Skip to main content
Frontiers in Physiology logoLink to Frontiers in Physiology
. 2020 May 8;11:431. doi: 10.3389/fphys.2020.00431

A Bitter Taste in Your Heart

Conor J Bloxham 1, Simon R Foster 2, Walter G Thomas 1,*
PMCID: PMC7225360  PMID: 32457649

Abstract

The human genome contains ∼29 bitter taste receptors (T2Rs), which are responsible for detecting thousands of bitter ligands, including toxic and aversive compounds. This sentinel function varies between individuals and is underpinned by naturally occurring T2R polymorphisms, which have also been associated with disease. Recent studies have reported the expression of T2Rs and their downstream signaling components within non-gustatory tissues, including the heart. Though the precise role of T2Rs in the heart remains unclear, evidence points toward a role in cardiac contractility and overall vascular tone. In this review, we summarize the extra-oral expression of T2Rs, focusing on evidence for expression in heart; we speculate on the range of potential ligands that may activate them; we define the possible signaling pathways they activate; and we argue that their discovery in heart predicts an, as yet, unappreciated cardiac physiology.

Keywords: taste receptors, G protein-coupled receptors, cardiac physiology, signaling, polymorphisms, bitter ligands

Extra-Oral Expression of Bitter T2Rs

TAS2R/T2Rs (gene and protein) were first discovered within type II taste receptor cells in the tongue and act as sentinels in protecting against the ingestion of potentially toxic substances (Chandrashekar et al., 2000; Lu et al., 2017). Since these pioneering studies, T2R expression has been reported in a multitude of extra-oral tissues, including the gut, lungs, brain, and heart (Shah et al., 2009; Foster et al., 2013; Garcia-Esparcia et al., 2013), but their complete function(s) in physiology and pathophysiology remain to be defined. In Table 1, we have summarized the location, expression profile and proposed function for the T2R family across a range of human tissues and cells. In regard to function, we would offer a note of caution that a number of studies (listed in Table 1) have proposed functions based on stimulation with various bitter compounds in the micromolar to millimolar range where the selectivity and specificity toward T2Rs may reasonably be questioned. Despite this, the expression of T2Rs within the cardiovascular system, particularly the heart and vasculature, has gained significant interest in recent years. Following our initial discovery of TAS2Rs within the heart (Foster et al., 2013), a number of subsequent studies have focused on the vasculature (Lund et al., 2013; Manson et al., 2014; Upadhyaya et al., 2014; Chen et al., 2017). An unambiguous definition of their function has, however, lagged behind the capacity to demonstrate their expression.

TABLE 1.

Distribution, expression profile, proposed function, and technique used for the detection of extra-oral TAS2R/T2R expression.

System Cell/tissue TAS2Rs Proposed function Technique(s) used Year
Cardiovascular Heart TAS2Rs (TAS2R3, 4, 5, 9, 10, 13, 14, 19, 20, 30, 31, 43, 45, 46, 50) Nutrient sensing, contractility RT-qPCR Foster et al. (2013)
VSMCs TAS2R46, T2R46 Vasodilation RT-qPCR, IHC, Ca2+ imaging Lund et al. (2013)
Artery (pulmonary) TAS2Rs (TAS2R3, 4, 10, 14) Vasodilation PCR Manson et al. (2014)
Pulmonary VSMCs TAS2Rs (TAS2R1, 3, 4, 5, 7, 8, 9, 10, 13, 14, 19, 20, 30, 31, 39, 42, 43, 45, 46, 50, 60 Vasoconstriction RT-qPCR Upadhyaya et al. (2014)
Artery (omental) TAS2Rs (TAS2R3, 4, 7, 10, 14, 39, 40), T2R7 Vasodilation RT-qPCR, WB Chen et al. (2017)
Venous blood TAS2R38 Sensing biofilm formation RT-qPCR Cantone et al. (2018)
Endocrine Adipocyte TAS2R46 RT-qPCR Lund et al. (2013)
Thyroid, Nthy-ori 3-1 cells TAS2Rs (TAS2R3, 4, 5, 9, 10, 13, 14, 16, 20, 30, 38, 42, 43, 45, 46) Modulation of thyroid hormone production RT-qPCR Clark et al. (2015)
Pancreas (ductal adenocarcinoma biopsy), SU8686 cells, T3M4 cells, MiaPaCa-2 cells, RLT cells T2R38 Cancer drug resistance, microbiota link to cancer Cytofluorometry, WB Gaida et al. (2016b)
PANC-1 cells, BxPC-3 cells T2R10 Cancer drug resistance Flow cytometry Stern et al. (2018)
Gastrointestinal Colon, Gut HuTu 80 cells, NCI-H716 cells TAS2Rs (TAS2R3, 4, 5, 10, 13, 20, 30, 31, 38, 39, 40, 42, 43, 45, 46, 50, 60) RT-PCR, Ca2+ imaging Rozengurt et al. (2006)
Cecum, NCI-H716 cells TAS2R9 Glucose homeostasis RT-PCR, Ca2+ imaging Dotson (2008)
Colon TAS2R (TAS2R1, 4, 38) RT-PCR Kaji et al. (2009)
Caco-2 cells TAS2R38 Limits absorption of bitter tasting/toxic substances RT-PCR, siRNA Jeon et al. (2011)
Saliva TAS2R43 Balkan endemic nephropathy (BEN) RT-PCR Wooding et al. (2012)
HuH7 cells T2R38 Cytofluorometry Gaida et al. (2016b)
Parotid gland TAS2R38 IHC Wolfle et al. (2016)
Stomach (epithelial and parietal cells), HGT-1 cells TAS2Rs (TAS2R1, 3, 4, 5, 7, 9, 10, 13, 14, 16, 19, 20, 30, 31, 38, 39, 40, 41, 42, 43, 46, 50) Gastric acid secretion RT-PCR Liszt et al. (2017)
Integumentary MDA-MB-231 cells, MCF-7, MCF-10 cells TAS2R (TAS2R1, 4, 10, 20, 38), T2R38 qPCR, flow cytometry, Ca2+ mobilization Singh et al. (2014)
HPKs, HeCaT cells TAS2R1, TAS2R38, T2R1, T2R38 Keratinocyte differentiation IHC, RT-PCR Wolfle et al. (2016)
Skin biopsies with epidermis and dermis TAS2Rs (TAS2R3, 4, 5, 9, 10, 13, 14, 16, 19, 20, 30, 31, 38, 39, 40, 41, 42, 43, 45, 46, 50, 60) qPCR Shaw et al. (2018)
Immune Leukocytes, blood T- and B-lymphocytes, monocytes, neutrophils, NK cells TAS2Rs (TAS2R4, 5, 10, 13, 14, 19, 20, 45, 46, 50) Anti-inflammatory role in asthma Microarray, RT-qPCR, cytokine ELISA Orsmark-Pietras et al. (2013)
Core blood-derived mast cells, HMC1.2 cells TAS2Rs (TAS2R3, 4, 5, 10, 13, 14, 19, 20, 46) Anti-inflammatory RT-qPCR Ekoff et al. (2014)
Neutrophils, monocytes, HL-60 cells and U937 cells T2R38 Sensing biofilms Cytofluorometry and laser scan microscopy Gaida et al. (2016a)
Lymphocytes T2R38 Immune modulation Flow cytometry Tran et al. (2018)
Skeletomuscular BMSCs, osteocyte, chondrocyte TAS2R46, T2R46 Chemosensory iTRAQ-based mass spectrometry, RT-qPCR, flow cytometry, IHC, Ca2+ imaging Lund et al. (2013)
Nervous Frontal cortex TAS2Rs (TAS2R5, 10, 13, 50) RT-qPCR, microarray Garcia-Esparcia et al. (2013)
Cortex (pyramidal cells), cerebellum (Purkinje cells), hippocampus, SH-SY5Y cells TAS2R16, T2R16 Neurite growth IHC, PCR Wolfle et al. (2015)
Dorsolateral prefrontal cortex TAS2Rs (TAS2R4, 5, 10, 13, 14, 50) Cognition RT-qPCR Ansoleaga et al. (2015)
Purkinje cells T2R38 IHC Wolfle et al. (2016)
Neurons/glial cells T2R38 IHC Wolfle et al. (2016)
Urogenital Bladder cancer biopsies TAS2R1 FISH Zheng et al. (2004)
Testis TAS2Rs (TAS2R14, 16, 38) RT-qPCR Behrens et al. (2006)
HeLa cells, DU145 cells TAS2R13 Cytokinesis RT-PCR, siRNA screen Zhang et al. (2012)
SKOV-3 cells T2R38 Cytofluorometry, WB Gaida et al. (2016b)
Placenta, JEG-3 cells T2R38 IHC, immunofluorescence, restriction enzyme-based detection, Ca2+ mobilization Wolfle et al. (2016)
Kidney T2R38 IHC Wolfle et al. (2016)
Cervix T2R38 IHC Wolfle et al. (2016)
Myometrium, hTERT-HM cells TAS2R (TAS2R5, 10, 13, 14); TAS2R (TAS2R3, 4, 5, 7, 8, 10, 13, 14, 31, 39, 42, 43, 45, 50) IHC, Ca2+ mobilization, RT-PCR Zheng et al. (2017)
Sperm TAS2R14, TAS2R43 Sperm motility and maturation Allele-specific PCR Gentiluomo et al. (2017)
Ovarian cystadenocarcinoma tumor, uterine tissue, OVCAR4 cells, OVCAR8 cells, SKOV3 cells, IGROV1 cells, HEC-1a cells, BPH1 cells, PC3 cells, LNCAP cells, DU145 cells TAS2R (TAS2R1, 4, 10, 14, 38) Cell survival qPCR, siRNA screen, WB Martin et al. (2018)
Respiratory Bronchial epithelial cells TAS2Rs (TAS2R1, 3, 4, 7, 8, 9, 10, 13, 14), T2R4, T2R43, T2R46 Motile cilia clearance of inhaled pathogens Microarray, RT-PCR, IHC, Ca2+ imaging, ciliary beat frequency assay Shah et al. (2009)
ASM, trachea TAS2Rs (TAS2R1, 3, 4, 5, 8, 9, 10, 13, 14, 19, 20, 30, 31, 42, 45, 46, 50) Relaxation of isolated ASM, bronchodilation RT-qPCR, Ca2+ imaging, isolated trachea, single cell mechanics/membrane potentials Deshpande et al. (2010)
16HBE cells TAS2R38, TAS2R46 RT-PCR, Ca2+ mobilization, cAMP accumulation Cohen et al. (2012)
Upper respiratory epithelium TAS2R38, T2R38 NO-mediated increase in ciliary beat frequency/mucous clearance and antibacterial effects in respiratory infection IHC, Ca2+ imaging, NO production, ciliary beat frequency assay, mucous clearance assay, bactericidal assay Lee et al. (2012)
Nasal epithelial cells TAS2R38 Innate immunity RT-qPCR Lee et al. (2012)
Solitary or brush chemosensory cells TAS2R (TAS2R4, 14, 46) Innate immunity RT-qPCR Barham et al. (2013)
Bronchi TAS2Rs (TAS2R3, 4, 5, 7, 8, 9, 10, 14, 19, 20, 31, 38, 39, 43, 45, 46) Bronchodilation RT-qPCR, organ bath Grassin-Delyle et al. (2013)
Alveolar macrophages TAS2Rs (TAS2R3, 4, 5, 7, 8, 9, 10, 14, 19, 20, 31, 38, 39, 43, 45, 46) RT-qPCR Grassin Delyle et al. (2014)
CuFi-1 cells, NuLi-1 cells TAS2Rs (TAS2R3, 4, 5, 8, 9, 10, 13, 14, 19, 20, 30, 31, 43, 45, 46, 50, 60) nCounter, flow cytometry Jaggupilli et al. (2017)

The expression of TAS2Rs in different tissues and cell lines has been examined using RT-PCR, qPCR, microarray techniques as well as RNAseq (Flegel et al., 2013). Most recently, Jaggupilli et al. (2017) used nCounter gene expression analysis to characterize the expression of the 29 human TAS2Rs in a variety of cell lines (Table 1). Their results showed that TAS2R14 and TAS2R20 were highly expressed; TAS2R3, −4, −5, −10, −13, −19, and −50 were moderately expressed; TAS2R8, −9, −21 and −60 had low level of expression; and TAS2R7, −16, −38, −39, −40, −41, and −42 were barely detectable. The nCounter technique relies on hybridization of complementary probes (spanning 100 nucleotide bases) for each gene, and hence, TAS2R30, −31, −43, −45, and −46 could not be accurately discerned from one another, as they share >92% homology. Nevertheless, this data clearly shows that some T2Rs are broadly and differentially expressed, whereas others are more restricted in their tissue distribution.

Model Systems for Expressing T2Rs and Defining Their Function

In attempting to define the function of, and to identify ligands for, the T2Rs, researchers have established heterologous expression systems in human cells (e.g., HEK293 or HEK293T) (Meyerhof et al., 2010). However, the use of these cells for understanding the underlying mechanisms and signaling pathways within cardiovascular tissues/cells has obvious limitations. Firstly, due to the insufficient cell surface targeting of T2Rs in heterologous cells (Chandrashekar et al., 2000), chimeric T2Rs encompassing the amino terminus of the rat somatostatin receptor subtype 3 are often used to improve expression and functionality (Bufe et al., 2002; Behrens et al., 2006). Furthermore, a chimeric G protein consisting of the Gα16 and 44 amino acids of gustducin attached to the carboxyl terminus is widely used in calcium mobilization assays (Liu et al., 2003; Ueda et al., 2003). Gα16 has been coined the ‘universal adaptor’ due to its ability to interact with numerous GPCRs and provides a robust readout for receptor activation, including for T2Rs (Ueda et al., 2003). While these artificial heterologous systems have proven useful in identifying ligands for orphan receptors (Meyerhof et al., 2010) and interrogating the structure-function aspects of T2Rs (Brockhoff et al., 2010), the field is now moving toward more relevant cellular models with endogenous receptors and signaling partners (Freund et al., 2018).

Studies using the aforementioned heterologous expression system have demonstrated that the majority of T2Rs form oligomers, both homodimers and heterodimers (Kuhn et al., 2010). However, unlike the situation for umami/sweet taste sensation (requiring dimerization of T1R1/T1R2 and T1R1/T1R3), T2R homodimers did not appear to alter the pharmacology of the receptors, nor do they have obvious influence on protein expression or membrane localization (Kuhn et al., 2010). In contrast, Kim et al. (2016) used immuno-fluorescent microscopy to show that the co-expression of the adrenergic (ADRβ2) receptor with T2R14 resulted in a ∼3-fold increase in cell-surface expression of T2R14. Co-immunoprecipitation and biomolecular fluorescence complementation experiments confirmed that the increase of cell-surface expression was attributed to the formation of T2R14:ADRβ2 heterodimers. These complexes may be particularly important in heart where the actions of adrenergic receptors are well described. Interestingly, co-immunoprecipitation and co-internalization of ADRβ2:M71 OR (mouse 71 olfactory receptor) was observed in response to their specific ligands (Hague et al., 2004). These seminal observations in heterologous systems need to be confirmed and extended with endogenous models to clarify our understanding of how T2Rs function in vivo and to define their potential modulation of (or by) established GPCRs.

Another important issue in considering model expression systems for studying T2Rs is the requirement for appropriate accessory proteins and correct post-translational processing. It is now well-established that chemosensory receptors [e.g., odorant (McClintock et al., 1997) and pheromone (Loconto et al., 2003) receptors] rely on endogenous proteins in order to be targeted to the cell-surface. A study by Behrens et al. (2006) demonstrated that certain members of the receptor-transporting protein (RTP) and receptor expression enhancing protein (REEP) families enhance cell-surface localization and functionality of certain TAS2Rs, likely through protein–protein interactions. Furthermore, it was shown that varying combinations of these proteins are expressed endogenously within tissues (circumvallate papillae and testis) that express TAS2R genes. Interestingly, the human heart differentially expresses REEP 1, 2, 3, 5, and 6 across heart regions (Doll et al., 2017), suggesting that efficient cell-surface TAS2R expression may also be region specific. Nonetheless, these trafficking proteins do not universally promote T2R functionality, for instance T2R14 showed no increase in capacity to mobilize calcium when co-expressed with either RTP or REEP (Behrens et al., 2006). There is accumulating evidence that the degree of T2R membrane insertion is dependent on the specific tissue. As T2Rs are detected in a myriad of tissues, multiple endogenous mechanisms may contribute to their appropriate expression and localization. As for many GPCRs, N-glycosylation of T2Rs is important for cell-surface localization–Reichling et al. (2008) reported that glycosylation of the second extracellular loop is essential for the recruitment (via association with the cellular chaperone calnexin) and insertion of TAS2Rs in the cell membrane; moreover, the function of non-glycosylated TAS2R16 could be rescued when co-expressed with RTP3 and RTP4.

