal amplification of nucleic acids as an alternative to polymerase chain reaction (PCR). The advantage of these methods is that the nucleic acids amplification can be carried out at constant temperature, unlike PCR, which requires cyclic temperature changes. Moreover, isothermal amplification can be conducted directly in living cells. This review describes the principles of isothermal amplification techniques and demonstrates their high efficiency in designing new highly sensitive detection methods of nucleic acids and enzymes involved in their modifications. The data on successful application of isothermal amplification methods for the analysis of cells and biomolecules with the use of DNA/RNA aptamers are presented.

Keywords: nucleic acids, amplification, isothermal, bioanalysis, aptamers

Abbreviations

CHA

catalytic hairpin assembly

EASA

exonu-clease Ill-assisted signal amplification

EXPAR

exponential amplification reaction

HCR

hybridization chain reaction

HDA

helicase-dependent amplification

ICSDP

isothermal circular strand displacement polymerization

LAMP

loop-mediated isothermal amplification

MDA

multiple displacement amplification

NASBA

nucleic acid sequence-based amplification

pWGA

primase-based whole genome amplification

RCA

rolling circle amplification

RPA

recombinase polymerase amplification

SDA

strand-displacement amplification

WGA

whole genome amplification

Funding

This work was supported by the Russian Science Foundation (grant 17-14-01042).

Ethical approval

This article does not contain studies with human participants or animals performed by any of the authors.

Footnotes

Russian Text © The Author(s), 2020, published in Biokhimiya, 2020, Vol. 85, No. 2, pp. 174–196.

Conflict of interest

The authors declare no conflict of interest in financial or any other sphere.

References

  • 1.Manzanares-Palenzuela C L, de-los -Santos-Alvarez N, Lobo-Castanon M J, Lopez-Ruiz B. Multiplex electrochemical DNA platform for femtomolar-level quantification of genetically modified soybean. Biosens. Bioelectron. 2015;68:259–265. doi: 10.1016/j.bios.2015.01.007. [DOI] [PubMed] [Google Scholar]
  • 2.Cavanaugh S E, Bathrick A S. Direct PCR amplification of forensic touch and other challenging DNA samples: a review. Foressic Sci. Int. Genet. 2018;32:40–49. doi: 10.1016/j.fsigen.2017.10.005. [DOI] [PubMed] [Google Scholar]
  • 3.Higuchi R, Dollinger G, Walsh P S, Griffith R. Simultaneous amplification and detection of specific DNA-sequences. Biotechnology (NY) 1992;10:413–417. doi: 10.1038/nbt0492-413. [DOI] [PubMed] [Google Scholar]
  • 4.Alekseev Ya I, Belov Yu V, Varlamov D A, Konovalov S V, Kurochkin V E, Marakushin N E, Petrov A I, Petryakov A O, Rumyantsev D A, Skoblilov E Yu, Sokolov V N, Fesenko V A, Chernyshev A V. Devices for diagnostics of biological objects based on the real-time polymerase chain reaction (RT-PCR) method. Nauchn. Priborostr. 2006;16:132–136. [Google Scholar]
  • 5.Borst A, Box A T A, Fluit A C. False-positive results and contamination in nucleic acid amplification assays: suggestions for a prevent and destroy strategy. Eur. J. Clin. Microbiol. Infect. Dis. 2004;23:289–299. doi: 10.1007/s10096-004-1100-1. [DOI] [PubMed] [Google Scholar]
  • 6.Notomi T O Ft M Ft, Yonekawa T, Watanabe K, Amino N, Hase T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000;28:E63. doi: 10.1093/nar/28.12.e63. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Yan L, Zhou J, Zheng Y, Gamson A S, Roembke B T N S, Sintim H O. Isothermal amplified detection of DNA and RNA. Mol. Biosyst. 2014;10:970–1003. doi: 10.1039/c3mb70304e. [DOI] [PubMed] [Google Scholar]
  • 8.Mori Y, Kitao M, Tomita N, Notomi T. Real-time turbidimetry of LAMP reaction for quantifying template DNA. J. Biochem. Biophys. Methods. 2004;59:145–157. doi: 10.1016/j.jbbm.2003.12.005. [DOI] [PubMed] [Google Scholar]
  • 9.Tomita N, Mori Y K Ft, Notomi T. Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat. Protoc. 2008;3:877–882. doi: 10.1038/nprot.2008.57. [DOI] [PubMed] [Google Scholar]
  • 10.Pang B, Yao S, Xu K, Wang J, Song X L, Mu Y, Zhao C, Li J. A novel visual-mixed-dye for LAMP and its application in the detection of foodborne pathogens. Anal. Biochem. 2019;574:1–6. doi: 10.1016/j.ab.2019.03.002. [DOI] [PubMed] [Google Scholar]
  • 11.Troger V, Niemann K, Gartig C, Kuhlmeier D. Isothermal amplification and quantification of nucleic acids and its use in microsystems. J. Nanomed. Nanotechnol. 2015;6:282–298. [Google Scholar]
  • 12.Najian A B N, Foo P C, Ismail N, Kim-Fatt L, Yean C Y. Probe-specific loop-mediated isothermal amplification magnetogenosensor assay for rapid and specific detection of pathogenic Leptospira. Mol. Cell. Probes. 2019;44:63–68. doi: 10.1016/j.mcp.2019.03.001. [DOI] [PubMed] [Google Scholar]
  • 13.Shchit I Yu, Ignatov K B, Kudryavtseva T Yu, Shishkova N A, Mironova R I, Marinin L I, Mokrievich A N, Kramarov V M, Biketov S F, Dyatlov I A. The use of loop-mediated isothermal DNA amplification for the detection and identification of the anthrax pathogen. Mol. Genet. Microbiol. Virol. 2017;32:100–108. doi: 10.3103/S0891416817020094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Poschl B, Waneesorn J, Thekisoe O, Chutipongvivate S, Panagiotis K. Comparative diagnosis of malaria infections by microscopy, nested PCR., and LAMP in Northern Thailand. Am. J. Tropical Med. Hygiene. 2010;83:56–60. doi: 10.4269/ajtmh.2010.09-0630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Gao X, Sun B, Guan Y. Pullulan reduces the non-specific amplification of loop-mediated isothermal amplification (LAMP) Anal. Bioanal. Chem. 2019;411:1211–1218. doi: 10.1007/s00216-018-1552-2. [DOI] [PubMed] [Google Scholar]
  • 15a.Yang Q, Domesle K J, Ge B. Loop-mediated isothermal amplification for Salmonella detection in food and feed: current applications and future directions. Foodborne Pathogens and Disease. 2018;15:309–331. doi: 10.1089/fpd.2018.2445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15b.Maruyama F, Kenzaka T, Yamaguchi N, Tani K, Nasu M. Detection of bacteria carrying the stx2 gene by in situ loop-mediated isothermal amplification. Appl. Environ. Microbiol. 2003;69:5023–5028. doi: 10.1128/AEM.69.8.5023-5028.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Shchit I Yu, Ignatov K B, Biketov S F. Comparative analysis of LAMP and real-time PCR methods to detect pathogens of glanders and meliodosis. Clin. Lab. Diagn. 2018;63:378–384. doi: 10.18821/0869-2084-2018-63-6-378-384. [DOI] [PubMed] [Google Scholar]