The Cardiac Gpcr Repertoire Includes T2Rs

The human heart expresses over 200 different GPCRs (Wang et al., 2018), some of which are critical for regulating cardiac morphology and function (Capote et al., 2015). Intriguingly, the gene transcripts for more than half of the TAS2R family were detected in both left ventricle and right atria (Foster et al., 2013) ranging in abundance between that observed for two classically important cardiac GPCRs – the angiotensin II type 1 receptor and β1-adrenergic receptor (ADRβ1). It is notable that the expression of TAS2R14 was equivalent to that of ADRβ1 in the left ventricle. These findings are supported by publicly available Illumina Human BodyMap 2.0 project RNA-seq dataset (Flegel et al., 2013), which showed widespread TAS2R expression in human tissues and highest expression of TAS2R14 in heart. It is important, however, to note that T2Rs are not uniformly detected by all techniques, with TAS2R9, TAS2R39, and TAS2R45 not detected in the Illumina RNA-seq data set, but detected by qPCR (Foster et al., 2013). These differences could reflect individual variations, noting the body map is from one patient or the more specific nature of RNA-seq over qPCR. Interestingly, the expression of TAS2Rs are differentially regulated with age in mice (Foster et al., 2013), but not with sex or in heart failure (Foster et al., 2015a). Furthermore, analysis of the publicly available GTEx LDACC and BioGPS Human Cell Type and Tissue Gene Expression Profiles RNA-seq datasets, highlight the expression of GNAT3 (the taste receptor specific G protein, GαGustducin) in a variety of human tissues, including the heart.

We previously investigated the factors contributing to cardiac TAS2R gene expression in silico (Foster et al., 2015a). Similar to rodent Tas2rs, there was no evidence of enrichment for particular transcription factor binding sites in the proximal promoter regions of the human TAS2R genes. However, we observed thatTAS2R14 (the most abundantly expressed) had the strongest evidence of regulatory activity in its promoter region, i.e., active methylation marks overlapping with the DNase I hypersensitivity cluster. On this basis, although we cannot rule out the presence of specific transcription factors that regulate TAS2R gene expression, we reason that the proximal regulatory regions for some, but not all, TAS2R genes might show a basal level of transcriptional activity. This, combined with their multigene cluster expression profiles could facilitate preferential transcription of the specific TAS2Rs (Foster et al., 2015a).

The heart is made up of 2–3 billion cardiomyocytes and yet these cells constitute less than a third of all heart tissue (Tirziu et al., 2010). The remaining, more than two thirds of the heart consists of smooth muscle, fibroblasts, other connective tissue cells, endothelial cells, sinoatrial cells, atrioventricular cells, Purkinje cells, pluripotent cardiac stem cells, mast cells, and other immune system-related cells (Tirziu et al., 2010). We have demonstrated that certain Tas2rs (rodent) were expressed within both cardiomyocytes and fibroblasts, as well as their downstream signaling effectors (Gnat3, Plcβ2, Trpm5) (Foster et al., 2013). These data suggest that specific cells within the heart may express varying populations of TAS2R, similar to that seen in other systems (Table 1). As technology advances, including single cell sequencing and proteomics (Uhlen et al., 2015), the topography of T2Rs within the heart will provide insight into how these receptors function within this system.

Signaling and Function of T2Rs Within the Cardiovascular System

The binding of bitter ligands to T2Rs results in a conformation change in the receptor allowing it to interact with GαGustducin and Gβ1/3γ13 (Huang et al., 1999), which then activate subsequent downstream pathways (Yan et al., 2001). Knockout (KO) studies have provided conclusive evidence supporting these signaling pathways. Mice lacking either PLCβ2 or TRPM5 exhibited diminished or ablated taste responses to bitter compounds (Zhang et al., 2003). Furthermore, GαGustducin KO mice had increased levels of cAMP, compared to the wild-type mice as well as displaying severely impaired responses to the tested compounds (Clapp et al., 2008). As with Gαi-family G proteins, GαGustducin can decrease the levels of cAMP, via the activation of phosphodiesterases, which has been observed in response to two bitter compounds, denatonium and strychnine (Yan et al., 2001). Finally, mice that were genetically modified to express novel human T2Rs demonstrated a strong aversive response to ligands that was not evident in wild-type mice (Mueller et al., 2005).

With the discovery of TAS2R expression in cardiac tissue (Foster et al., 2013), defining the signaling transduction pathway is of particular interest, yet there is limited evidence for the presence of all the classical taste signaling components in heart. The expression of GαGustducin has been shown in human heart tissue, and is particularly enriched in cardiomyocytes (BioGPS Human Cell Type and Tissue Gene Expression Profiles RNA-seq datasets). However, studies have not observed Gγ13 (Huang et al., 1999) or TRPM5 (Demir et al., 2014). TRPM4 is present within human heart tissues (Guinamard et al., 2004; Demir et al., 2014), however, both TRPM4 and TRMP5 are considered necessary for taste signal transduction (Dutta Banik et al., 2018). Hence, alternative signal transduction pathways that could mediate the effects of taste receptors in the cardiovascular system should be considered.

A study by Ueda et al. (2003) demonstrated that T2R16 could couple to a chimeric G protein consisting of the N-terminus of Gα16 and the last 44 amino acids of either GαGustducin, Gαt2or Gαi2. Furthermore, the expression of all three of these Gα subunits have been identified in taste receptor cells, with the frequency of Gαi2 being higher than that of GαGustducin (Ueda et al., 2003). Figure 1 shows a comparison of GαGustducin and Gαi2, highlighting the highly conserved amino acid residues and the region known to interact with TAS2Rs. Substitution of glycine352 for proline in GαGustducin disrupts T2R interaction with GαGustducin, although its coupling to the Gβγ and effector molecules was preserved (Ruiz-Avila et al., 2001). This suggests that the extreme C terminus of both GαGustducin and Gαi2 are capable of, and necessary for T2R:G protein coupling and transduction. Importantly, in human airway smooth muscle (HASM), the reported expression of Gαi2 expression was 100-fold higher than that of GαGustducin and T2R14 was shown to couple to all Gαi proteins, particularly Gαi2 (Kim et al., 2017). The use of pertussis toxin was able to abrogate the T2R mediated relaxation in HASM (Kim et al., 2017), consistent with previous studies, where T2Rs has been shown to couple with inhibitory signaling pathways (Ozeck et al., 2004). The actions of T2R may also include other inhibitory type processes, such as described by Zhang et al. (2013) in airway smooth muscle cells (Lu et al., 2017). Taken together these observations suggest that depending on the level of G protein expression and the strength of the subsequent signal, T2Rs likely couple and signal in a cell/tissue specific manner, which may include (or not) GαGustducin.

FIGURE 1.

FIGURE 1

Comparison of 2D snake representations of GαGustducin and Gαi2 [constructed via GPCRdb (Isberg et al., 2016)]. Amino acids are labeled following the Ballesteros–Weinstein numbering system. Conserved amino acids are colored green. The final 44 amino acids are known to be necessary for T2R coupling and signaling (Ueda et al., 2003) and are highlighted by black boxes. Arrow points to the amino acid (Glycine352) in GαGustducin that disrupts T2R coupling when mutated to proline (Ruiz-Avila et al., 2001).

Indeed, T2R signaling within cardiac cells might reasonably reflect those described for the respiratory system and vascular systems (summarized in Figure 2). The heart is known to express specific varying combinations of Gα (including Gαi2), Gβγ and various signaling effector molecules (Doll et al., 2017). In a series of experiments in Langendorff-perfused mouse hearts, we observed dose-dependent negative inotropic effects in response to bitter ligands (Foster et al., 2014). A ∼40% decrease in left ventricular developed pressure and an increase in aortic pressure in response to sodium thiocynate were shown to be Gαi-dependent. Some alterations in cardiovascular physiology were not attributed to G proteins (not blocked by pertussis toxin and gallein), however, it was shown that rodents express GNAT3 (GαGustducin) in their cardiomyocytes (Foster et al., 2013). This further supports the premise that T2Rs can signal through various G proteins. While there is no clear consensus on the precise mechanism, there is an agreement that bitter ligands mediate contractile responses in the vasculature. One study demonstrated a transient drop in blood pressure upon intravenous injection of denatonium benzoate into rats (Lund et al., 2013). Additionally, Manson et al. (2014) attributed the endothelium-independent relaxation of precontracted human pulmonary arteries to the application of bitter ligands for T2Rs (3, 4, 10, and 14). In contrast, denatonium benzoate has been shown to enhance the tone of endothelium-denuded rat aorta rings, which was attributed to specific Tas2r activation (Tas2r40, 108, 126, 135, 137, 143) via GαGustducin (Liu et al., 2020). Whether the actions of T2Rs in cardiomyocytes have a direct effect on the force and strength of contraction of individual myocytes remains to be determined. Equally, there is a possibility that these receptors may be expressed in other cell populations, including the specific cells of the conduction system (SA node, AV node, Purkinje Fibers).

FIGURE 2.

FIGURE 2

Potential signaling pathway for T2Rs in human cardiomyocytes.

Naturally Occurring Polymorphisms and Disease

GPCRs and their respective ligands have profound homeostatic and regulatory effects on the cardiovascular system. Not surprisingly, mutations and modifications of cardiovascular GPCRs, G proteins and their regulatory proteins are linked to dysfunction and disease (Foster et al., 2015b). T2Rs are one of the most heterogenous and unique families of GPCRs and are now considered as a separate group of receptors (Di Pizio and Niv, 2015). According to the HGNC database, there are 39 genetically diverse and highly polymorphic TAS2R single exon genes that encode for 29 functional T2Rs (and 10 non-coding pseudogenes) in humans (Devillier et al., 2015). This is in contrast to the majority of literature that cite the existence of only 25 functional T2Rs (Meyerhof et al., 2010; Lossow et al., 2016). On average, TAS2R genes contain four single nucleotide polymorphisms (SNPs) of which the vast majority are non-synonyms mutations that encode amino acid substitutions (Kim et al., 2005). Table 2 outlines all of the non-synonymous SNPs present within the population and their penetrance. These TAS2R genes are located on chromosomes 5, 7, and 12 (Adler et al., 2000; Foster et al., 2015a), with dense clustering on chromosomes 7 and 12. The close proximity is thought to underpin the enormous variation and diversification of the T2R repertoire within humans.

TABLE 2.

List of polymorphisms in human cardiac-expressed TAS2Rs (penetrance > 1% in the population) sourced from UCSC Genome Browser and NCBI SNP databases.