  • 17.Makarova Yu A, Zotikov A A, Belyakova G A, Alekseev B Ya, Shkurnikov M Yu. Loop-mediated isothermal amplification: an effective method for express-diagnostics of cancer. Onkourologiya. 2018;14:88–99. doi: 10.17650/1726-9776-2018-14-2-88-99. [DOI] [Google Scholar]
  • 18.Wong Y P, Othman S, Lau Y L, Radu S, Chee H Y. Loop mediated isothermal amplification (LAMP): a versatile technique for detection of microorganisms. J. Appl. Microbiol. 2018;124:626–643. doi: 10.1111/jam.13647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Compton J. Nucleic acid sequence-based amplification. Nature. 1991;350:91–92. doi: 10.1038/350091a0. [DOI] [PubMed] [Google Scholar]
  • 20.Kievits T v, Gemen B v, Strijp D, Schukkink R, Dircks M, Adriaanse H, Malek L, Sooknanan R, Lens P. NASBA isothermal enzymatic in vitro nucleic acid amplification optimized for the diagnosis of HTV-1 infection. J. Virol. Methods. 1991;35:273–286. doi: 10.1016/0166-0934(91)90069-C. [DOI] [PubMed] [Google Scholar]
  • 21.Mader A, Riehle U, Brandstetter T, Stickeler E, Ruehe J. Universal nucleic acid sequence-based amplification for simultaneous amplification of messenger RNAs and microRNAs. Anal. Chim. Acta. 2012;754:1–7. doi: 10.1016/j.aca.2012.09.045. [DOI] [PubMed] [Google Scholar]
  • 22.Ma Y, Dai X, Hong T, Munk G B, Libera M. A NASBA on microgel-tethered molecular-beacon microarray for real-time microbial molecular diagnostics. Analyst. 2017;142:147–155. doi: 10.1039/C6AN02192A. [DOI] [PubMed] [Google Scholar]
  • 23.Lu X, Shi X, Wu G, Wu T, Qin R, Wang Y. Sci. Reports. 2017. Visual detection and differentiation of classic swine fever virus strains using nucleic acid sequence based amplification (NASBA) and G-quadruplex DNAzyme assay. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Zeng W, Yao W, Wang Y, Li Y, Bermann S M, Ren Y, Shi C, Song X, Huang Q, Zheng S, Wang Q. Molecular detection of genotype II grass carp reovirus based on nucleic acid sequence-based amplification combined with enzyme-linked immunosorbent assay (NASBA-ELISA) J. Virol. Methods. 2017;243:92–97. doi: 10.1016/j.jviromet.2017.02.001. [DOI] [PubMed] [Google Scholar]
  • 25.Honsvall B K, Robertson L J. From research lab to standard environmental analysis tool: will NASBA make the leap? Water Res. 2017;109:389–397. doi: 10.1016/j.watres.2016.11.052. [DOI] [PubMed] [Google Scholar]
  • 26.Vincent M, Xu Y, Kong H. Helicase-dependent isothermal DNA amplification. EMBO Reports. 2004;5:795–800. doi: 10.1038/sj.embor.7400200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Zhao Y, Chen F, Li Q, Wang L, Fan C. Isothermal amplification of nucleic acids. Chem. Rev. 2015;115:12491–12545. doi: 10.1021/acs.chemrev.5b00428. [DOI] [PubMed] [Google Scholar]
  • 28.Barreda-Garcia S, Miranda-Castro R, de-los -Santos-Alvarez N, Miranda-Ordieres A J, Lobo-Castanon M J. Helicase-dependent isothermal amplification: a novel tool in the development of molecular-based analytical systems for rapid pathogen detection. Anal. Bioanal. Chem. 2018;410:679–693. doi: 10.1007/s00216-017-0620-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Mahalanabis M, Do J, ALMuayad H, Zhang J Y, Klapperich C M. An integrated disposable device for DNA extraction and helicase dependent amplification. Biomed. Microdev. 2011;13:353–359. doi: 10.1007/s10544-011-9518-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Ao W, Aldous S, Woodruff E, Hicke B, Rea L, Kreiswirth B, Jenison R. Rapid detection of rpoB gene mutations conferring rifampin resistance in Mycobacterium tuberculosis. J. Clin. Microbiol. 2012;50:2433–2440. doi: 10.1128/JCM.00208-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Tang R, Yang H, Gong Y, You M, Liu Z, Choi J R, Wen T, Qu Z, Mei Q, Xu F. A fully disposable and integrated paper-based device for nucleic acid extraction, amplification and detection. Lab Chip. 2017;17:1270–1279. doi: 10.1039/C6LC01586G. [DOI] [PubMed] [Google Scholar]
  • 32.Barreda-Garcia S, Miranda-Castro R, de-Los -Santos-Alvarez N, Miranda-Ordieres A J, Lobo-Castanon M J. Solid-phase helicase dependent amplification and electrochemical detection of Salmonella on highly stable oligonucleotide-modified ITO electrodes. Chem. Commun. 2017;53:9721–9724. doi: 10.1039/C7CC05128J. [DOI] [PubMed] [Google Scholar]
  • 33.Schwenkbier L, Pollok S, Rudloff A, Sailer S C-M D, Weber K, Popp J. Non-instrumented DNA isolation, amplification and microarray-based hybridization for a rapid on-site detection of devastating Phytophthora kernoviae. Analyst. 2015;140:6610–6618. doi: 10.1039/C5AN00855G. [DOI] [PubMed] [Google Scholar]