Name Penetrance (>1%) Location rs number Average heterozygosity Literature phenotype link
T2R3
T2R4 F7S F (TTC) - 52.69%; S (TCC) - 47.31% TM1 rs2233998 0.499 ± 0.025
V96L V (GTC) - 48.29%; L (CTC) - 51.71% TM2 rs2234001 0.499 ± 0.017 Sensitivity to stevioside (Risso et al., 2014), coffee consumption (Hayes et al., 2011)
S171N S (AGT) - 49.43%; N (AAT) - 50.56% TM5 rs2234002 0.500 ± 0.006
T2R5 S26I S(AGC) - 51.96%; I (ATC) - 48.03% TM1 rs2227264 0.499 ± 0.019 Alcohol consumption (Choi et al., 2017), coffee consumption (Hayes et al., 2011)
T2R9 V187A V (GTG) - 40.62%; A (GCG) - 59.38 TM5 rs3741845 0.481 ± 0.095 Glucose homeostasis (Dotson, 2008)
A233T A (GCA) - 98.99%; T (ACA) - 1.01% TM6 rs77609577 0.019 ± 0.097
L304F L (CTT) - 99%; F (TTT) - 1% C terminal rs3944035 0.02 ± 0.098
T2R10 T156M T (ACG) - 2.28%; M (ATG) - 97.71% ECL2 rs597468 0.042 ± 0.139
T2R13 N259S N (AAC) - 41.73%; S (AGC) - 58.27% TM7 rs1015443 0.485 ± 0.084 Alcohol consumption (Dotson et al., 2012), chronic rhinosinusitis (Mfuna Endam et al., 2014)
T2R14 T86A T (ACT) - 98.30%; A (GCT) - 1.7% TM3 rs16925868 0.033 ± 0.125
L201F L (CTC) - 98.47%; F (TTC) - 1.53% TM5 rs35804287 0.031 ± 0.121
T2R16 N172K N (AAT) - 97.15%; K (AAG) - 2.85% TM5 rs846664 0.051 ± 0.151 Sensitivity to cyanogenic glycosides (Soranzo et al., 2005), alcohol dependence (Hinrichs et al., 2006), sensitivity to salicin (Campbell et al., 2014)
R222H R (CGC) - 31.03%; H (CAC) - 68.97% TM6 rs860170 0.429 ± 0.174 Sensitivity to salicin (Risso et al., 2017)
T2R19 V32I V (GTC) - 98.75%; I (ATC) - 1.25% TM1 rs56985810 0.023 ± 0.104
K109T K (AAG) - 98.96%; T (ACG) - 1.04% TM3 rs115193179 0.021 ± 0.101
K126Q K (AAG) - 94.9%; Q (CAG) - 5.1% TM4 rs12424373 0.096 ± 0.197
R152S R (AGA) - 1.52%; S (AGT) - 98.48% TM4 rs75356565 0.03 ± 0.119
I225V I (ATA) - 98.48%; V (GTA) - 1.52% TM6 rs115299813 0.03 ± 0.119
K258N K (AAA) - 5.9%; N (AAT) - 94.1% TM7 rs76455106 0.111 ± 0.208
L261F L (CTC) - 93.9%; F (TTC) - 6.1% TM7 rs74992161 0.114 ± 0.21
C264Y C (TGC) - 91.57%; Y (TAC) - 8.43% TM7 rs76970958 0.154 ± 0.231
V267L V (GTT) - 9.36%; L (CTT) - 90.64% TM7 rs74772077 0.177 ± 0.239
G282R G (GGA) - 78.67%; R (AGA) - 21.33% TM7 rs72475481 0.336 ± 0.235
F290S F (TTT) - 89.88%; S (TCT) - 10.12% Helix 8 rs72475480 0.182 ± 0.241
W295C W (TGG) - 93.77%; C (TGT) - 5.14% Helix 8 rs77837442 0.122 ± 0.219
W295* W (TGG) - 93.77%; * (TGA) - 1.09% Helix 8 rs77837442 0.122 ± 0.219
M297V M (ATG) - 94.4%; V (GTG) - 5.6% C terminal rs74386164 0.106 ± 0.204
R299C R (CGC) - 53.93%; C (TGC) - 46.07% C terminal rs10772420 0.498 ± 0.035 Grapefruit juice consumption (Hayes et al., 2011), sensitivity to quinine (Reed et al., 2010)
*300W * (TGA) - 94.12%; W (TGG) - 5.88% Stop codon rs79475879 0.111 ± 0.208
T2R20 K79E K (AAA) - 77.44%; E (GAA) - 22.56% TM3 rs7135018 0.350 ± 0.229
V141I V (GTT) - 81.6%; I (ATT) - 18.4% TM4 rs79420812 0.300 ± 0.245
H143Q H (CAC) - 58.83%; Q (CAA) - 41.17% TM4 rs12226920 0.484 ± 0.087 Chronic rhinosinusitis (Mfuna Endam et al., 2014)
H148N H (CAC) - 58.64%; N (AAC) - 41.36% TM4 rs12226919 0.485 ± 0.086 Chronic rhinosinusitis (Mfuna Endam et al., 2014)
I236V I (ATA) - 58.8%; L (CTA) - 41.2% TM6 rs10845281 0.484 ± 0.087
F252S F (TTT) - 58.84%; S (TCT) - 41.16% ECL3 rs10845280 0.484 ± 0.087
R255L R (CGA) - 58.84%; L (CTA) - 41.16% ECL3 rs10845279 0.484 ± 0.087
T2R30 I199V I (ATC) - 89.2%; V (GTC) - 10.8% TM5 rs77777159 0.202 ± 0.245
Q210H Q (CAG) - 1.40%; H (CAC) - 98.60% ICL3 rs200082783 0.028 ± 0.144
S220R S (AGC) - 98.1%; R (AGA) - 1.9% TM6 rs201738458 0.04 ± 0.135
F252L F (TTT) - 56.44%; L (TTG) - 43.56% ECL3 rs2599404 0.493 ± 0.06
T2R31 I33T I (ATT) - 80.43%; T (ACT) - 19.57% TM1 rs763263807 0.315 ± 0.241
R35W R (CGG) - 54.73%; W (TGG) - 45.27% TM1 rs10845295 0.496 ± 0.042
L48V L (CTC) - 78.68%; V (GTC) - 23.16% TM2 rs760444623 0.335 ± 0.235
F71L F (TTT) - 54.55%; L (TTG) - 45.45% TM2 rs78562467 0.496 ± 0.045
Y76C Y (TAT) - 75.88%; C (TGT) - 24.12% ECL1 rs80125932 0.366 ± 0.221
V80L V (GTA) - 53.43%; L (TTA) - 46.57% TM3 rs73049074 0.498 ± 0.034
V87I V (GTC) - 52.73%; I (ATC) - 47.27% TM3 rs73049072 0.499 ± 0.027
L98P L (CTT) - 52.29%; P (CCT) - 47.71% TM3 rs73049067 0.499 ± 0.023
H120R H (CAC) - 52.34%; R (CGC) - 47.66% ICL2 rs72475488 0.499 ± 0.023
M132V M (ATG) - 75.88%; V (GTG) - 24.12% TM4 rs78152338 0.366 ± 0.221
Q143H Q (CAA) - 88.86%; H (CAT) - 10.97% TM4 rs115707514 0.206 ± 0.247
I147V I (ATA) - 89.57%; V (GTA) - 10.43% TM4 rs199736450 0.187 ± 0.242
K150N K (AAA) - 94.91%; N (AAT) - 5.1% ECL2 rs774681705 0.097 ± 0.197
E151Q E (GAG) - 94.88%; Q (CAG) - 5.12% ECL2 rs761846423 0.097 ± 0.198
R154W R (CGG) - 94.52%; W (TGG) - 5.48% ECL2 rs372544509 0.104 ± 0.203
L162M L (TTG) - 21.98%; M (ATG) - 76.88% ECL2 rs10743938 0.357 ± 0.238
L162V L (TTG) - 21.98%; V (GTG) - 1.15% ECL2 rs10743938 0.357 ± 0.238
S170R S (AGT) - 95.2%; R (CGT) - 4.18% TM5 rs75346915 0.08 ± 0.183
V172M V (GTG) - 95.81%; M (ATG) - 4.19% TM5 rs116298721 0.08 ± 0.184
A177T A (GCG) - 97.89%; T (ACG) - 2.11% TM5 rs369562584 0.041 ± 0.138
Q217E Q (CAA) - 80.55%; E (GAA) - 19.45% ICL3 rs10845294 0.317 ± 0.241
A227V A (GCT) - 56.34%; V (GTT) - 43.66% TM6 rs10845293 0.493 ± 0.059
L237F L (TTA) - 98.59%; F (TTT) - 1.41% TM6 rs116926686 0.028 ± 0.115
V240I V (GTT) - 57.85%; I (ATT) - 42.15% TM6 rs10772423 0.489 ± 0.074
P276R P (CCA) - 81.58%; R (CGA) - 18.42% TM7 rs12318612 0.304 ± 0.244
W281C W (TGG) - 98.49%; C (TGT) - 1.51% TM7 rs139069360 0.030 ± 0.119
R295W R (CGG) - 98.75%; W (TGG) - 1.25% Helix 8 rs199894662 0.026 ± 0.111
V297M V (GTG) - 98.7%; M (ATG) - 1.3% Helix 8 rs201730548 0.026 ± 0.110
T2R39
T2R42 Y175F Y (TAT) - 40.01%; F (TTT) - 59.99% TM5 rs35969491 0.479 ± 0.100
S179– S (AGA) - 14.29%; – (A–) - 85.71% TM5 rs747949093 0.245 ± 0.250
F196S F (TTC) - 40.03%; S (TCC) - 59.97% TM5 rs5020531 0.479 ± 0.100 Regulation of thyroid hormones (Clark et al., 2015)
W255G W (TGG) - 83.49%; G (GGG) - 16.51% TM6 rs1669413 0.272 ± 0.249
C265Y C (TGC) - 23.68%; Y (TAC) - 76.32% TM7 rs1451772 0.362 ± 0.223
Q292R Q (CAA) - 23.7%; R (CGA) - 76.3% Helix 8 rs1669412 0.362 ± 0.223
N310K N (AAC) - 83.41%; K (AAA) - 16.59% C terminal rs1669411 0.273 ± 0.249
P311A P (CCT) - 83.42%; A (GCT) - 16.58% C terminal rs1650017 0.273 ± 0.249
T2R43 W35S W (TGG) - 66.15%; S (TCG) - 33.85% TM1 rs68157013 0.447 ± 0.155
L48V L (CTC) - 69.68%; V (GTC) - 30.32% TM2 rs113197337 0.423 ± 0.181
DQILTA45-50 DQILTA - 98.39%; - 1.61% TM2 rs200922417 0.032 ± 0.122
N76Y N (AAT) - 93.56%; Y (TAT) - 6.44% ECL1 rs200999522 0.120 ± 0.214
V80L V (GTA) - 97.99%; L (TTA) - 2.01% TM3 rs73064968 0.039 ± 0.135
I91T I (ATC) - 96.7%; T (ACC) - 3.3% TM3 rs201085601 0.064 ± 0.167
N92S N (AAC) - 96.8%; S (AGC) - 3.2% TM3 rs199553429 0.062 ± 0.165
F116L F (TTT) - 94.52%; L (CTT) - 5.48% ICL2 rs201210705 0.104 ± 0.203
H120R H (CAC) - 79.18%; R (CGC) - 20.82% ICL2 rs201460452 0.330 ± 0.237
M132V M (ATG) - 70.22%; V (GTG) - 29.78% TM4 rs11526470 0.418 ± 0.185
I147V I (ATA) - 60.19%; V (GTA) - 39.81% TM4 rs73064966 0.479 ± 0.100
E151Q E (GAG) - 96.38%; Q (CAG) - 3.62% ECL2 rs201455884 0.070 ± 0.173
R154G R (CGG) - 98.01%; G (GGG) - 1.9% ECL2 rs200586631 0.038 ± 0.133
K169R K (AAG) - 98.25%; R (AGG) - 1.75% TM5 rs201365712 0.034 ± 0.127
S170R S (AGT) - 97.53%; R (CGT) - 2.47% TM5 rs200838689 0.048 ± 0.147
S170R S (AGT) - 97.67%; R (AGG) - 2.33% TM5 rs116243872 0.046 ± 0.145
F174L F (TTT) - 97.11%; L (CTT) - 2.89% TM5 rs113441874 0.056 ± 0.158
N176D N (AAT) - 96.1%; D (GAT) - 3.9% TM5 rs200422162 0.075 ± 0.179
M177T M (ATG) - 95.6%; T (ACG) - 4.4% TM5 rs114386807 0.084 ± 0.187
V182L V (GTA) - 94.49%; L (CTA) - 5.51% TM5 rs72477447 0.104 ± 0.203
L190V L (CTG) - 96.64%; V (GTG) - 3.36% TM5 rs200392796 0.068 ± 0.172
L193I L (CTA) - 97.01%; I (ATA) - 2.99% TM5 rs202247625 0.058 ± 0.160
M196L M (ATG) - 97.38%; L (CTG) - 2.62% TM5 rs200974913 0.051 ± 0.151
I199V I (ATC) - 97.78%; V (GTC) - 2.22% TM5 rs78179946 0.043 ± 0.141
C200F C (TGT) - 97.91%; F (TTT) - 2.09% TM5 rs144622176 0.041 ± 0.137
Q210H Q (CAG) - 88.86%; H (CAC) - 10.97% ICL3 rs201245949 0.091 ± 0.193
H212R H (CAT) - 55.77%; R (CGT) - 44.23% ICL3 rs71443637 0.491 ± 0.066
A227V A (GCT) - 58.97%; V (GTT) - 41.03% TM6 rs73064964 0.490 ± 0.07
L235F L (CTC) - 81.26%; F (TTC) - 18.74% TM6 rs3759244 0.305 ± 0.244
C238R C (TGT) - 94.63%; R (CGT) - 5.37% TM6 rs3759245 0.102 ± 0.201
G253R G (GGA) - 92.5%; R (AGA) - 7.5% ECL3 rs202114077 0.139 ± 0.224
G253E G (GGA) - 92.6%; E (GAA) - 7.4% ECL3 rs200981579 0.137 ± 0.223
S254N S (AGT) - 92.9%; N (AAT) - 7.1% ECL3 rs201300744 0.132 ± 0.220
K265Q K (AAA) - 97.46%; Q (CAA) - 2.54% TM7 rs200291442 0.050 ± 0.149
R268G R (AGA) - 96.89%; G (GGA) - 3.11% TM7 rs202101405 0.060 ± 0.163
Y271C Y (TAT) - 96.54%; C (TGT) - 3.46% TM7 rs201618803 0.067 ± 0.170
P272S P (CCT) - 96.53%; S (TCT) - 3.47% TM7 rs200533679 0.067 ± 0.170
I274V I (ATC) - 96.44%; V (GTC) - 3.56% TM7 rs201681140 0.069 ± 0.172
I274T I (ATC) - 96.32%; T (ACC) - 3.68% TM7 rs200479139 0.071 ± 0.174
F290Y F (TTT) - 83.84%; Y (TAT) - 16.16 % Helix 8 rs111846092 0.282 ± 0.248
F294L F (TTT) - 84.25%; L (TTG) - 15.75% Helix 8 rs73064960 0.276 ± 0.249
W300* W (TGG) - 90.86%; * (TGA) - 9.14% C terminus rs3759247 0.166 ± 0.236
T2R45
T2R46 T16I T (ACA) - 98.25%; I (ATA) - 1.75% TM1 rs201410559 0.034 ± 0.127
V61G V (GTC) - 98.64%; G (GGC) - 1.36% TM2 rs201585352 0.027 ± 0.113
W60– W (TGG) - 98.64%; – (-GG) - 1.36% TM2 rs201847607 0.027 ± 0.113
I132M I (ATA) - 98.89%; M (ATG) - 1.11% TM4 rs770484573 0.022 ± 0.103
V141A V (GTT) - 66.73%; A (GCT) - 33.27% TM4 rs200936852 0.444 ± 0.158
I147V I (ATA) - 58.3%; V (GTA) - 41.7% TM4 rs72477411 0.486 ± 0.082
I153V I (ATA) - 55.36%; V (GTA) - 44.64% ECL2 rs72477410 0.494 ± 0.053
S170R S (AGT) - 77.29%; R (CGT) - 22.71% TM5 rs200171449 0.351 ± 0.229
N176D N (AAT) - 97.86%; D (GAT) - 2.14% TM5 rs766258006 0.042 ± 0.138
I181M I (ATC) - 97.99%; M (ATG) - 2.01% TM5 rs748842122 0.039 ± 0.135
L190V L (CTG) - 98.57%; V (GTG) - 1.43% TM5 rs779108518 0.028 ± 0.115
L228M L (TTG) - 57.8%; M (ATG) - 42.2% TM6 rs2708380 0.489 ± 0.074
W250* W (TGG) - 77.43%; * (TAG) - 22.57% TM6 rs2708381 0.350 ± 0.229
T2R50 C203Y C (TGT) - 60.27%; Y (TAT) - 39.73% TM5 rs1376251 0.479 ± 0.101 Myocardial infarction (Shiffman et al., 2005, 2008; Tsygankova et al., 2017), coronary heart disease (Yan et al., 2009)

Italicized polymorphisms represent those that have less than 300 alleles detected in the sample population (* denotes stop codon).

The importance of uncovering the primary function of T2Rs in the heart is supported by the critical role they play within the respiratory system. TAS2R38 is expressed in all aspects of the upper and lower respiratory tracts including sinonasal epithelial cells, bronchial epithelial cells, bronchial smooth muscle, and pulmonary vasculature smooth muscle (Shah et al., 2009; Grassin-Delyle et al., 2013; Upadhyaya et al., 2014; Devillier et al., 2015). Application of phenylthiocarbamide (PTC) or two quorum sensing molecules (C4HSL and C12HSL) secreted by Pseudomonas aeruginosa were shown to increase mucociliary clearance, bronchodilation, and production of bactericidal levels nitric oxide in explanted human tissue samples and primary airway–liquid interface cultures (Lee et al., 2012). This supports the recent finding that T2Rs play a role in innate immunity, as quorum sensing molecules serve to communicate between bacterial populations, allowing them to establish themselves during infection (Lee et al., 2014). Bitter taste receptors, particularly TAS2R38, are a unique and diverse family of GPCRs due to the number of their naturally occurring genetic variants (Kim et al., 2005). Compared to the functional (PAV) haplotype, individuals with the non-functional (AVI) haplotype were shown to be more susceptible to respiratory infections as the receptor was unable to detect the compounds and respond appropriately (Lee et al., 2012). A similar result was seen with regard to oral innate immunity (Gil et al., 2015). TAS2R38 PAV/PAV mRNA was upregulated ∼4.3-fold in response to Streptococcus mutans bacteria (over the unstimulated control) whereas the AVI/AVI was only ∼1.2-fold. Furthermore, the level of hBD-2 (antimicrobial peptide) induced was highest in those with the PAV/PAV genotype (Gil et al., 2015). On this basis, the authors concluded that a person’s T2R38 genotype determines oral innate immunity.

Natural polymorphisms are no longer thought only to account for differences in oral bitter taste perception (Roudnitzky et al., 2016). It is now recognized that these polymorphisms also influence other important aspects of our physiology including alcohol dependence, eating behavior, longevity, glucose homeostasis and regulation of thyroid hormones (Dotson, 2008; Hayes et al., 2011; Campa et al., 2012; Clark et al., 2015). There are 132 naturally occurring non-synonymous polymorphisms for cardiac-expressed T2Rs and it is clear that the majority of these remain uncharacterized (Table 3). One polymorphism that is of particular interest is T2R50-rs1376251, as debate remains in the literature over its potential association with myocardial infarction and coronary heart disease (Shiffman et al., 2008; Tepper et al., 2008; Yan et al., 2009; Koch et al., 2011; Ivanova et al., 2017; Tsygankova et al., 2017). There are also polymorphisms outside of the taste receptor coding region, or those that result in synonymous mutations that have been associated with changes in physiology. Of note, T2R14 rs3741843 has been associated with decreased sperm motility (Gentiluomo et al., 2017). Individuals that were homozygous carriers for the (G) allele, encoding arginine (R – AGG), showed a decreased sperm progressive motility compared to heterozygotes and homozygotes for the (A) allele, which encodes arginine (R – AGA). The authors rationalized using in silico analysis that T2R14 regulates the expression of T2R43. Furthermore, an upstream mutation of TAS2R3 rs11763979 can regulate the expression of WEE2 antisense RNA one (WEE2-AS1), which increases the expression of WEE2 within the testis. WEE2 is a protein tyrosine kinase involved in the regulation of cell cycle progression (Nakanishi et al., 2000). Overexpression of WEE2 in the testis was hypothesized to increase the number of abnormal sperm cells (Gentiluomo et al., 2017). Despite recent progress, it is unclear the full extent to which polymorphisms can influence T2R physiology, although it is clear investigation into their effects is warranted.

TABLE 3.

List of ligands known to activate cardiac specific T2Rs and their classification, number of T2Rs activated [bold indicates the receptor corresponding to the lowest threshold (TC) or effective concentration (EC50) in vitro concentration], reported effects in the cardiovascular system and corresponding dose/serum (* = based on 5.5 L of blood in human body, or without First Pass Effect of liver).