  • 34.Toldra A, Jauset-Rubio M, Andree K B, Fernandez-Tejedor M, Diogene J, Katakis I, O’Sullivan C K, Campas M. Detection and quantification of the toxic marine microalgae Karlodinium veneficum and Karlodinium armiger using recombinase polymerase amplification and enzyme-linked oligonucleotide assay. Anal. Chim. Acta. 2018;1039:140–148. doi: 10.1016/j.aca.2018.07.057. [DOI] [PubMed] [Google Scholar]
  • 35.Ma E, Liu M, Tang B, Zhang C Y. Sensitive quantification of microRNAs by isothermal heli-case-dependent amplification. Anal. Chem. 2017;89:6183–6188. doi: 10.1021/acs.analchem.7b01113. [DOI] [PubMed] [Google Scholar]
  • 36.Reid M S, Le X C, Zhang H. Exponential isothermal amplification of nucleic acids and assays for proteins, cells, small molecules, and enzyme activities: an EXPAR example. Angew. Chem. Int. Ed. 2018;57:11856–11866. doi: 10.1002/anie.201712217. [DOI] [PubMed] [Google Scholar]
  • 37.Van Ness J, Van Ness L K, Galas D J. Isothermal reactions for the amplification of oligonucleotides. Proc. Natl. Acad. Sci. USA. 2003;100:4504–4509. doi: 10.1073/pnas.0730811100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Wang H, Wang H, Duan X, Wang X, Sun Y, Li Z. Sensitive detection of mRNA by using specific cleavage-mediated isothermal exponential amplification reaction. Sens. Actual. B: Chemical. 2017;252:215–221. doi: 10.1016/j.snb.2017.06.008. [DOI] [Google Scholar]
  • 39.Li R D, Yin B C, Ye B C. Ultrasensitive, colorimetric detection of micro RNAs based on isothermal exponential amplification reaction-assisted gold nanoparticle amplification. Biosens. Bioelectron. 2016;15:1011–1016. doi: 10.1016/j.bios.2016.07.042. [DOI] [PubMed] [Google Scholar]
  • 40.Liu H, Zhang L, Xu Y, Chen J, Wang Y, Huang Q, Che X, Liu Y, Da Z, Zou X, Li Z. Sandwich immunoassay coupled with isothermal exponential amplification reaction: an ultrasensitive approach for determination of tumor marker MUC1. Talanta. 2019;204:248–254. doi: 10.1016/j.talanta.2019.06.001. [DOI] [PubMed] [Google Scholar]
  • 41.Jia H, Wang Z, Wang C, Chang L, Li Z. Real-time fluorescence detection of Hg2+ ions with high sensitivity by exponentially isothermal oligonucleotide amplification. RSC Adv. 2014;4:9439–9444. doi: 10.1039/c3ra45986a. [DOI] [Google Scholar]
  • 42.Tian L, Weizmann Real-time detection of telomerase activity using the exponential isothermal amplification of telomere repeat assay. J. Am. Chem. Soc. 2013;135:1661–1664. doi: 10.1021/ja309198j. [DOI] [PubMed] [Google Scholar]
  • 43.Wang L, Ren M, Zhang Q, Tang B, Zhang C. Excision repair-initiated enzyme-assisted bicyclic cascade signal amplification for ultrasensitive detection of uracil-DNA glycosylase. Anal. Chem. 2017;89:4488–4494. doi: 10.1021/acs.analchem.6b04673. [DOI] [PubMed] [Google Scholar]
  • 44.Walker G T, Fraiser M S, Schram J L, Little M C, Nadeau J G, Malinowski D P. Strand displacement amplification — an isothermal, in vitro DNA amplification technique. Nucleic Acids Res. 1992;20:1691–1696. doi: 10.1093/nar/20.7.1691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Shi C, Ge Y, Gu H, Ma C. Highly sensitive chemiluminescent point mutation detection by circular strand-displacement amplification reaction. Biosens. Bioelectron. 2011;26:4697–4701. doi: 10.1016/j.bios.2011.05.017. [DOI] [PubMed] [Google Scholar]
  • 46.Zhao Y, Zhou L, Tang Z. Nat. Commun. 2013. Cleavage-based signal amplification of RNA. [DOI] [PubMed] [Google Scholar]
  • 47.Shi C, Liu Q, Ma C, Zhong W. Exponential strand-displacement amplification for detection of microRNAs. Anal. Chem. 2014;86:336–339. doi: 10.1021/ac4038043. [DOI] [PubMed] [Google Scholar]
  • 48.Ren R, Leng C, Zhang S. Detection of DNA and indirect detection of tumor cells based on circular strand-replacement DNA polymerization on electrode. Chem. Commun. 2010;46:5758–5760. doi: 10.1039/c002466j. [DOI] [PubMed] [Google Scholar]
  • 49.Ding C, Li X, Ge Y, Zhang S. Fluorescence detection of telomerase activity in cancer cells based on isothermal circular strand-displacement polymerization reaction. Anal. Chem. 2010;82:2850–2855. doi: 10.1021/ac902818w. [DOI] [PubMed] [Google Scholar]
  • 50.Zhu C, Wen Y, Li D, Wang L, Song S, Fan C, Willner I. Inhibition of the in vitro replication of DNA by an aptamer—protein complex in an autonomous DNA machine. Chemistry. 2009;15:11898–11903. doi: 10.1002/chem.200901275. [DOI] [PubMed] [Google Scholar]
  • 51.Li Y, Zeng Y, Mao Y, Lei C, Zhang S. Proximity-dependent isothermal cycle amplification for small-molecule detection based on surface enhanced Raman scattering. Biosens. Bioelectron. 2014;51:304–309. doi: 10.1016/j.bios.2013.07.055. [DOI] [PubMed] [Google Scholar]