Classification Activates T2R (Jaggupilli et al., 2016) In vitro (μM) - TC/EC50 Jaggupilli et al. (2016) Reported effects on cardiovascular system Reported doses Reported or equivalent serum (μM)
Bitter compounds in food
Absinthin Sesquiterpene lactone 10, 14, 30, 46 0.4 ± 0.06 (EC50)
Acesulfame K Artificial sweetener 31, 43 2500 ± 10 (EC50)
Apigenin Flavonoid 14, 39 20.5 (EC50)
Amarogentin Secoiridoid glycoside 30, 39, 43, 46, 50 65 ± 16 (EC50)
Andrographolide Diterpenoid lactone 30, 46, 50 13 ± 2.17 (EC50) Shortened AP duration and reduced maximum upstroke (rabbits) (Zeng et al., 2017)
Aristolochic acid Carcinogen 14, 31, 43 0.081 ± 0.0008 (EC50) Valvular heart disease - aortic sufficiency (Vanherweghem, 1997)
Caffeine Stimulant 10, 14, 43, 46 300 (TC) Tachycardia, arrhythmia (Cappelletti et al., 2018) 80–100 mg/L >400
Datiscetin Flavonoid 14, 39 10 (EC50)
(-)-Epicatechin Antioxidant 4, 5, 39 417.7 (EC50) Promotes vasodilation (increase NO and decrease endothelin-1) (Schroeter et al., 2006; Loke et al., 2008; Mannaerts et al., 2017)
(-)-Epicatechin gallate (Ecg) Flavonoid 14, 39 70 (EC50)
(-)-Epigallocatechin gallate (EGCg) Flavonoid 14, 39 34 (EC50) Reduction of diastolic BP (Brown et al., 2009) 800 mg ∼300 (without First Pass Effect)*
Falcarindiol Antitumorigenic 14 100 (TC)
Genistein Phytoestrogen 14, 39 28.9 (EC50)
Histidine α-Amino acid 39 430 (TC) Arrhythmia prevention, inotropic support (Careaga et al., 2001; Teloh et al., 2016) 198 mM 8000–21000*
Humulone isomers Alpha acid 14 0.01 (TC) Inhibit VEGF mediated angiogenesis and endothelial proliferation (mouse) (Shimamura et al., 2001) 100
Naringenin Flavonoid 14, 39 32.9 (EC50)
Procyanidin Flavonoid 5 35.6 ± 0.7 (EC50) Improved hemodynamic parameters and collagen content (rats) (Martin-Fernandez et al., 2014) 6500 mg (65 kg human, 100 mg/kg) ∼2000 (without First Pass Effect)*
Quercetin Flavonoid 14 1 (TC) Reduction in BP (Serban et al., 2016) >500 mg ∼300 (without First Pass Effect)*
Sodium benzoate Preservative 14, 16 300 (TC) Caffeine alkaloid - combined with caffeine (Yucel et al., 1999)
Sinigrin Glucosinolate 16 100 (TC)
Thiamine Vitamin B1 39 1000 (TC) Deficiency results in wet beriberi (Lei et al., 2018)
Thujone, (-)-α Stimulant 10, 14 15 (EC50) Arrhythmia, hypotension, vasodilation (rats) (Pinto-Scognamiglio, 1968) 12480 mg (65 kg human, 192 mg/kg) 15000 (without First Pass Effect)*
Chemicals/drugs
Allylthiourea Nitrification inhibitor 50 720 ± 150 (EC50)
Atropine Muscarinic antagonist 10, 46 100 (TC) Tachycardia, arrhythmogenic (mice) (Perera et al., 2017)
Azathioprine Immuno- suppressant 4, 10, 14, 46 100 (TC) Atrial fibrillation, hypotension, tachycardia, cardiogenic shock (Dodd et al., 1985; Brown et al., 1997) 50 mg/day (2 weeks before hospital admission) 32 (without First Pass Effect)*
Azithromycin Antibiotic 4 74.45 ± 12.3(EC50) Ventricular tachycardia, prolongation of QT interval, torsades de pointes (Russo et al., 2006; Trifiro et al., 2017) 500 mg/day i.v. ∼115*
4,4-Bipyridine Bipyridine 10, 14, 16 3680 ± 60 (EC50) Other bipyridines used in heart disease and cardiac arrhythmias
Benzamide Benzamides 14 300 (TC) Substituted benzamides linked to hypotension, prolongation of QT interval, ventricular arrhythmias
Carisoprodol Muscle relaxer 14 100 (TC) Tachycardia, hypotension, heart palpitations (Rohatgi et al., 2005; Vo et al., 2017) 71 mg/L >250
Chloroquine Antimalarial 3, 10, 39 172 ± 29 (EC50) Cardiomyopathy, hypertrophy, ventricular arrhythmias: ST-segment depression, T wave inversion and QT interval prolongation, relaxation (Edwards et al., 1978; Stas et al., 2008; Tonnesmann et al., 2013) 300 mg >900 (without First Pass Effect)*
Chlorpheniramine Antihistamine 4, 10, 14, 39, 46 10 (TC) QT interval prolongation, torsades de pointes tachycardia (Nia et al., 2010) 2.5 mg (2.5 mg, two capsules three time a day) ∼10 (without First Pass Effect)*
Chloramphenicol Antibiotic 10, 39, 41, 43, 46 10 (TC) Gray Baby Syndrome - hypotension, arrhythmias; cardiovascular collapse (Sutherland, 1959; Biancaniello et al., 1981; Suarez and Ow, 1992) 313 mg/L >950
Clonixin NSAID 14 2 (TC) Cardiodepression and hypotension (rats) (Bustamante et al., 1989; Morales et al., 1995) 7800 mg (65 kg human, 120 mg/kg - lethal dose i.v. rats) >5000 (without First Pass Effect)*
Chlorhexidine Antiseptic 14 0.1 (TC) Hemodynamic instability and vasodilatory shock (Guleri et al., 2012; Zhou et al., 2019) Chlorhexidine-coated central venous catheter
Colchicine Antigout 4, 39, 46 1025 ± 121 (EC50) Decreased rates of atrial fibrillation, pericarditis and atherosclerotic vascular disease; cardiac arrhythmias and cardiovascular collapse (Macleod and Phillips, 1947; Papageorgiou et al., 2017; Thompson, 2019) 1 mg/day 0.45 (without First Pass Effect)*
Cycloheximide Eukaryote protein synthesis inhibitor 10 100 (TC)
Cromolyn Mast cell stabilizer 20, 43 42 ± 25 (EC50) Attenuates adverse LV remodeling and dysfunction in myocarditis, restored cardiac contractile dysfunction (rats) (Santone et al., 2008; Mina et al., 2013) 1625 mg (65 kg human, 25 mg/kg i.p. rats) 630 (without First Pass Effect)*
Dapsone Antibiotic 4, 10 100 (TC) Myocardial injury, shock, ventricular dysrhythmia, cardiac arrest. Hypertension (Kang et al., 2016) (Lau, 1995; Zhu et al., 2009) 300 mg–3 g 219–2190 (without First Pass Effect)*
Denatonium benzoate Deterring agent 4, 10, 13, 30, 39, 43, 46 0.27 ± 0.06 (EC50) Vasodilation (rats) (Lund et al., 2013) 1 μM i.v. in rats
Dextromethorphan Sedative 10 10 (TC) QT interval prolongation, torsades de pointes tachycardia, hypertension (Kaplan et al., 2011; Wu et al., 2012; Upadhyaya et al., 2014; Chew et al., 2017) 1920 mg (27 mg/kg) >1000 (without First Pass Effect)*
Diphenhydramine Antihistamine 14 30 (TC) QT interval prolongation, ventricular tachycardia, hemodynamic collapse, cardiac arrest, junctional rhythm, complete right bundle branch block, hypotension (Yu et al., 2016; Abernathy et al., 2017; Labarinas et al., 2018; Nishino et al., 2018) 18.7 mg/L 73
Diphenidol Antiemetic 4, 10, 13, 14, 16, 20, 30, 31, 39, 43, 46 3 (TC) Contraction band necrosis (post mortem), hypotension, arrhythmia, including QT interval prolongation, T wave change, U wave appearance, AV block, bundle branch block, ventricular premature contraction, ventricular tachycardia and ventricular fibrillation (Wasserman et al., 1975; Yang and Deng, 1998; Zhang et al., 2015) 45 mg/L 145
Erythromycin Antibiotic 10 300 (TC) QT interval prolongation, torsades de pointes tachycardia, 68% increased of hospital-acquired cardiac events (arrhythmia, heart failure, myocardial ischemia) (Giudicessi et al., 2018; Postma et al., 2019) 1300 mg (65 kg human, 15–20 mg/kg i.v. every 6 h) >300*
Ethylhydrocupreine Antibiotic 14 10 (TC)
Famotidine Antacid 10, 31 300 (TC) Cardiac arrest, third degree heart block, decreased stroke volume and cardiac output (Kirch et al., 1989; Schoenwald et al., 1999; Lee et al., 2004) 2x 20 mg i.v. dose >20*
Flufenamic acid NSAID 14 0.137 ± 0.017 (EC50) Hypertension and congestive heart failure (Miyamori et al., 1985) 600 mg >350 (without First Pass Effect)*
Haloperidol Antipsychotic 10 30 (TC) Prolongation of QT interval, torsades de pointes, sudden cardiac death (Meyer-Massetti et al., 2010; Fernandes et al., 2018; Vesely et al., 2019) 2–1540 mg I.v. dose (cumulative) 0.9–740*
Hydrocortisone Medication form of cortisol 46 30 (TC)
Levofloxacin Antibiotic 4, 14, 20 74.69 ± 20.5(EC50) Ventricular tachycardia, prolongation of QT interval, torsades de pointes (Basyigit et al., 2005; Lu et al., 2015; Okeahialam, 2015) 500 mg/day i.v. ∼250*
Ofloxacin Antibiotic 9 200 (EC50)
Orphenadrine Anticholinergic/antihistamine 46 30 (TC) Prolongation of QT interval, torsades de pointes, bradycardia, asystole (Malizia et al., 1980; Danze and Langdorf, 1991; Luzza et al., 2006) 16.2 mg/L >60
Methoxsalen/Xanthotoxin Small molecule - inhibits DNA synthesis 10, 14, 20 10
Noscapine Antitussive 14 10 (TC) Hypotension, relaxation (Weaver et al., 1958; Manson et al., 2014) 100
Parthenolide Antispasmodic 10, 31, 46 1 (TC)
Pentagalloyl glucose (PGG) Antitumorigenic 5, 39 6.6 (EC50) Modulates perivascular inflammation and prevents vascular dysfunction in Ang II-induced hypertension (mice) (Mikolajczyk et al., 2019) 650 mg (65 kg human, 10 mg/kg i.p.) ∼125 (without First Pass Effect)*
1, 10-Phenanthroline Antimicrobial 5 100 (TC)
Picrotoxinin Stimulant 10, 14, 30, 46 18 (EC50) AV block, ventricular premature contraction and/or ventricular tachycardia (rats) (Lee et al., 1972, 1974; Lin et al., 1992) 1300 mg (65 kg human, 20 mg/kg i.v.) ∼12*
Pirenzepine Anticholinergic 9 1800 (EC50) Increased heart rate turbulence, augmented baroreceptor reflex sensitivity (Pedretti et al., 1995; Vukajlovic et al., 2006) 50 mg/day ∼25 (without First Pass Effect)*
Procainamide Antiarrhythmic 9 2800 (EC50) Decrease contractility, hypertension, cardiovascular depression and collapse, prolonged PR/QT intervals and QRS complex, AV block, asystole, bundle branch block, ventricular premature contraction, ventricular tachycardia and ventricular fibrillation (Perkins and Marill, 2012; Ortiz et al., 2017; Osadchii, 2018) 1300 mg (65 kg human, 10 mg/kg/20 min (i.v.) ∼1000*
Quinine Antimalarial 4, 10, 14, 31, 39, 43, 46 10 (TC) Hypotension, prolonged PR/QT intervals and QRS complex, bundle branch block, ventricular premature contraction, ventricular tachycardia and ventricular fibrillation (Danopoulos et al., 1954; Ortiz et al., 2017; Osadchii, 2018) 10 mg/L ∼31
Salicin Anti-inflammatory 16 1400 ± 200 (EC50)
Salicylic acid Derivative of aspirin 14 1000 (TC) Supraventricular tachycardia, prolonged asystole, atrial fibrillation (Mukerji et al., 1986; Ihama et al., 2007) 0.49–1.1 mg/mL ∼3500–8000
Strychnine Pesticide 10, 46 0.43 ± 0.02 (EC50) Cardiac arrest, bradycardia, ECG changes (Heiser et al., 1992; Wood et al., 2002; Ponraj et al., 2017) 3.8 mg/L ∼11
2-Thiouracil Antithyroid 4, 14, 46 100 ± 10 (EC50)
Tobramycin Antibiotic 14, 20 50.97 ± 19.37 (EC50) Cardiodepression, hypotension, decreased CO, ventricular contractile force (dogs) (Adams et al., 1979) 1300 mg (65 kg human, 20 mg/kg i.v.) ∼500*
Yohimbine Erectile dysfunction 4, 10, 46 300 (TC) Promote cardiac noradrenaline release (mice) (Wang et al., 2013) 260 mg (65 kg human, 4 mg/kg) >130 (without First Pass Effect)*
Endogenous factors
Alanine α-Amino acid 39 580 ± 10 (EC50)
Androsterone Steroid hormone 46 1 (TC)
Pantothenic acid Vitamin B5 14, 31, 43 1000 (TC)
Progesterone Steroid hormone 46 3 (TC) QTc shortening (double autonomic blockade, atropine and propranolol) - opposite effect of estradiol (Barbagallo et al., 2001; Yang et al., 2010; Salem et al., 2016; Barber et al., 2019) 6500 μg (65 kg human, 100 μg/kg i.v.) >3.5*
Taurocholic acid Primary bile acid 4 300 (TC) Afterdepolarizations, atrial fibrillation, prolongation of contractile refractory period (Desai and Penny, 2013; Rainer et al., 2013) 300–1000
Bacterial toxins/metabolic by-products
Equol Nonsteroid estrogen 14, 39 100
4-Hydroxy-2-heptylquinolone (HHQ) Pseudomonas aeruginosa quinolone 14 100
Homoserine lactone, N-butyryl-L- Bacterial quorum sensing 14 50
Homoserine lactone, N-hexanoyl-L- Bacterial quorum sensing 10 2400 (TC)
Homoserine lactone, N-octanoyl-L- Bacterial quorum sensing 4, 14, 20 20 ± 10 (EC50)
Homoserine lactone, N-3-oxooctanoyl-L- Bacterial quorum sensing 4, 10, 14, 20 41 ± 13 (EC50) Bradycardia (rats) (Gardiner et al., 2001) 650 mg (65 kg human, 10 mg/kg i.v.) >450*
Pseudomonas quinolone signal (PQS) Pseudomonas aeruginosa quinolone 4, 16, 39 100 150 (Morales-Soto et al., 2018)

Potential Cardiovascular T2R Ligands

T2Rs are unique as they lack most of the conserved motifs of the class A GPCR family (Lagerstrom and Schioth, 2008). The intracellular loops – regions necessary for signal transduction and feedback modulation (Moreira, 2014), were shown to be more conserved across T2Rs than the extracellular loops that are generally implicated in receptor binding (Meyerhof, 2005). Using T2R14 as an example, Nowak et al. (2018) demonstrated that in vitro mutagenesis of 19 receptor mutants (all within the binding pocket) retained the ability to bind at least one of the 7 tested agonists while some improved signaling compared to the wild type. These results are consistent with previous literature that ligands bind within the transmembrane and extracellular domain regions (Brockhoff et al., 2010; Upadhyaya et al., 2015). Interestingly, of the highly expressed cardiac T2Rs, T2R10, T2R14, and T2R46 were shown to bind a wide array of ligands, which is considered disproportional in comparison to the others (Meyerhof et al., 2010). Over 75% of the list of ligands in Table 3 were shown to activate these three broadly tuned T2Rs.

Universally, researchers have used chemicals that ‘taste bitter’ to test for potential ligands. However, if heart tissue expresses over half of the T2Rs family, a major question arises - what is the source of ligands for these T2Rs within the cardiovascular system? We would argue there are four major sources: (1) bitter compounds in food, (2) endogenously produced factors, (3) bacterial metabolic by-products and toxins and (4) chemicals/drugs (outlined in Table 3).

The post-prandial concentration of bitter compounds in the blood increases. One perhaps common example of this is caffeine, which reportedly modulates calcium signaling via interaction with the ryanodine receptor (Kong et al., 2008). Interestingly, caffeine also activates T2R10, -14, and -46 (Meyerhof et al., 2010; Cappelletti et al., 2018) at concentrations that occur in blood post-prandially and which are equivalent to levels that modulate the ryanodine receptor (Kong et al., 2008). In the gut, caffeine activation of T2R has been linked to gastric secretion (Liszt et al., 2017). Caffeine may also act as a stimulate for the central nervous system via the antagonism of adenosine receptors (Fisone et al., 2004). Hence in considering the homeostatic consequence of bitter compounds (such as caffeine) one must also accept that at high concentrations they are interacting with multiple receptor systems. We would anticipate that many bitter compounds in food would have actions on both T2Rs and other targets.

Another interesting possibility is that the body produces endogenous factors that could activate T2Rs. Currently, alanine, pantothenic acid (vitamin B5), steroids (androsterone and progesterone) and taurocholic acid (primary bile acid) have all been identified as ligands for specific receptors (Ji et al., 2014; Lossow et al., 2016). Potentially, the cardiotonic steroids may be ligands for cardiac-expressed T2Rs, although ouabain has already been shown not to be an agonist in vitro (Meyerhof et al., 2010), despite being able to augment calcium transients in arterial smooth muscle (Arnon et al., 2000). The other members of this family could also be investigated as potential ligands for cardiac T2Rs. Whether hormones/factors produced by other tissues, or indeed paracrine factors released from cardiac cells, can bind and activate cardiac T2Rs remains to be determined, but is an area of intense interest.

A more provocative idea is that colonizing bacteria, in complex organisms, could produce bitter compounds, including metabolic by-products and other signaling molecules that alter our physiology via T2Rs. A recent study showed commensal bacteria are enable to synthesize GPCR ligands that mimic human signaling molecules (Cohen et al., 2017). Broad screening for bacterial metabolites that activate GPCRs (Chen et al., 2019; Colosimo et al., 2019) have identified numerous candidates, but unfortunately these screens have not included the taste receptors. Interestingly, an olfactory receptor (Olfr78) has been reported to respond to short chain fatty acids produced by gut bacteria (Pluznick et al., 2013). Olfr78 KO mice had elevated blood pressure when treated with antibiotics. As for the T2Rs, T2R38 although its expression is low in the heart, was shown to be broadly tuned for seven bacterial metabolites (Verbeurgt et al., 2017). It is also worth noting that during infections bacterial toxins could be ‘bitter’ and interact with T2Rs once they reached a certain concentration in the blood. One example is quorum sensing molecules - when they reach a certain concentration, bacteria produce a biofilm in order to evade and survive the host immune defense system (Davies et al., 1998). Therefore, it is plausible that T2Rs may alter cardiovascular physiology in response to systemic infections such as sepsis where dramatic cardiovascular changes are observed, e.g., decreased myocardial contractility, vasodilation, endothelial injury and increased heart rate (Singer et al., 2016).

Finally, it is important to address the possibility that off-target activation of T2Rs may play a role beyond normal physiology and mediate unexpected responses to therapeutic drugs, many of which are bitter. Indeed, the possibility that T2Rs act as the mediators of off-target drug effects due to the prevalence of their expression throughout the body has been discussed previously (Clark et al., 2012). There are numerous drugs/chemicals that have specific, detrimental cardiovascular effects and, moreover, these chemicals have been shown to activate specific T2Rs at concentrations to those that elicit these adverse effects.

Future Directions

The continuous, proper functioning of the heart is fundamental to life. The discovery of T2Rs expressed in cardiac cells predicts important (but yet to be appreciated) roles in heart physiology, as well as its response to external challenges (e.g., diet, metabolic changes, infections, and drugs). Research and knowledge regarding the physiology of T2Rs within the human heart is challenging, primarily due to the constraints of readily acquiring suitable human heart tissue samples. Furthermore, the lack of homology between rodent Tas2rs and human T2Rs (Foster et al., 2013), limits the utility of gene modified animal models to directly inform human physiology. Additionally, the 29 T2Rs (and their many variants) have been historically difficult to heterologously express on the cell membrane of model cells, and this has impeded further investigation of their signaling properties.

It is important to note, that researchers have ectopically expressed human T2Rs in mice and this has provided strong confirmation that a given ligand (tastants) can activate a specific human T2R (Mueller et al., 2005). Perhaps future experiments might extend this approach to develop transgenic mice expressing human T2Rs in a cell-specific context. Stimulation of these receptors with ligands that selectively bind and activate only human T2Rs could provide important insights into the physiological role(s) of T2Rs in human tissues.

Another critical objective will be to develop appropriate cardiac models that express endogenous receptors and recapitulate cardiac physiology. One major advance in cardiovascular research has been the development of induced pluripotent stem cell-derived human cardiomyocytes (Hudson et al., 2012; Soong et al., 2012) and human cardiac organoids (Nugraha et al., 2019). These models will offer the unique opportunity to modulate T2R expression in cardiomyocytes and to thereby investigate bitter ligand-driven changes in cardiac gene transcription, as well as to define alterations in cardiac contractility and function.

Finally, the ultimate goal will be to attribute T2R-mediated expression, activation and signaling to definitive changes in human cardiovascular function in vivo. In order for this to succeed, the following challenges need to be resolved - the promiscuity of bitter receptor–ligand interactions, the elucidation of tissue-specific T2R signaling, as well as the lack of definitive research tools (e.g., selective antibodies to T2Rs and specific receptor antagonists). We anticipate that studies focused on examining the functionality (or lack thereof) for the various highly penetrant, cardiac-expressed T2R polymorphisms may provide the means for unambiguously attributing T2R activation to a specific physiological outcome. Analogous to the advances made with non-functional T2R38 variants (T2R38AVI) in the lung, we predict that non-functional, cardiac-expressed T2Rs can be identified and these will prove to be critical in providing the necessary controls for investigating explanted cardiac tissues.

Author Contributions

CB, SF, and WT designed the scope and structure of the review. CB collated data. CB, SF, and WT wrote and edited the final manuscript. CB produced the figures and tables in consultation with SF and WT.