  • 52.Li J, Macdonald J, von Stetten F. Review: a comprehensive summary of a decade development of the recombinase polymerase amplification. Analyst. 2019;144:31–67. doi: 10.1039/C8AN01621F. [DOI] [PubMed] [Google Scholar]
  • 53.Kersting S, Rausch V, Bier F F, von Nickisch-Rosenegk M. Rapid detection of Plasmodium falciparum with isothermal recombinase polymerase amplification and lateral flow analysis. Malar. J. 2014;13:99. doi: 10.1186/1475-2875-13-99. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Lobato I M, O’Sullivan C K. Recombinase polymerase amplification: basics, applications and recent advances. Trends Anal. Chem. 2018;98:19–35. doi: 10.1016/j.trac.2017.10.015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Mayboroda O, Gonzalez Benito A, del Sabate Rio J, Svobodova M, Julich S, Tomaso H, O’Sullivan C K, Katakis I. Isothermal solid-phase amplification system for detection of Yersinia pestis. Anal. Bioanal. Chem. 2016;408:671–676. doi: 10.1007/s00216-015-9177-1. [DOI] [PubMed] [Google Scholar]
  • 56.Ng B Y, Xiao W, West N P, Wee E J, Wang Y, Trau M. Rapid, single-cell electrochemical detection of Mycobacterium tuberculosis using colloidal gold nanoparticles. Anal. Chem. 2015;87:10613–10618. doi: 10.1021/acs.analchem.5b03121. [DOI] [PubMed] [Google Scholar]
  • 57.Tsaloglou M N, Nemiroski A, Camci-Unal G, Christodouleas D C, Murray L P, Connelly J T, Whitesides G M. Handheld isothermal amplification and electrochemical detection of DNA in resource-limited settings. Anal. Biochem. 2017;543:116–121. doi: 10.1016/j.ab.2017.11.025. [DOI] [PubMed] [Google Scholar]
  • 58.Yang B, Kong J, Fang X. Bandage-like wearable flexible microfluidic recombinase polymerase amplification sensor for the rapid visual detection of nucleic acids. Talanta. 2019;204:685–692. doi: 10.1016/j.talanta.2019.06.031. [DOI] [PubMed] [Google Scholar]
  • 59.Fire A, Xu S Q. Rolling replication of short DNA circles. Proc. Natl. Acad. Sci. USA. 1995;92:4641–4645. doi: 10.1073/pnas.92.10.4641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Goo N-L, Kim D-E. Rolling circle amplification as isothermal gene amplification in molecular diagnostics. BioChip J. 2016;10:262–271. doi: 10.1007/s13206-016-0402-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Nilsson M B G, Antson D O, Gertow K, Landegren U. Enhanced detection and distinction of RNA by enzymatic probe ligation. Nat. Biotechnol. 2000;18:791–793. doi: 10.1038/77367. [DOI] [PubMed] [Google Scholar]
  • 62.Marciniak J, Kummel A C, Esener S C, Heller M J, Messmer B T. Coupled rolling circle amplification loop-mediated amplification for rapid detection of short DNA sequences. Biotechniques. 2008;45:275–280. doi: 10.2144/000112910. [DOI] [PubMed] [Google Scholar]
  • 63.Li X H, Zhang X L, Wu J, Lin N, Sun W M, Chen M, Ou Q S, Lin Z Y. Hyperbranched rolling circle amplification (HRCA)-based fluorescence biosensor for ultrasensitive and specific detection of single-nucleotide polymorphism genotyping associated with the therapy of chronic hepatitis B virus infection. Talanta. 2019;191:277–282. doi: 10.1016/j.talanta.2018.08.064. [DOI] [PubMed] [Google Scholar]
  • 64.Schopf E, Liu Y, Deng J C, Yang S, Cheng G, Chen Y. Mycobacterium tuberculosis detection via rolling circle amplification. Anal. Methods. 2011;3:267–273. doi: 10.1039/C0AY00529K. [DOI] [PubMed] [Google Scholar]
  • 65.Cheng Y, Zhang X, Li Z, Jiao X, Wang Y, Zhang Y. Highly sensitive determination of microRNA using target-primed and branched rolling-circle amplification. Angew. Chem. Int. Ed. Engl. 2009;48:3268–3272. doi: 10.1002/anie.200805665. [DOI] [PubMed] [Google Scholar]
  • 66.Deng R, Tang L, Tian Q, Wang Y, Lin L, Li J. Toehold-initiated rolling circle amplification for visualizing individual microRNAs in situ in single cells. Angew. Chem. Int. Ed. Engl. 2014;53:2389–2393. doi: 10.1002/anie.201309388. [DOI] [PubMed] [Google Scholar]
  • 67.Mashimo Y, Mie M, Suzuki S, Kobatake E. Detection of small RNA molecules by a combination of branched rolling circle amplification and bioluminescent pyrophosphate assay. Anal. Bioanal. Chem. 2017;401:221–227. doi: 10.1007/s00216-011-5083-3. [DOI] [PubMed] [Google Scholar]
  • 68.Cui W, Wang L, Xu X, Wang Y, Jiang W. A loop-mediated cascade amplification strategy for highly sensitive detection of DNA methyltransferase activity. Sens. Actual B: Chemical. 2017;244:599–605. doi: 10.1016/j.snb.2017.01.013. [DOI] [Google Scholar]