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

  1. Abernathy A., Alsina L., Greer J., Egerman R. (2017). Transient fetal tachycardia after intravenous diphenhydramine administration. Obstet. Gynecol. 130 374–376. 10.1097/AOG.0000000000002147 [DOI] [PubMed] [Google Scholar]
  2. Adams H. R., Parker J. L., Mathew B. P. (1979). Cardiovascular manifestations of acute antibiotic toxicity during E coli endotoxin shock in anesthetized dogs. Circ. Shock 6 391–404. [PubMed] [Google Scholar]
  3. Adler E., Hoon M. A., Mueller K. L., Chandrashekar J., Ryba N. J., Zuker C. S. (2000). A novel family of mammalian taste receptors. Cell 100 693–702. 10.1016/s0092-8674(00)80705-9 [DOI] [PubMed] [Google Scholar]
  4. Ansoleaga B., Garcia-Esparcia P., Pinacho R., Haro J. M., Ramos B., Ferrer I. (2015). Decrease in olfactory and taste receptor expression in the dorsolateral prefrontal cortex in chronic schizophrenia. J. Psychiatr. Res. 60 109–116. 10.1016/j.jpsychires.2014.09.012 [DOI] [PubMed] [Google Scholar]
  5. Arnon A., Hamlyn J. M., Blaustein M. P. (2000). Ouabain augments Ca(2+) transients in arterial smooth muscle without raising cytosolic Na(+). Am. J. Physiol. Heart Circ. Physiol. 279 H679–H691. 10.1152/ajpheart.2000.279.2.H679 [DOI] [PubMed] [Google Scholar]
  6. Barbagallo M., Dominguez L. J., Licata G., Shan J., Bing L., Karpinski E., et al. (2001). Vascular effects of progesterone : role of cellular calcium regulation. Hypertension 37 142–147. 10.1161/01.hyp.37.1.142 [DOI] [PubMed] [Google Scholar]
  7. Barber M., Nguyen L. S., Wassermann J., Spano J. P., Funck-Brentano C., Salem J. E. (2019). Cardiac arrhythmia considerations of hormone cancer therapies. Cardiovasc. Res. 115 878–894. 10.1093/cvr/cvz020 [DOI] [PubMed] [Google Scholar]
  8. Barham H. P., Cooper S. E., Anderson C. B., Tizzano M., Kingdom T. T., Finger T. E., et al. (2013). Solitary chemosensory cells and bitter taste receptor signaling in human sinonasal mucosa. Int. Forum. Allergy Rhinol. 3 450–457. 10.1002/alr.21149 [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Basyigit I., Kahraman G., Ilgazli A., Yildiz F., Boyaci H. (2005). The effects of levofloxacin on ECG parameters and late potentials. Am. .J Ther. 12 407–410. 10.1097/01.mjt.0000127358.38755.c5 [DOI] [PubMed] [Google Scholar]
  10. Behrens M., Bartelt J., Reichling C., Winnig M., Kuhn C., Meyerhof W. (2006). Members of RTP and REEP gene families influence functional bitter taste receptor expression. J. Biol. Chem. 281 20650–20659. 10.1074/jbc.M513637200 [DOI] [PubMed] [Google Scholar]
  11. Biancaniello T., Meyer R. A., Kaplan S. (1981). Chloramphenicol and cardiotoxicity. J. Pediatr. 98 828–830. [DOI] [PubMed] [Google Scholar]
  12. Brockhoff A., Behrens M., Niv M. Y., Meyerhof W. (2010). Structural requirements of bitter taste receptor activation. Proc. Natl. Acad. Sci. U.S.A. 107 11110–11115. 10.1021/jf403387p [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Brown A. L., Lane J., Coverly J., Stocks J., Jackson S., Stephen A., et al. (2009). Effects of dietary supplementation with the green tea polyphenol epigallocatechin-3-gallate on insulin resistance and associated metabolic risk factors: randomized controlled trial. Br. J. Nutr. 101 886–894. 10.1017/S0007114508047727 [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Brown G., Boldt C., Webb J. G., Halperin L. (1997). Azathioprine-induced multisystem organ failure and cardiogenic shock. Pharmacotherapy 17 815–818. [PubMed] [Google Scholar]
  15. Bufe B., Hofmann T., Krautwurst D., Raguse J.-D., Meyerhof W. (2002). The human TAS2R16 receptor mediates bitter taste in response to β-glucopyranosides. Nat. Genet. 32 397–401. 10.1038/ng1014 [DOI] [PubMed] [Google Scholar]
  16. Bustamante D., Morales M., Pelissier T., Saavedra H., Miranda H. F., Paeile C. (1989). Experimental cardio-depressant effects of clonixin. Gen. Pharmacol. 20 605–608. 10.1016/0306-3623(89)90094-3 [DOI] [PubMed] [Google Scholar]
  17. Campa D., De Rango F., Carrai M., Crocco P., Montesanto A., Canzian F., et al. (2012). Bitter taste receptor polymorphisms and human aging. PLoS One 7:e45232 10.1371/journal.pone.0045232 [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Campbell M. C., Ranciaro A., Zinshteyn D., Rawlings-Goss R., Hirbo J., Thompson S., et al. (2014). Origin and differential selection of allelic variation at TAS2R16 associated with salicin bitter taste sensitivity in Africa. Mol. Biol. Evol. 31 288–302. 10.1093/molbev/mst211 [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Cantone E., Negri R., Roscetto E., Grassia R., Catania M. R., Capasso P., et al. (2018). In vivo biofilm formation, gram-negative infections and TAS2R38 polymorphisms in CRSw NP Patients. Laryngoscope 128 E339–E345. 10.1002/lary.27175 [DOI] [PubMed] [Google Scholar]
  20. Capote L. A., Mendez Perez R., Lymperopoulos A. (2015). GPCR signaling and cardiac function. Eur. J. Pharmacol. 763 143–148. [DOI] [PubMed] [Google Scholar]
  21. Cappelletti S., Piacentino D., Fineschi V., Frati P., Cipolloni L., Aromatario M. (2018). Caffeine-related deaths: manner of deaths and categories at risk. Nutrients 10:611 10.3390/nu10050611 [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Careaga G., Salazar D., Tellez S., Sanchez O., Borrayo G., Arguero R. (2001). Clinical impact of histidine-ketoglutarate-tryptophan (HTK) cardioplegic solution on the perioperative period in open heart surgery patients. Arch. Med. Res. 32 296–299. 10.1016/s0188-4409(01)00296-x [DOI] [PubMed] [Google Scholar]
  23. Chandrashekar J., Mueller K. L., Hoon M. A., Adler E., Feng L., Guo W., et al. (2000). T2Rs function as bitter taste receptors. Cell 100 703–711. 10.1016/s0092-8674(00)80706-0 [DOI] [PubMed] [Google Scholar]
  24. Chen J. G., Ping N. N., Liang D., Li M. Y., Mi Y. N., Li S., et al. (2017). The expression of bitter taste receptors in mesenteric, cerebral and omental arteries. Life Sci. 170 16–24. 10.1016/j.lfs.2016.11.010 [DOI] [PubMed] [Google Scholar]
  25. Chen H., Nwe P. K., Yang Y., Rosen C. E., Bielecka A. A., Kuchroo M., et al. (2019). A forward chemical genetic screen reveals gut microbiota metabolites that modulate host physiology. Cell 177 1217.e18–1231.e18. 10.1016/j.cell.2019.03.036 [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Chew D. S., Rezazadeh S., Miller R. J. (2017). Recurrent syncope in the emergency department: a lethal cause not for the faint hearted. JAMA Intern. Med. 177 874–876. 10.1001/jamainternmed.2017.0580 [DOI] [PubMed] [Google Scholar]
  27. Choi J. H., Lee J., Yang S., Kim J. (2017). Genetic variations in taste perception modify alcohol drinking behavior in Koreans. Appetite 113 178–186. 10.1016/j.appet.2017.02.022 [DOI] [PubMed] [Google Scholar]
  28. Clapp T. R., Trubey K. R., Vandenbeuch A., Stone L. M., Margolskee R. F., Chaudhari N., et al. (2008). Tonic activity of Galpha-gustducin regulates taste cell responsivity. FEBS Lett. 582 3783–3787. 10.1016/j.febslet.2008.10.007 [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Clark A. A., Dotson C. D., Elson A. E., Voigt A., Boehm U., Meyerhof W., et al. (2015). TAS2R bitter taste receptors regulate thyroid function. Faseb J. 29 164–172. 10.1096/fj.14-262246 [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Clark A. A., Liggett S. B., Munger S. D. (2012). Extraoral bitter taste receptors as mediators of off-target drug effects. FASEB J. 26 4827–4831. 10.1096/fj.12-215087 [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Cohen L. J., Esterhazy D., Kim S.-H., Lemetre C., Aguilar R. R., Gordon E. A., et al. (2017). Commensal bacteria make GPCR ligands that mimic human signalling molecules. Nature 549 48–53. 10.1038/nature25997 [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Cohen S. P., Buckley B. K., Kosloff M., Garland A. L., Bosch D. E., Cheng G., et al. (2012). Regulator of G-protein signaling-21 (RGS21) is an inhibitor of bitter gustatory signaling found in lingual and airway epithelia. J. Biol. Chem. 287 41706–41719. 10.1074/jbc.M112.423806 [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Colosimo D. A., Kohn J. A., Luo P. M., Piscotta F. J., Han S. M., Pickard A. J., et al. (2019). Mapping interactions of microbial metabolites with human g-protein-coupled receptors. Cell Host Microbe 26 273.e7–282.e7. 10.1016/j.chom.2019.07.002 [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Danopoulos E., Angelopoulos B., Moulopoulos S. D., Romanos A. (1954). [Electrocardiographic studies on cardiotoxic effect of quinine in dogs]. Z. Kreislaufforsch 43 856–861. [PubMed] [Google Scholar]
  35. Danze L. K., Langdorf M. I. (1991). Reversal of orphenadrine-induced ventricular tachycardia with physostigmine. J. Emerg. Med. 9 453–457. 10.1016/0736-4679(91)90217-4 [DOI] [PubMed] [Google Scholar]
  36. Davies D. G., Parsek M. R., Pearson J. P., Iglewski B. H., Costerton J. W., Greenberg E. P. (1998). The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280 295–298. 10.1126/science.280.5361.295 [DOI] [PubMed] [Google Scholar]
  37. Demir T., Yumrutas O., Cengiz B., Demiryurek S., Unverdi H., Kaplan D. S., et al. (2014). Evaluation of TRPM (transient receptor potential melastatin) genes expressions in myocardial ischemia and reperfusion. Mol. Biol. Rep. 41 2845–2849. 10.1007/s11033-014-3139-0 [DOI] [PubMed] [Google Scholar]
  38. Desai M. S., Penny D. J. (2013). Bile acids induce arrhythmias: old metabolite, new tricks. Heart 99 1629–1630. 10.1136/heartjnl-2013-304546 [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Deshpande D. A., Wang W. C. H., Mcilmoyle E. L., Robinett K. S., Schillinger R. M., An S. S., et al. (2010). Bitter taste receptors on airway smooth muscle bronchodilate by a localized calcium flux and reverse obstruction. Nat. Med. 16 1299–1304. 10.1038/nm.2237 [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Devillier P., Naline E., Grassin-Delyle S. (2015). The pharmacology of bitter taste receptors and their role in human airways. Pharmacol. Ther. 155 11–21. 10.1016/j.pharmthera.2015.08.001 [DOI] [PubMed] [Google Scholar]
  41. Di Pizio A., Niv M. Y. (2015). Promiscuity and selectivity of bitter molecules and their receptors. Bioorg. Med. Chem. 23 4082–4091. 10.1016/j.bmc.2015.04.025 [DOI] [PubMed] [Google Scholar]
  42. Dodd H. J., Tatnall F. M., Sarkany I. (1985). Fast atrial fibrillation induced by treatment of psoriasis with azathioprine. Br. Med. J. 291:706 10.1136/bmj.291.6497.706 [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Doll S., Dressen M., Geyer P. E., Itzhak D. N., Braun C., Doppler S. A., et al. (2017). Region and cell-type resolved quantitative proteomic map of the human heart. Nat. Commun. 8:1469 10.1038/s41467-017-01747-2 [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Dotson C. D., Wallace M. R., Bartoshuk L. M., Logan H. L. (2012). Variation in the gene TAS2R13 is associated with differences in alcohol consumption in patients with head and neck cancer. Chem. Sen. 37 737–744. 10.1093/chemse/bjs063 [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Dotson C. D. C. D. (2008). Bitter taste receptors influence glucose homeostasis. PloS One 3:e3974 10.1371/journal.pone.0003974 [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Dutta Banik D., Martin L. E., Freichel M., Torregrossa A. M., Medler K. F. (2018). TRPM4 and TRPM5 are both required for normal signaling in taste receptor cells. Proc. Natl. Acad. Sci. U.S.A. 115 E772–E781. 10.1073/pnas.1718802115 [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Edwards A. C., Meredith T. J., Sowton E. (1978). Complete heart block due to chronic chloroquine toxicity managed with permanent pacemaker. Br. Med. J. 1 1109–1110. 10.1136/bmj.1.6120.1109 [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Ekoff M., Choi J.-H., James A., Dahlén B., Nilsson G., Dahlén S.-E. (2014). Bitter taste receptor (TAS2R) agonists inhibit IgE-dependent mast cell activation. J. Allergy Cli. Immunol. 134 475–478. 10.1016/j.jaci.2014.02.029 [DOI] [PubMed] [Google Scholar]
  49. Fernandes F. M., Silva E. P., Martins R. R., Oliveira A. G. (2018). QTc interval prolongation in critically ill patients: prevalence, risk factors and associated medications. PLoS One 13:e0199028 10.1371/journal.pone.0199028 [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Fisone G., Borgkvist A., Usiello A. (2004). Caffeine as a psychomotor stimulant: mechanism of action. Cell Mol. Life Sci. 61 857–872. 10.1007/s00018-003-3269-3 [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Flegel C., Manteniotis S., Osthold S., Hatt H., Gisselmann G. (2013). Expression profile of ectopic olfactory receptors determined by deep sequencing. PloS One 8:e55368 10.1371/journal.pone.0055368 [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Foster S. R., Blank K., Hoe L. E. S., Behrens M., Meyerhof W., Peart J. N., et al. (2014). Bitter taste receptor agonists elicit G-protein-dependent negative inotropy in the murine heart. Faseb J. 28 4497–4508. 10.1096/fj.14-256305 [DOI] [PubMed] [Google Scholar]
  53. Foster S. R., Porrello E. R., Purdue B., Chan H.-W., Voigt A., Frenzel S., et al. (2013). Expression, regulation and putative nutrient-sensing function of taste GPCRs in the heart. PLoS One 8:e64579 10.1371/journal.pone.0064579 [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Foster S. R., Porrello E. R., Stefani M., Smith N. J., Molenaar P., Dos Remedios C. G., et al. (2015a). Cardiac gene expression data and in silico analysis provide novel insights into human and mouse taste receptor gene regulation. Naunyn Schmiedeberg’s Arch. Pharmacol. 388 1009–1027. 10.1007/s00210-015-1118-1 [DOI] [PubMed] [Google Scholar]
  55. Foster S. R., Roura E., Molenaar P., Thomas W. G. (2015b). G protein-coupled receptors in cardiac biology: old and new receptors. Biophys. Rev. 7 77–89. 10.1007/s12551-014-0154-2 [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Freund J. R., Mansfield C. J., Doghramji L. J., Adappa N. D., Palmer J. N., Kennedy D. W., et al. (2018). Activation of airway epithelial bitter taste receptors by Pseudomonas aeruginosa quinolones modulates calcium, cyclic-AMP, and nitric oxide signaling. J. Biol. Chem. 293 9824–9840. 10.1074/jbc.RA117.001005 [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Gaida M. M., Dapunt U., Hansch G. M. (2016a). Sensing developing biofilms: the bitter receptor T2R38 on myeloid cells. Pathog Dis. 74:ftw004 10.1093/femspd/ftw004 [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Gaida M. M., Mayer C., Dapunt U., Stegmaier S., Schirmacher P., Wabnitz G. H., et al. (2016b). Expression of the bitter receptor T2R38 in pancreatic cancer: localization in lipid droplets and activation by a bacteria-derived quorum-sensing molecule. Oncotarget 7 12623–12632. 10.18632/oncotarget.7206 [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Garcia-Esparcia P., Schlüter A., Carmona M., Moreno J., Ansoleaga B., Torrejón-Escribano B., et al. (2013). Functional genomics reveals dysregulation of cortical olfactory receptors in parkinson disease: novel putative chemoreceptors in the human brain. J. Neuropathol.Exp. Neurol. 72 524–539. 10.1097/NEN.0b013e318294fd76 [DOI] [PubMed] [Google Scholar]
  60. Gardiner S. M., Chhabra S. R., Harty C., Williams P., Pritchard D. I., Bycroft B. W., et al. (2001). Haemodynamic effects of the bacterial quorum sensing signal molecule, N-(3-oxododecanoyl)-L-homoserine lactone, in conscious, normal and endotoxaemic rats. Br. J. Pharmacol. 133 1047–1054. 10.1038/sj.bjp.0704174 [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Gentiluomo M., Crifasi L., Luddi A., Locci D., Barale R., Piomboni P., et al. (2017). Taste receptor polymorphisms and male infertility. Hum. Reprod. 32 2324–2331. 10.1093/humrep/dex305 [DOI] [PubMed] [Google Scholar]
  62. Gil S., Coldwell S., Drury J. L., Arroyo F., Phi T., Saadat S., et al. (2015). Genotype-Specific Regulation of Oral Innate Immunity by T2R38 Taste Receptor. Mol. Immunol. 68 663–670. 10.1016/j.molimm.2015.10.012 [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Giudicessi J. R., Ackerman M. J., Camilleri M. (2018). Cardiovascular safety of prokinetic agents: a focus on drug-induced arrhythmias. Neurogastroenterol. Motil. 30:e13302 10.1111/nmo.13302 [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Grassin Delyle S., Abrial C., Brollo M., Fayad-Kobeissi S., Naline E., Devillier P. (2014). “Characterization of the expression and the role of bitter taste receptors in human lung parenchyma and macrophages,” in D36. Sepsis, Acute Respiratory Distress Syndrome, and Acute Lung Injury, (New York, NY: American Thoracic Society; ), A5749–A5749. [Google Scholar]
  65. Grassin-Delyle S., Abrial C., Fayad-Kobeissi S., Brollo M., Faisy C., Alvarez J.-C., et al. (2013). The expression and relaxant effect of bitter taste receptors in human bronchi. Respir. Res. 14 134–134. 10.1186/1465-9921-14-134 [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Guinamard R., Chatelier A., Demion M., Potreau D., Patri S., Rahmati M., et al. (2004). Functional characterization of a Ca(2+)-activated non-selective cation channel in human atrial cardiomyocytes. J. Physiol. 558 75–83. 10.1113/jphysiol.2004.063974 [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Guleri A., Kumar A., Morgan R. J., Hartley M., Roberts D. H. (2012). Anaphylaxis to chlorhexidine-coated central venous catheters: a case series and review of the literature. Surg. Infect. 13 171–174. 10.1089/sur.2011.011 [DOI] [PubMed] [Google Scholar]
  68. Hague C., Uberti M. A., Chen Z., Bush C. F., Jones S. V., Ressler K. J., et al. (2004). Olfactory receptor surface expression is driven by association with the β&ltsub&gt2&lt/sub&gt-adrenergic receptor. Proc. Natl.Acad. Sci. U.S.A. 101:13672 10.1073/pnas.0403854101 [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Hayes J. E., Wallace M. R., Knopik V. S., Herbstman D. M., Bartoshuk L. M., Duffy V. B. (2011). Allelic variation in TAS2R bitter receptor genes associates with variation in sensations from and ingestive behaviors toward common bitter beverages in adults. Chem. Sens. 36 311–319. 10.1093/chemse/bjq132 [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Heiser J. M., Daya M. R., Magnussen A. R., Norton R. L., Spyker D. A., Allen D. W., et al. (1992). Massive strychnine intoxication: serial blood levels in a fatal case. J. Toxicol. Clin. Toxicol. 30 269–283. 10.3109/15563659209038638 [DOI] [PubMed] [Google Scholar]