  • 69.Qing T, He D, He X, Wang K, Xu E, Wen L, Shangguan J, Mao Z, Lei Y. Nucleic acid tool enzymes-aided signal amplification strategy for biochemical analysis: status and challenges. Anal. Bioanal. Chem. 2016;408:2793–2811. doi: 10.1007/s00216-015-9240-y. [DOI] [PubMed] [Google Scholar]
  • 70.Dean F B, Nelson J R, Giesler T L, Lasken R S. Rapid amplification of plasmid and phage DNA using Phi29 DNA polymerase and multiply-primed rolling circle amplification. Genome Res. 2001;11:1095–1099. doi: 10.1101/gr.180501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Li Y, Kim H J, Zheng C C W H A, Lim J, Keenan B, Pan X, Lemieux B, Kong H. Nucleic Acids Res. 2008. Primase-based whole genome amplification. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Miao P, Tang Y, Wang B, Yin J, Ning L. Signal amplification by enzymatic tools for nucleic acids. Trends Anal. Chem. 2015;67:1–15. doi: 10.1016/j.trac.2014.12.006. [DOI] [Google Scholar]
  • 73.Mol C D, Kuo C F, Thayer M M, Cunningham R P, Tainer J A. Structure and function of the multifunctional DNA-repair enzyme exonuclease III. Nature. 1995;374:381–386. doi: 10.1038/374381a0. [DOI] [PubMed] [Google Scholar]
  • 74.Zuo X, Xia E, Xiao Y, Plaxco K W. Sensitive and selective amplified fluorescence DNA detection based on exonuclease III-aided target recycling. J. Am. Chem. Soc. 2010;132:1816–1818. doi: 10.1021/ja909551b. [DOI] [PubMed] [Google Scholar]
  • 75.Yan M, Bai W, Zhu C, Huang Y, Yan J, Chen A. Design of nuclease-based target recycling signal amplification in aptasensors. Biosens. Bioelectron. 2016;11:613–623. doi: 10.1016/j.bios.2015.10.015. [DOI] [PubMed] [Google Scholar]
  • 76.Yang W, Tian J, Ma Y, Wang L, Zhao Y, Zhao S. A label-free fluorescent probe based on DNA-templated silver nanoclusters and exonuclease III-assisted recycling amplification detection of nucleic acid. Anal. Chim. Acta. 2015;900:90–96. doi: 10.1016/j.aca.2015.10.015. [DOI] [PubMed] [Google Scholar]
  • 77.Xu L, Shen X, Li B, Zhu C, Zhou X. G-Quadruplex based Exo III-assisted signal amplification aptasensor for the colorimetric detection of adenosine. Anal. Chim. Acta. 2017;980:58–64. doi: 10.1016/j.aca.2017.05.015. [DOI] [PubMed] [Google Scholar]
  • 78.Gao Y, Li B. G-Quadruplex DNAzyme-based chemiluminescence biosensing strategy for ultrasensitive DNA detection: combination of exonuclease III-assisted signal amplification and carbon nanotubes-assisted background reducing. Anal. Chem. 2013;85:11494–11500. doi: 10.1021/ac402728d. [DOI] [PubMed] [Google Scholar]
  • 79.Gan X, Zhao H, Chen S, Quan X. Electrochemical DNA sensor for specific detection of pico-molar Hg (II) based on exonuclease III-assisted recycling signal amplification. Analyst. 2015;140:2029–2036. doi: 10.1039/C5AN00082C. [DOI] [PubMed] [Google Scholar]
  • 80.Yang Z, Sismour A M, Benner S A. Nucleoside a-thiotriphosphates, polymerases and the exonuclease III analysis of oligonucleotides containing phosphorothioate linkages. Nucleic Acids Res. 2007;35:3118–3127. doi: 10.1093/nar/gkm168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.Xu Q, Cao A, Zhang L-F, Zhang C-Y. Rapid and label-free monitoring of exonuclease III-assisted target recycling amplification. Anal. Chem. 2012;84:10845–10851. doi: 10.1021/ac303095z. [DOI] [PubMed] [Google Scholar]
  • 82.Wang Y, Wu Y, Wang Y, Zhou B, Wu S. A sensitive immobilization-free electrochemical assay for T4PNK activity based on exonuclease III-assisted recycling. RSC Adv. 2015;5:75348–75353. doi: 10.1039/C5RA12849H. [DOI] [Google Scholar]
  • 83.Li W, Liu X, Hou T, Li H, Li F. Ultrasensitive homogeneous electrochemical strategy for DNA methyltransferase activity assay based on autonomous exonuclease III-assisted isothermal cycling signal amplification. Biosens. Bioelectron. 2015;70:304–309. doi: 10.1016/j.bios.2015.03.060. [DOI] [PubMed] [Google Scholar]
  • 84.Min X, Xia L, Zhuang Y, Wang X, Du J, Zhang X, Lou X, Xia E. An AIEgens and exonuclease III aided quadratic amplification assay for detecting and cellular imaging of telomerase activity. Sci. Bull. 2017;62:997–1003. doi: 10.1016/j.scib.2017.06.008. [DOI] [PubMed] [Google Scholar]
  • 85.Yan L, Nakayama S, Sintim H O. Probe design rules and effective enzymes for endonuclease-based detection of nucleic acids. Bioorg. Med. Chem. 2013;21:6181–6185. doi: 10.1016/j.bmc.2013.04.009. [DOI] [PubMed] [Google Scholar]
  • 86.Liu S, Zhang C, Ming J, Wang C, Liu T, Li F. Amplified detection of DNA by an analyte-induced Y-shaped junction probe assembly followed with a nicking endonuclease-mediated autocatalytic recycling process. Chem. Commun. 2013;49:7947–7949. doi: 10.1039/c3cc45211e. [DOI] [PubMed] [Google Scholar]
  • 87.Chen M, Gan N, Li T, Wang Y, Xu Q, Chen Y. An electrochemical aptasensor for multiplex antibiotics detection using Y-shaped DNA-based metal ions encoded probes with NMOF substrate and CSRP target-triggered amplification strategy. Anal. Chim. Acta. 2017;968:30–39. doi: 10.1016/j.aca.2017.03.024. [DOI] [PubMed] [Google Scholar]
  • 88.Wang Q, Yang L, Yang X, Wang K, He L, Zhu J, Su T. An electrochemical DNA biosensor based on the "Y" junction structure and restriction endonuclease-aided target recycling strategy. Chem. Commun. 2012;48:2982–2984. doi: 10.1039/c2cc17679c. [DOI] [PubMed] [Google Scholar]
  • 89.Huang Y, Wang W, Wu T, Xu L-E, Wen Y, Zhang X. A three-line lateral flow biosensor for logic detection of microRNA based on Y-shaped junction DNA and target recycling amplification. Anal. Bioanal. Chem. 2016;408:8195–8202. doi: 10.1007/s00216-016-9925-x. [DOI] [PubMed] [Google Scholar]
  • 90.Zhao Z, Chen S, Wang J, Su J, Xu J, Mathur S, Fan C, Song S. Nuclease-free target recycling signal amplification for ultrasensitive multiplexing DNA biosensing. Biosens. Bioelectron. 2017;94:605–608. doi: 10.1016/j.bios.2017.03.051. [DOI] [PubMed] [Google Scholar]
  • 91.Kiesling T, Cox K, Davidson E A, Dretchen K, Grater G, Hibbard S, Danielsen M. Nucleic Acids Res. 2007. Sequence specific detection of DNA using nicking endonu-clease signal amplification (NESA) [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92.Lin Z Y W, Zhang G, Liu Q, Qiu B, Cai Z, Chen G. An ultrasensitive colorimeter assay strategy for p53 mutation assisted by nicking endonuclease signal amplification. Chem. Commun. 2011;47:9069–9071. doi: 10.1039/c1cc13146j. [DOI] [PubMed] [Google Scholar]
  • 93.Chen J, Zhang J, Li J, Fu F, Yang H H, Chen G. An ultrahighly sensitive and selective electrochemical DNA sensor via nicking endonuclease assisted current change amplification. Chem. Commun. 2010;46:5939–5941. doi: 10.1039/c0cc00748j. [DOI] [PubMed] [Google Scholar]
  • 94.Vijayan A N, Liu Z, Zhao H, Zhang P. Nicking enzyme-assisted signal-amplifiable Hg2+ detection using upconversion nanoparticles. Anal. Chim. Acta. 2019;1072:75–80. doi: 10.1016/j.aca.2019.05.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95.Xie L S, Li T H, Hu F T, Jiang Q L, Wang Q Q, Gan N. A novel microfiuidic chip and anti-body-aptamer based multianalysis method for simultaneous determination of several tumor markers with polymerization nicking reactions for homogenous signal amplification. Microchem. J. 2019;147:454–462. doi: 10.1016/j.microc.2019.03.028. [DOI] [Google Scholar]
  • 96.Guo Q, Yang X, Wang K, Tan W L W, Tang H, Li H. Nucleic Acids Res. 2009. Sensitive fluorescence detection of nucleic acids based on isothermal circular strand-displacement polymerization reaction. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 97.Giuffrida M C, Zanoli L M, D’Agata R, Finotti A, Gambari R, Spoto G. Isothermal circular-strand-displacement polymerization of DNA and microRNA in digital microfiuidic devices. Anal. Bioanal. Chem. 2015;407:1533–1543. doi: 10.1007/s00216-014-8405-4. [DOI] [PubMed] [Google Scholar]
  • 98.Gao F, Du L, Zhang Y, Tang D, Du Y. Molecular beacon mediated circular strand displacement strategy for constructing a ratiometric electrochemical deoxyribonucleic acid sensor. Anal. Chim. Acta. 2015;883:67–73. doi: 10.1016/j.aca.2015.04.058. [DOI] [PubMed] [Google Scholar]
  • 99.Wang T, Zhang Z, Li Y, Xie G. Amplified electrochemical detection of mecA gene in methicillin-resistant Staphylococcus aureus based on target recycling amplification and isothermal strand-displacement polymerization reaction. Sens. Actual B Chem. 2015;221:148–154. doi: 10.1016/j.snb.2015.06.057. [DOI] [Google Scholar]
  • 100.Dirks R M, Pierce N A. Triggered amplification by hybridization chain reaction. Proc. Natl. Acad. Sci. USA. 2004;101:15275–15278. doi: 10.1073/pnas.0407024101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101.Xuan F, Hsing I M. Triggering hairpin-free chain-branching growth of fluorescent DNA dendrimers for nonlinear hybridization chain reaction. J. Am. Chem. Soc. 2014;136:9810–9813. doi: 10.1021/ja502904s. [DOI] [PubMed] [Google Scholar]
  • 102.Bi S, Chen M, Jia X, Dong Y, Wang Z. Hyperbranched hybridization chain reaction for triggered signal amplification and concatenated logic circuits. Angew. Chem. Int. Ed. 2015;54:8144–8148. doi: 10.1002/anie.201501457. [DOI] [PubMed] [Google Scholar]
  • 103.Yang X Y, Yu Y, Gao Z. A highly sensitive plasmonic DNA assay based on triangular silver nanoprism etching. ACS Nano. 2014;85:4902–4907. doi: 10.1021/nn5008786. [DOI] [PubMed] [Google Scholar]