  71. Hinrichs A. L., Wang J. C., Bufe B., Kwon J. M., Budde J., Allen R., et al. (2006). Functional variant in a bitter-taste receptor (hTAS2R16) influences risk of alcohol dependence. Am. J. Hum. Genet. 78 103–111. 10.1086/499253 [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Huang L., Shanker Y. G., Dubauskaite J., Zheng J. Z., Yan W., Rosenzweig S., et al. (1999). Ggamma13 colocalizes with gustducin in taste receptor cells and mediates IP3 responses to bitter denatonium. Nat. Neurosci. 2 1055–1062. 10.1038/15981 [DOI] [PubMed] [Google Scholar]
  73. Hudson J., Titmarsh D., Hidalgo A., Wolvetang E., Cooper-White J. (2012). Primitive cardiac cells from human embryonic stem cells. Stem Cells Dev. 21 1513–1523. 10.1089/scd.2011.0254 [DOI] [PubMed] [Google Scholar]
  74. Ihama Y., Ageda S., Fuke C., Miyazaki T. (2007). Autopsy case of aspirin intoxication: distribution of salicylic acid and salicyluric acid in body fluid and organs. Chudoku Kenkyu 20 375–380. [PubMed] [Google Scholar]
  75. Isberg V., Mordalski S., Munk C., Rataj K., Harpsoe K., Hauser A. S., et al. (2016). GPCRdb: an information system for G protein-coupled receptors. Nucleic Acids Res. 44 D356–D364. 10.1093/nar/gkw1218 [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Ivanova A. A., Maksimov V. N., Orlov P. S., Ivanoshchuk D. E., Savchenko S. V., Voevoda M. I. (2017). Association of the genetic markers for myocardial infarction with sudden cardiac death. Indian Heart J. 69(Suppl. 1), S8–S11. 10.1016/j.ihj.2016.07.016 [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Jaggupilli A., Howard R., Upadhyaya J. D., Bhullar R. P., Chelikani P. (2016). Bitter taste receptors: novel insights into the biochemistry and pharmacology. Int. J. Biochem. Cell Biol. 77 184–196. 10.1016/j.biocel.2016.03.005 [DOI] [PubMed] [Google Scholar]
  78. Jaggupilli A., Singh N., Upadhyaya J., Sikarwar A. S., Arakawa M., Dakshinamurti S., et al. (2017). Analysis of the expression of human bitter taste receptors in extraoral tissues. Mol. Cell Biochem. 426 137–147. 10.1007/s11010-016-2902-z [DOI] [PubMed] [Google Scholar]
  79. Jeon T.-I., Seo Y.-K., Osborne T. F. (2011). Gut bitter taste receptor signalling induces ABCB1 through a mechanism involving CCK. Biochem. J. 438 33–37. 10.1042/BJ20110009 [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Ji M., Su X., Su X., Chen Y., Huang W., Zhang J., et al. (2014). Identification of novel compounds for human bitter taste receptors. Chem. Biol. Drug Des. 84 63–74. 10.1111/cbdd.12293 [DOI] [PubMed] [Google Scholar]
  81. Kaji I., Karaki S., Fukami Y., Terasaki M., Kuwahara A. (2009). Secretory effects of a luminal bitter tastant and expressions of bitter taste receptors, T2Rs, in the human and rat large intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 296 G971–G981. 10.1152/ajpgi.90514.2008 [DOI] [PubMed] [Google Scholar]
  82. Kang K. S., Kim H. I., Kim O. H., Cha K. C., Kim H., Lee K. H., et al. (2016). Clinical outcomes of adverse cardiovascular events in patients with acute dapsone poisoning. Clin. Exp. Emerg. Med. 3 41–45. 10.15441/ceem.15.088 [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Kaplan B., Buchanan J., Krantz M. J. (2011). QTc prolongation due to dextromethorphan. Int. J. Cardiol. 148 363–364. [DOI] [PubMed] [Google Scholar]
  84. Kim D., Pauer S. H., Yong H. M., An S. S., Liggett S. B. (2016). beta2-adrenergic receptors chaperone trapped bitter taste receptor 14 to the cell surface as a heterodimer and exert unidirectional desensitization of taste receptor function. J. Biol. Chem. 291 17616–17628. 10.1074/jbc.M116.722736 [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Kim D., Woo J. A., Geffken E., An S. S., Liggett S. B. (2017). Coupling of airway smooth muscle bitter taste receptors to intracellular signaling and relaxation is via galphai1,2,3. Am. J. Respir. Cell Mol. Biol. 56 762–771. 10.1165/rcmb.2016-0373OC [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Kim U., Wooding S., Ricci D., Jorde L. B., Drayna D. (2005). Worldwide haplotype diversity and coding sequence variation at human bitter taste receptor loci. Hum. Mutat 26 199–204. 10.1002/humu.20203 [DOI] [PubMed] [Google Scholar]
  87. Kirch W., Halabi A., Linde M., Santos S. R., Ohnhaus E. E. (1989). Negative effects of famotidine on cardiac performance assessed by noninvasive hemodynamic measurements. Gastroenterology 96 1388–1392. 10.1016/0016-5085(89)90503-9 [DOI] [PubMed] [Google Scholar]
  88. Koch W., Hoppmann P., Schomig A., Kastrati A. (2011). Variations of specific non-candidate genes and risk of myocardial infarction: a replication study. Int. J. Cardiol. 147 38–41. 10.1016/j.ijcard.2009.07.028 [DOI] [PubMed] [Google Scholar]
  89. Kong H., Jones P. P., Koop A., Zhang L., Duff H. J., Chen S. R. (2008). Caffeine induces Ca2+ release by reducing the threshold for luminal Ca2+ activation of the ryanodine receptor. Biochem. J. 414 441–452. 10.1042/BJ20080489 [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Kuhn C., Bufe B., Batram C., Meyerhof W. (2010). Oligomerization of TAS2R bitter taste receptors. Chem. Senses 35 395–406. 10.1093/chemse/bjq027 [DOI] [PubMed] [Google Scholar]
  91. Labarinas S., Meulmester K., Greene S., Thomas J., Virk M., Erkonen G. (2018). Extracorporeal cardiopulmonary resuscitation after diphenhydramine ingestion. J. Med. Toxicol. 14 253–256. 10.1007/s13181-018-0672-6 [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Lagerstrom M. C., Schioth H. B. (2008). Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat. Rev. Drug Discov. 7 339–357. 10.1038/nrd2518 [DOI] [PubMed] [Google Scholar]
  93. Lau G. (1995). A fatal case of drug-induced multi-organ damage in a patient with Hansen’s disease: dapsone syndrome or rifampicin toxicity? Forensic. Sci. Int. 73 109–115. 10.1016/0379-0738(95)01719-y [DOI] [PubMed] [Google Scholar]
  94. Lee K. W., Kayser S. R., Hongo R. H., Tseng Z. H., Scheinman M. M. (2004). Famotidine and long QT syndrome. Am. J. Cardiol. 93 1325–1327. 10.1016/j.amjcard.2004.02.025 [DOI] [PubMed] [Google Scholar]
  95. Lee R. J., Chen B., Redding K. M., Margolskee R. F., Cohen N. A. (2014). Mouse nasal epithelial innate immune responses to Pseudomonas aeruginosa quorum-sensing molecules require taste signaling components. Innate Immun. 20 606–617. 10.1177/1753425913503386 [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Lee R. J., Xiong G., Kofonow J. M., Chen B., Lysenko A., Jiang P., et al. (2012). T2R38 taste receptor polymorphisms underlie susceptibility to upper respiratory infection. J. Clin. Invest. 122 4145–4159. 10.1172/JCI64240 [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. Lee T. M., Li R. C., Chai C. Y. (1974). Effects of diphenylhydantoin on cardiac arrhythmias induced by picrotoxin. Chin. J. Physiol. 21, 219–229. [PubMed] [Google Scholar]
  98. Lee T. M., Yang K. L., Kuo J. S., Chai C. Y. (1972). Importance of sympathetic mechanism on cardiac arrhythmias induced by picrotoxin. Exp. Neurol. 36, 389–398. [DOI] [PubMed] [Google Scholar]
  99. Lei Y., Zheng M. H., Huang W., Zhang J., Lu Y. (2018). Wet beriberi with multiple organ failure remarkably reversed by thiamine administration: a case report and literature review. Medicine 97:e0010 10.1097/MD.0000000000010010 [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Lin C. J., Chen Y. T., Kuo J. S., Lee A. Y. (1992). Antiarrhythmic action of naloxone. Suppression of picrotoxin-induced cardiac arrhythmias in the rat. Jpn. Heart. J. 33 365–372. 10.1536/ihj.33.365 [DOI] [PubMed] [Google Scholar]
  101. Liszt K. I., Ley J. P., Lieder B., Behrens M., Stöger V., Reiner A., et al. (2017). Caffeine induces gastric acid secretion via bitter taste signaling in gastric parietal cells. Proc. Natl. Acad. Sci. U.S.A. 114:E6260 10.1073/pnas.1703728114 [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. Liu A. M., Ho M. K., Wong C. S., Chan J. H., Pau A. H., Wong Y. H. (2003). Galpha(16/z) chimeras efficiently link a wide range of G protein-coupled receptors to calcium mobilization. J. Biomol. Screen 8 39–49. 10.1177/1087057102239665 [DOI] [PubMed] [Google Scholar]
  103. Liu M., Qian W., Subramaniyam S., Liu S., Xin W. (2020). Denatonium enhanced the tone of denuded rat aorta via bitter taste receptor and phosphodiesterase activation. Eur. J. Pharmacol. 872:172951 10.1016/j.ejphar.2020.172951 [DOI] [PubMed] [Google Scholar]
  104. Loconto J., Papes F., Chang E., Stowers L., Jones E. P., Takada T., et al. (2003). Functional expression of murine V2R pheromone receptors involves selective association with the M10 and M1 families of MHC Class Ib Molecules. Cell 112 607–618. 10.1016/s0092-8674(03)00153-3 [DOI] [PubMed] [Google Scholar]
  105. Loke W. M., Hodgson J. M., Proudfoot J. M., Mckinley A. J., Puddey I. B., Croft K. D. (2008). Pure dietary flavonoids quercetin and (-)-epicatechin augment nitric oxide products and reduce endothelin-1 acutely in healthy men. Am. J. Clin. Nutr. 88 1018–1025. 10.1093/ajcn/88.4.1018 [DOI] [PubMed] [Google Scholar]
  106. Lossow K., Hubner S., Roudnitzky N., Slack J. P., Pollastro F., Behrens M., et al. (2016). Comprehensive analysis of mouse bitter taste receptors reveals different molecular receptive ranges for orthologous receptors in mice and humans. J. Biol. Chem. 291 15358–15377. 10.1074/jbc.M116.718544 [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Lu P., Zhang C.-H., Lifshitz L. M., Zhuge R. (2017). Extraoral bitter taste receptors in health and disease. 149 181–119. 10.1085/jgp.201611637 [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. Lu Z. K., Yuan J., Li M., Sutton S. S., Rao G. A., Jacob S., et al. (2015). Cardiac risks associated with antibiotics: azithromycin and levofloxacin. Expert. Opin. Drug. Saf. 14 295–303. 10.1517/14740338.2015.989210 [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Lund T. C., Kobs A. J., Kramer A., Nyquist M., Kuroki M. T., Osborn J., et al. (2013). Bone marrow stromal and vascular smooth muscle cells have chemosensory capacity via bitter taste receptor expression. PLoS One 8:e58945 10.1371/journal.pone.0058945 [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Luzza F., Raffa S., Saporito F., Oreto G. (2006). Torsades de pointes in congenital long QT syndrome following low-dose orphenadrine. Int. J. Clin. Pract. 60 606–608. 10.1111/j.1368-5031.2006.00764.x [DOI] [PubMed] [Google Scholar]
  111. Macleod J. G., Phillips L. (1947). Hypersensitivity to colchicine. Ann. Rheum. Dis. 6 224–229. [PMC free article] [PubMed] [Google Scholar]
  112. Malizia E., Sarcinelli L., Pascarella M., Ambrosini M., Smeriglio M., Russo A. (1980). Cardiotoxicity from orphenadrine intoxication in humans. Arch. Toxicol. Suppl. 4 425–427. 10.1007/978-3-642-67729-8_98 [DOI] [PubMed] [Google Scholar]
  113. Mannaerts D., Faes E., Goovaerts I., Stoop T., Cornette J., Gyselaers W., et al. (2017). Flow-mediated dilation and peripheral arterial tonometry are disturbed in preeclampsia and reflect different aspects of endothelial function. Am. J. Physiol. Regul. Integr. Comp. Physiol. 313 R518–R525. 10.1152/ajpregu.00514.2016 [DOI] [PubMed] [Google Scholar]
  114. Manson M. L., Säfholm J., Al-Ameri M., Bergman P., Orre A.-C., Swärd K., et al. (2014). Bitter taste receptor agonists mediate relaxation of human and rodent vascular smooth muscle. Eur. J. Pharmacol. 740 302–311. 10.1016/j.ejphar.2014.07.005 [DOI] [PubMed] [Google Scholar]
  115. Martin L. T. P., Nachtigal M. W., Selman T., Nguyen E., Salsman J., Dellaire G., et al. (2018). Bitter taste receptors are expressed in human epithelial ovarian and prostate cancers cells and noscapine stimulation impacts cell survival. Mol. Cell. Biochem. 454 203–214. 10.1007/s11010-018-3464-z [DOI] [PubMed] [Google Scholar]
  116. Martin-Fernandez B., De Las Heras N., Valero-Munoz M., Ballesteros S., Yao Y. Z., Stanton P. G., et al. (2014). Beneficial effects of proanthocyanidins in the cardiac alterations induced by aldosterone in rat heart through mineralocorticoid receptor blockade. PLoS One 9:e111104 10.1371/journal.pone.0111104 [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. McClintock T. S., Landers T. M., Gimelbrant A. A., Fuller L. Z., Jackson B. A., Jayawickreme C. K., et al. (1997). Functional expression of olfactory-adrenergic receptor chimeras and intracellular retention of heterologously expressed olfactory receptors. Brain Res. Mol. Brain Res. 48 270–278. 10.1016/s0169-328x(97)00099-5 [DOI] [PubMed] [Google Scholar]
  118. Meyerhof W. (2005). Elucidation of mammalian bitter taste. Rev. Physiol. Biochem. Pharmacol. 154 37–72. [DOI] [PubMed] [Google Scholar]
  119. Meyerhof W., Batram C., Kuhn C., Brockhoff A., Chudoba E., Bufe B., et al. (2010). The molecular receptive ranges of human TAS2R bitter taste receptors. Chem. Sen. 35 157–170. [DOI] [PubMed] [Google Scholar]
  120. Meyer-Massetti C., Cheng C. M., Sharpe B. A., Meier C. R., Guglielmo B. J. (2010). The FDA extended warning for intravenous haloperidol and torsades de pointes: how should institutions respond? J. Hosp. Med,. 5 E8–E16. [DOI] [PubMed] [Google Scholar]
  121. Mfuna Endam L., Filali-Mouhim A., Boisvert P., Boulet L.-P., Bossé Y., Desrosiers M. (2014). Genetic variations in taste receptors are associated with chronic rhinosinusitis: a replication study. Int. Forum Allergy Rhinol. 4 200–206. [DOI] [PubMed] [Google Scholar]
  122. Mikolajczyk T. P., Nosalski R., Skiba D. S., Koziol J., Mazur M., Justo-Junior A. S., et al. (2019). 1,2,3,4,6-Penta-O-galloyl-beta-d-glucose modulates perivascular inflammation and prevents vascular dysfunction in angiotensin II-induced hypertension. Br. J. Pharmacol. 176 1951–1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  123. Mina Y., Rinkevich-Shop S., Konen E., Goitein O., Kushnir T., Epstein F. H., et al. (2013). Mast cell inhibition attenuates myocardial damage, adverse remodeling, and dysfunction during fulminant myocarditis in the rat. J. Cardiovasc. Pharmacol. Ther. 18 152–161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  124. Miyamori I., Sakai T., Ito T., Sugihara N., Ikeda M., Takeda Y., et al. (1985). Reversible hyperkalemia induced by flufenamic acid in asymptomatic hyporeninemic patient. Jpn. J. Med. 24 269–272. [DOI] [PubMed] [Google Scholar]
  125. Morales M. A., Silva A., Brito G., Bustamante S., Ponce H., Paeile C. (1995). Vasorelaxant effect of the analgesic clonixin on rat aorta. Gen. Pharmacol. 26 425–430. [DOI] [PubMed] [Google Scholar]
  126. Morales-Soto N., Dunham S. J. B., Baig N. F., Ellis J. F., Madukoma C. S., Bohn P. W., et al. (2018). Spatially dependent alkyl quinolone signaling responses to antibiotics in Pseudomonas aeruginosa swarms. J. Biol. Chem. 293, 9544—9552. 10.1074/jbc.RA118.002605 [DOI] [PMC free article] [PubMed] [Google Scholar]
  127. Moreira I. S. (2014). Structural features of the G-protein/GPCR interactions. Biochim. Biophys. Acta Gen. Subj. 1840 16–33. [DOI] [PubMed] [Google Scholar]
  128. Mueller K. L., Hoon M. A., Erlenbach I., Chandrashekar J., Zuker C. S., Ryba N. J. (2005). The receptors and coding logic for bitter taste. Nature 434 225–229. [DOI] [PubMed] [Google Scholar]
  129. Mukerji V., Alpert M. A., Flaker G. C., Beach C. L., Weber R. D. (1986). Cardiac conduction abnormalities and atrial arrhythmias associated with salicylate toxicity. Pharmacotherapy 6 41–43. [DOI] [PubMed] [Google Scholar]
  130. Nakanishi M., Ando H., Watanabe N., Kitamura K., Ito K., Okayama H., et al. (2000). Identification and characterization of human Wee1B, a new member of the Wee1 family of Cdk-inhibitory kinases. Genes Cells 5 839–847. [DOI] [PubMed] [Google Scholar]
  131. Nia A. M., Fuhr U., Gassanov N., Erdmann E., Er F. (2010). Torsades de pointes tachycardia induced by common cold compound medication containing chlorpheniramine. Eur. J. Clin. Pharmacol. 66 1173–1175. [DOI] [PubMed] [Google Scholar]
  132. Nishino T., Wakai S., Aoki H., Inokuchi S. (2018). Cardiac arrest caused by diphenhydramine overdose. Acute Med. Surg. 5 380–383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  133. Nowak S., Di Pizio A., Levit A., Niv M. Y., Meyerhof W., Behrens M. (2018). Reengineering the ligand sensitivity of the broadly tuned human bitter taste receptor TAS2R14. Biochim. Biophys. Acta Gen. Subj. 1862 2162–2173. [DOI] [PubMed] [Google Scholar]
  134. Nugraha B., Buono M. F., Von Boehmer L., Hoerstrup S. P., Emmert M. Y. (2019). Human cardiac organoids for disease modeling. Clin. Pharmacol. Ther. 105 79–85. [DOI] [PubMed] [Google Scholar]
  135. Okeahialam B. N. (2015). Cardiac dysrhythmia resulting from antibiotic abuse. Niger. Med. J. 56 429–432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  136. Orsmark-Pietras C., James A., Konradsen J. R., Nordlund B., Soderhall C., Pulkkinen V., et al. (2013). Transcriptome analysis reveals upregulation of bitter taste receptors in severe asthmatics. Eur. Respir. J. 42 65–78. [DOI] [PubMed] [Google Scholar]
  137. Ortiz M., Martin A., Arribas F., Coll-Vinent B., Del Arco C., Peinado R., et al. (2017). Randomized comparison of intravenous procainamide vs. intravenous amiodarone for the acute treatment of tolerated wide QRS tachycardia: the PROCAMIO study. Eur. Heart J. 38 1329–1335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  138. Osadchii O. E. (2018). Effects of antiarrhythmics and hypokalemia on the rate adaptation of cardiac repolarization. Scand. Cardiovasc. J. 52 218–226. [DOI] [PubMed] [Google Scholar]
  139. Ozeck M., Brust P., Xu H., Servant G. (2004). Receptors for bitter, sweet and umami taste couple to inhibitory G protein signaling pathways. Eur. J. Pharmacol. 489 139–149. [DOI] [PubMed] [Google Scholar]
  140. Papageorgiou N., Briasoulis A., Lazaros G., Imazio M., Tousoulis D. (2017). Colchicine for prevention and treatment of cardiac diseases: a meta-analysis. Cardiovasc. Ther. 35 10–18. [DOI] [PubMed] [Google Scholar]
  141. Pedretti R. F., Colombo E., Sarzi Braga S., Ballardini L., Caru B. (1995). Effects of oral pirenzepine on heart rate variability and baroreceptor reflex sensitivity after acute myocardial infarction. J. Am. Coll Cardiol. 25 915–921. [DOI] [PubMed] [Google Scholar]