  • 104.Miao P, Tang Y, Yin J. MicroRNA detection based on analyte triggered nanoparticle localization on a tetrahedral DNA modified electrode followed by hybridization chain reaction dual amplification. Chem. Commun. 2015;51:15629–15632. doi: 10.1039/C5CC05499K. [DOI] [PubMed] [Google Scholar]
  • 105.Wu Z, Liu G-Q, Yang X-L, Jiang J-H. Electrostatic nucleic acid nanoassembly enables hybridization chain reaction in living cells for ultrasensitive mRNA imaging. J. Am. Chem. Soc. 2015;137:6829–6836. doi: 10.1021/jacs.5b01778. [DOI] [PubMed] [Google Scholar]
  • 106.Guo J, Wang J, Zhao J, Guo Z, Zhang Y. Ultrasensitive multiplexed immunoassay for tumor bio-markers based on DNA hybridization chain reaction amplifying signal. ACS Appl. Materials Interfaces. 2016;8:6898–6904. doi: 10.1021/acsami.6b00756. [DOI] [PubMed] [Google Scholar]
  • 107.Jie G, Jie G. Sensitive electrochemiluminescence detection of cancer cells based on a CdSe/ZnS quantum dot nanocluster by multibranched hybridization chain reaction on gold nanoparticles. RSC Adv. 2016;6:24780–24785. doi: 10.1039/C6RA00750C. [DOI] [Google Scholar]
  • 108.Choi H M T, Chang J Y, Trinh L A, Padilla J E, Fraser S E, Pierce N F. Programmable in situ amplification for multiplexed imaging of mRNA expression. Nat. Biotechnol. 2010;28:1208–1214. doi: 10.1038/nbt.1692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 109.Bertoli G, Cava C, Castiglioni I. MicroRNAs: new biomarkers for diagnosis prognosis, therapy prediction and therapeutic tools for breast cancer. Theranostics. 2015;5:1122–1143. doi: 10.7150/thno.11543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 110.Zhang J, Zhang W, Gu Y. Enzyme-free isothermal target-recycled amplification combined with PAGE for direct detection of microRNA-21. Anal. Biochem. 2018;550:117–122. doi: 10.1016/j.ab.2018.04.024. [DOI] [PubMed] [Google Scholar]
  • 111.Shuai H-L, Huang K-J, Xing L-L, Chen Y-X. Ultrasensitive electrochemical sensing platform for microRNA based on tungsten oxide-graphene composites coupling with catalyzed hairpin assembly target recycling and enzyme signal amplification. Biosens. Bioelectron. 2016;86:337–345. doi: 10.1016/j.bios.2016.06.057. [DOI] [PubMed] [Google Scholar]
  • 112.Jiang Z, Wang H, Zhang X, Liu C, Li Z. An enzyme-free signal amplification strategy for sensitive detection of microRNA via catalyzed hairpin assembly. Anal. Methods. 2014;6:9477–9482. doi: 10.1039/C4AY02142H. [DOI] [Google Scholar]
  • 113.Dong G, Dai J, Jin L, Shi H, Wang F, Zhou C, Zheng B, Guo Y, Dan Xiao D. A rapid room-temperature DNA amplification and detection strategy based on nicking endonuclease and catalyzed hairpin assembly. Anal. Methods. 2019;11:2537–2541. doi: 10.1039/C9AY00507B. [DOI] [Google Scholar]
  • 114.Xu J, Guo J, Maina S W, Yang Y, Hu Y, Li X, Qiu J, Xin Z. An aptasensor for Staphylococcus aureus based on nicking enzyme amplification reaction and rolling circle amplification. Anal. Biochem. 2018;549:136–142. doi: 10.1016/j.ab.2018.03.013. [DOI] [PubMed] [Google Scholar]
  • 115.Chen D, Zhang M, Ma M, Hai H, Li J, Shan Y. A novel electrochemical DNA biosensor for transgenic soybean detection based on triple signal amplification. Anal. Chim. Acta. 2019;1078:24–31. doi: 10.1016/j.aca.2019.05.074. [DOI] [PubMed] [Google Scholar]
  • 116.Song H, Yang Z, Jiang M, Zhang G, Gao Y, Shen Z, Wu Z-S, Lou Y. Target-catalyzed hairpin structure-mediated padlock cyclization for ultrasensitive rolling circle amplification. Talanta. 2019;204:29–35. doi: 10.1016/j.talanta.2019.05.057. [DOI] [PubMed] [Google Scholar]
  • 117.Chen J, Zhou S. Label-free DNAYjunction for bisphenol A monitoring using exonuclease III-based signal protection strategy. Biosens. Bioelectron. 2016;11:277–283. doi: 10.1016/j.bios.2015.09.042. [DOI] [PubMed] [Google Scholar]
  • 118.Sun J, Jiang W, Zhu J, Li W, Wang L. Label-free fluorescence dual-amplified detection of adenosine based on exonuclease III-assisted DNA cycling and hybridization chain reaction. Biosens. Bioelectron. 2015;70:15–20. doi: 10.1016/j.bios.2015.03.014. [DOI] [PubMed] [Google Scholar]
  • 119.Bi S, Li L, Cui Y. Exonuclease-assisted cascaded recycling amplification for label-free detection of DNA. Chem. Commun. 2012;48:1018–1020. doi: 10.1039/C1CC16684K. [DOI] [PubMed] [Google Scholar]
  • 120.D’Agata R, Spoto G. Advanced methods for microRNA biosensing: a problem-solving perspective. Anal. Bioanal. Chem. 2019;411:4425–4444. doi: 10.1007/s00216-019-01621-8. [DOI] [PubMed] [Google Scholar]

Articles from Biochemistry. Biokhimiia are provided here courtesy of Nature Publishing Group

RESOURCES