  142. Perera R. K., Fischer T. H., Wagner M., Dewenter M., Vettel C., Bork N. I., et al. (2017). Atropine augments cardiac contractility by inhibiting cAMP-specific phosphodiesterase type 4. Sci. Rep. 7:15222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  143. Perkins A., Marill K. (2012). Accelerated AV nodal conduction with use of procainamide in atrial fibrillation. J. Emerg. Med. 42 e47–e50. [DOI] [PubMed] [Google Scholar]
  144. Pinto-Scognamiglio W. (1968). Effects of thujone on spontaneous activity and on conditioned behavior of rats. Boll. Chim. Farm. 107 780–791. [PubMed] [Google Scholar]
  145. Pluznick J. L., Protzko R. J., Gevorgyan H., Peterlin Z., Sipos A., Han J., et al. (2013). Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc. Natl.Acad. Sci. 110:4410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  146. Ponraj L., Mishra A. K., Koshy M., Carey R. A. B. (2017). A rare case report of Strychnos nux-vomica poisoning with bradycardia. J. Fam. Med. Prim. Care 6 663–665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  147. Postma D. F., Spitoni C., Van Werkhoven C. H., Van Elden L. J. R., Oosterheert J. J., Bonten M. J. M. (2019). Cardiac events after macrolides or fluoroquinolones in patients hospitalized for community-acquired pneumonia: post-hoc analysis of a cluster-randomized trial. BMC Infect. Dis. 19:17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  148. Rainer P. P., Primessnig U., Harenkamp S., Doleschal B., Wallner M., Fauler G., et al. (2013). Bile acids induce arrhythmias in human atrial myocardium–implications for altered serum bile acid composition in patients with atrial fibrillation. Heart 99 1685–1692. [DOI] [PubMed] [Google Scholar]
  149. Reed D. R., Zhu G., Breslin P. A. S., Duke F. F., Henders A. K., Campbell M. J., et al. (2010). The perception of quinine taste intensity is associated with common genetic variants in a bitter receptor cluster on chromosome 12. Hum. Mol. Genet. 19 4278–4285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  150. Reichling C., Meyerhof W., Behrens M. (2008). Functions of human bitter taste receptors depend on N-glycosylation. J. Neurochem. 106 1138–1148. [DOI] [PubMed] [Google Scholar]
  151. Risso D., Morini G., Pagani L., Quagliariello A., Giuliani C., De Fanti S., et al. (2014). Genetic signature of differential sensitivity to stevioside in the Italian population. Genes Nutr. 9:401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  152. Risso D. S., Giuliani C., Antinucci M., Morini G., Garagnani P., Tofanelli S., et al. (2017). A bio-cultural approach to the study of food choice: the contribution of taste genetics, population and culture. Appetite 114 240–247. [DOI] [PubMed] [Google Scholar]
  153. Rohatgi G., Rissmiller D. J., Gorman J. M. (2005). Treatment of carisoprodol dependence: a case report. J. Psychiatr. Pract. 11 347–352. [DOI] [PubMed] [Google Scholar]
  154. Roudnitzky N., Risso D., Drayna D., Behrens M., Meyerhof W., Wooding S. P. (2016). Copy number variation in TAS2R bitter taste receptor genes: structure. origin, and population genetics. Chem. Sen. 41 649–659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  155. Rozengurt N., Wu S. V., Chen M. C., Huang C., Sternini C., Rozengurt E. (2006). Colocalization of the alpha-subunit of gustducin with PYY and GLP-1 in L cells of human colon. Am. J. Physiol. Gastrointest Liver Physiol. 291 G792–G802. [DOI] [PubMed] [Google Scholar]
  156. Ruiz-Avila L., Wong G. T., Damak S., Margolskee R. F. (2001). Dominant loss of responsiveness to sweet and bitter compounds caused by a single mutation in α-gustducin. Proc. Natl. Acad. Sci. U.S.A. 98:8868. [DOI] [PMC free article] [PubMed] [Google Scholar]
  157. Russo V., Puzio G., Siniscalchi N. (2006). Azithromycin-induced QT prolongation in elderly patient. Acta Biomed. 77 30–32. [PubMed] [Google Scholar]
  158. Salem J. E., Alexandre J., Bachelot A., Funck-Brentano C. (2016). Influence of steroid hormones on ventricular repolarization. Pharmacol. Ther. 167 38–47. [DOI] [PubMed] [Google Scholar]
  159. Santone D. J., Shahani R., Rubin B. B., Romaschin A. D., Lindsay T. F. (2008). Mast cell stabilization improves cardiac contractile function following hemorrhagic shock and resuscitation. Am. J. Physiol. Heart Circ. Physiol. 294 H2456–H2464. [DOI] [PubMed] [Google Scholar]
  160. Schoenwald P. K., Sprung J., Abdelmalak B., Mraovic B., Tetzlaff J. E., Gurm H. S. (1999). Complete atrioventricular block and cardiac arrest following intravenous famotidine administration. Anesthesiology 90 623–626. [DOI] [PubMed] [Google Scholar]
  161. Schroeter H., Heiss C., Balzer J., Kleinbongard P., Keen C. L., Hollenberg N. K., et al. (2006). (-)-Epicatechin mediates beneficial effects of flavanol-rich cocoa on vascular function in humans. Proc. Natl. Acad. Sci. US.A. 103 1024–1029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  162. Serban M. C., Sahebkar A., Zanchetti A., Mikhailidis D. P., Howard G., Antal D., et al. (2016). Effects of quercetin on blood pressure: a systematic review and meta-analysis of randomized controlled trials. J. Am. Heart Assoc. 5:e002713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  163. Shah A. S., Ben-Shahar Y., Moninger T. O., Kline J. N., Welsh M. J. (2009). Motile cilia of human airway epithelia are chemosensory. Science 325 1131–1134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  164. Shaw L., Mansfield C., Colquitt L., Lin C., Ferreira J., Emmetsberger J., et al. (2018). Personalized expression of bitter ‘taste’ receptors in human skin. PLoS One 13:e0205322 10.1371/journal.pone.0205322 [DOI] [PMC free article] [PubMed] [Google Scholar]
  165. Shiffman D., Ellis S. G., Rowland C. M., Malloy M. J., Luke M. M., Iakoubova O. A., et al. (2005). Identification of four gene variants associated with myocardial infarction. Am. J. Hum. Genet. 77 596–605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  166. Shiffman D., O’meara E. S., Bare L. A., Rowland C. M., Louie J. Z., Arellano A. R., et al. (2008). Association of gene variants with incident myocardial infarction in the Cardiovascular Health Study. Arterioscler. Thromb. Vasc. Biol. 28 173–179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  167. Shimamura M., Hazato T., Ashino H., Yamamoto Y., Iwasaki E., Tobe H., et al. (2001). Inhibition of angiogenesis by humulone, a bitter acid from beer hop. Biochem. Biophys. Res. Commun. 289 220–224. [DOI] [PubMed] [Google Scholar]
  168. Singer M., Deutschman C. S., Seymour C. W., Shankar-Hari M., Annane D., Bauer M., et al. (2016). The third international consensus definitions for sepsis and septic shock (Sepsis-3). Jama 315 801–810. [DOI] [PMC free article] [PubMed] [Google Scholar]
  169. Singh N., Chakraborty R., Bhullar R. P., Chelikani P. (2014). Differential expression of bitter taste receptors in non-cancerous breast epithelial and breast cancer cells. Biochem. Biophys. Res. Commun. 446 499–503. [DOI] [PubMed] [Google Scholar]
  170. Soong P. L., Tiburcy M., Zimmermann W. H. (2012). Cardiac differentiation of human embryonic stem cells and their assembly into engineered heart muscle. Curr. Protoc. Cell Biol. Chapter 23:Unit23.28. [DOI] [PubMed] [Google Scholar]
  171. Soranzo N., Bufe B., Sabeti P. C., Wilson J. F., Weale M. E., Marguerie R., et al. (2005). Positive selection on a high-sensitivity allele of the human bitter-taste receptor TAS2R16. Curr. Biol. 15 1257–1265. [DOI] [PubMed] [Google Scholar]
  172. Stas P., Faes D., Noyens P. (2008). Conduction disorder and QT prolongation secondary to long-term treatment with chloroquine. Int. J. Cardiol. 127 e80–e82. [DOI] [PubMed] [Google Scholar]
  173. Stern L., Giese N., Hackert T., Strobel O., Schirmacher P., Felix K., et al. (2018). Overcoming chemoresistance in pancreatic cancer cells: role of the bitter taste receptor T2R10. J. Cancer 9 711–725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  174. Suarez C. R., Ow E. P. (1992). Chloramphenicol toxicity associated with severe cardiac dysfunction. Pediatr. Cardiol. 13 48–51. [DOI] [PubMed] [Google Scholar]
  175. Sutherland J. M. (1959). Fatal cardiovascular collapse of infants receiving large amounts of chloramphenicol. JAMA Pediatr. 97 761–767. [DOI] [PubMed] [Google Scholar]
  176. Teloh J. K., Dohle D. S., Petersen M., Verhaegh R., Waack I. N., Roehrborn F., et al. (2016). Histidine and other amino acids in blood and urine after administration of Bretschneider solution (HTK) for cardioplegic arrest in patients: effects on N-metabolism. Amino Acids 48 1423–1432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  177. Tepper B. J., Koelliker Y., Zhao L., Ullrich N. V., Lanzara C., D’adamo P., et al. (2008). Variation in the bitter-taste receptor gene TAS2R38, and adiposity in a genetically isolated population in Southern Italy. Obesity 16 2289–2295. [DOI] [PubMed] [Google Scholar]
  178. Thompson P. L. (2019). Colchicine in cardiovascular disease: repurposing an ancient gout drug. Clin. Ther. 41 8–10. [DOI] [PubMed] [Google Scholar]
  179. Tirziu D., Giordano F. J., Simons M. (2010). Cell communications in the heart. Circulation 122 928–937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  180. Tonnesmann E., Kandolf R., Lewalter T. (2013). Chloroquine cardiomyopathy - a review of the literature. Immunopharmacol. Immunotoxicol. 35 434–442. [DOI] [PubMed] [Google Scholar]
  181. Tran H. T. T., Herz C., Ruf P., Stetter R., Lamy E. (2018). Human t2r38 bitter taste receptor expression in resting and activated lymphocytes. Front. Immunol. 9:2949 10.3389/fimmu.2018.02949 [DOI] [PMC free article] [PubMed] [Google Scholar]
  182. Trifiro G., De Ridder M., Sultana J., Oteri A., Rijnbeek P., Pecchioli S., et al. (2017). Use of azithromycin and risk of ventricular arrhythmia. Cmaj 189 E560–E568. [DOI] [PMC free article] [PubMed] [Google Scholar]
  183. Tsygankova V. O., Lozhkina G. N., Khasanova H. M., Kuimov D. A., Ragino I. Y., Maksimov N. V., et al. (2017). Multifactorial prognostication of remote outcomes in patients with Non-ST Elevation acute coronary syndrome. Kardiologiia 57 28–33. [DOI] [PubMed] [Google Scholar]
  184. Ueda T., Ugawa S., Yamamura H., Imaizumi Y., Shimada S. (2003). Functional interaction between T2R taste receptors and G-protein alpha subunits expressed in taste receptor cells. J. Neurosci. 23 7376–7380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  185. Uhlen M., Fagerberg L., Hallstrom B. M., Lindskog C., Oksvold P., Mardinoglu A., et al. (2015). Proteomics. Tissue-based map of the human proteome. Science 347:1260419. [DOI] [PubMed] [Google Scholar]
  186. Upadhyaya J., Singh N., Bhullar R. P., Chelikani P. (2015). The structure–function role of C-terminus in human bitter taste receptor T2R4 signaling. Biochim. Biophys. Acta Biomembr. 1848 1502–1508. [DOI] [PubMed] [Google Scholar]
  187. Upadhyaya J. D., Singh N., Sikarwar A. S., Chakraborty R., Pydi S. P., Bhullar R. P., et al. (2014). Dextromethorphan mediated bitter taste receptor activation in the pulmonary circuit causes vasoconstriction. PLoS One 9:e110373 10.1371/journal.pone.0110373 [DOI] [PMC free article] [PubMed] [Google Scholar]
  188. Vanherweghem J. L. (1997). Association of valvular heart disease with Chinese-herb nephropathy. Lancet 350:1858. [DOI] [PubMed] [Google Scholar]
  189. Verbeurgt C., Veithen A., Carlot S., Tarabichi M., Dumont J. E., Hassid S., et al. (2017). The human bitter taste receptor T2R38 is broadly tuned for bacterial compounds. PLoS One 12:e0181302 10.1371/journal.pone.0181302 [DOI] [PMC free article] [PubMed] [Google Scholar]
  190. Vesely P., Stracina T., Hlavacova M., Halamek J., Kolarova J., Olejnickova V., et al. (2019). Haloperidol affects coupling between QT and RR intervals in guinea pig isolated heart. J. Pharmacol. Sci. 139 23–28. [DOI] [PubMed] [Google Scholar]
  191. Vo K. T., Horng H., Smollin C. G., Benowitz N. L. (2017). Severe carisoprodol withdrawal After a 14-year addiction and acute overdose. J. Emerg. Med. 52 680–683. [DOI] [PubMed] [Google Scholar]
  192. Vukajlovic D. D., Guettler N., Miric M., Pitschner H. F. (2006). Effects of atropine and pirenzepine on heart rate turbulence. Ann. Noninvasive Electrocardiol. 11 34–37. [DOI] [PMC free article] [PubMed] [Google Scholar]
  193. Wang J., Gareri C., Rockman Howard A. (2018). G-protein–coupled receptors in heart disease. Circ. Res. 123 716–735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  194. Wang Y., Yu X., Wang F., Wang Y., Wang Y., Li H., et al. (2013). Yohimbine promotes cardiac NE release and prevents LPS-induced cardiac dysfunction via blockade of presynaptic alpha2A-adrenergic receptor. PLoS One 8:e63622 10.1371/journal.pone.0063622 [DOI] [PMC free article] [PubMed] [Google Scholar]
  195. Wasserman A. J., Horgan J. H., Ul-Hassan Z., Proctor J. D. (1975). Diphenidol treatment of arrhythmias. Chest 67 422–424. [DOI] [PubMed] [Google Scholar]
  196. Weaver L. C., Alexander W. M., Abreu B. E., Richards A. B., Jones W. R., Begley R. W. (1958). The mechanism of the hypotensive action of narcotine hydrochloride. J. Pharmacol. Exp. Ther. 123 287–295. [PubMed] [Google Scholar]
  197. Wolfle U., Elsholz F. A., Kersten A., Haarhaus B., Schumacher U., Schempp C. M. (2016). Expression and functional activity of the human bitter taste receptor TAS2R38 in human placental tissues and JEG-3 Cells. Molecules 21:306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  198. Wolfle U., Haarhaus B., Kersten A., Fiebich B., Hug M. J., Schempp C. M. (2015). Salicin from willow bark can modulate neurite outgrowth in human neuroblastoma SH-SY5Y cells. Phytother. Res. 29, 1494–1500. 10.1002/ptr.5400 [DOI] [PubMed] [Google Scholar]
  199. Wood D., Webster E., Martinez D., Dargan P., Jones A. (2002). Case report: survival after deliberate strychnine self-poisoning, with toxicokinetic data. Crit. Care 6 456–459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  200. Wooding S. P., Atanasova S., Gunn H. C., Staneva R., Dimova I., Toncheva D. (2012). Association of a bitter taste receptor mutation with Balkan Endemic Nephropathy (BEN). BMC Med. Genet.ics 13:96. [DOI] [PMC free article] [PubMed] [Google Scholar]
  201. Wu T. C., Chao C. Y., Lin S. J., Chen J. W. (2012). Low-dose dextromethorphan, a NADPH oxidase inhibitor, reduces blood pressure and enhances vascular protection in experimental hypertension. PLoS One 7:e46067 10.1371/journal.pone.0046067 [DOI] [PMC free article] [PubMed] [Google Scholar]
  202. Yan W., Sunavala G., Rosenzweig S., Dasso M., Brand J. G., Spielman A. I. (2001). Bitter taste transduced by PLC-beta(2)-dependent rise in IP(3) and alpha-gustducin-dependent fall in cyclic nucleotides. Am. J. Physiol. Cell Physiol. 280 C742–C751. [DOI] [PubMed] [Google Scholar]
  203. Yan Y., Hu Y., North K. E., Franceschini N., Lin D. (2009). Evaluation of population impact of candidate polymorphisms for coronary heart disease in the Framingham Heart Study Offspring Cohort. BMC Proc. 3(Suppl. 7):S118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  204. Yang C. C., Deng J. F. (1998). Clinical experience in acute overdosage of diphenidol. J. Toxicol. Clin. Toxicol. 36 33–39. [DOI] [PubMed] [Google Scholar]
  205. Yang P. C., Kurokawa J., Furukawa T., Clancy C. E. (2010). Acute effects of sex steroid hormones on susceptibility to cardiac arrhythmias: a simulation study. PLoS Comput. Biol. 6:e1000658 10.1371/journal.pcbi.1000658 [DOI] [PMC free article] [PubMed] [Google Scholar]
  206. Yu J. H., Chen D. Y., Chen H. Y., Lee K. H. (2016). Intravenous lipid-emulsion therapy in a patient with cardiac arrest after overdose of diphenhydramine. J. Formos. Med. Assoc. 115 1017–1018. [DOI] [PubMed] [Google Scholar]
  207. Yucel A., Ozyalcin S., Talu G. K., Yucel E. C., Erdine S. (1999). Intravenous administration of caffeine sodium benzoate for postdural puncture headache. Reg. Anesth. Pain Med. 24 51–54. [PubMed] [Google Scholar]
  208. Zeng M., Jiang W., Tian Y., Hao J., Cao Z., Liu Z., et al. (2017). Andrographolide inhibits arrhythmias and is cardioprotective in rabbits. Oncotarget 8 61226–61238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  209. Zhang C.-H., Lifshitz L. M., Uy K. F., Ikebe M., Fogarty K. E., Zhuge R. (2013). The cellular and molecular basis of bitter tastant-induced bronchodilation. PLoS Biol. 11:e1001501 10.1371/journal.pbio.1001501 [DOI] [PMC free article] [PubMed] [Google Scholar]
  210. Zhang L., Ma J., Li S., Xue R., Jin M., Zhou Y. (2015). Fatal diphenidol poisoning: a case report and a retrospective study of 16 cases. Forensic. Sci. Med. Pathol. 11 570–576. [DOI] [PubMed] [Google Scholar]
  211. Zhang X., Bedigian A. V., Wang W., Eggert U. S. (2012). G-protein-coupled receptors participate in cytokinesis. Cytoskeleton (Hoboken) 69, 810–818. 10.1002/cm.21055 [DOI] [PMC free article] [PubMed] [Google Scholar]
  212. Zhang Y., Hoon M. A., Chandrashekar J., Mueller K. L., Cook B., Wu D., et al. (2003). Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell 112 293–301. [DOI] [PubMed] [Google Scholar]
  213. Zheng K., Lu P., Delpapa E., Bellve K., Deng R., Condon J. C., et al. (2017). Bitter taste receptors as targets for tocolytics in preterm labor therapy. FASEB J. 31, 4037–4052. 10.1096/fj.201601323RR [DOI] [PMC free article] [PubMed] [Google Scholar]
  214. Zheng M., Simon R., Mirlacher M., Maurer R., Gasser T., Forster T., et al. (2004). TRIO amplification and abundant mRNA expression is associated with invasive tumor growth and rapid tumor cell proliferation in urinary bladder cancer. Am. J. Pathol. 165 63–69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  215. Zhou E., Parikh P. S., Kanchuger M. S., Balsam L. B. (2019). Intraoperative anaphylaxis to chlorhexidine during LVAD and transplant surgery. J. Cardiothorac. Vasc. Anesth. 33 169–172. [DOI] [PubMed] [Google Scholar]
  216. Zhu K. J., He F. T., Jin N., Lou J. X., Cheng H. (2009). Complete atrioventricular block associated with dapsone therapy: a rare complication of dapsone-induced hypersensitivity syndrome. J. Clin. Pharm. Ther. 34 489–492. [DOI] [PubMed] [Google Scholar]

Articles from Frontiers in Physiology are provided here courtesy of Frontiers Media SA

RESOURCES