Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2020 May 18;58(8):711–715. doi: 10.1007/s12275-020-0109-1

Development of a real-time loop-mediated isothermal amplification method for the detection of severe fever with thrombocytopenia syndrome virus

Jae Woong Lee 1, Yu-Jung Won 1, Lae Hyung Kang 1, Sung-Geun Lee 2, Seung-Won Park 3, Soon-Young Paik 1,
PMCID: PMC7232587  PMID: 32424580

Abstract

Severe fever with thrombocytopenia syndrome (SFTS) is being reported annually in South Korea since its first detection there in 2010. The causal agent is a negative-strand RNA virus 80–100 nm in diameter. It causes fever, thrombocytopenia, leukocytopenia, gastrointestinal symptoms, and neural symptoms. The mortality rate of SFTS was 32.6% among 172 cases reported from 2012 to 2015 in South Korea. Thus, is necessary to develop an effective diagnostic method that selectively identifies the isolates circulating in South Korea. The real-time reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay is a simple, rapid, and sensitive approach for molecular diagnosis. Here, we designed novel primers for this assay and found that the technique had very high specificity, sensitivity, and efficiency. This real-time RT-LAMP approach using the novel primers developed herein can be applied for early diagnosis of SFTSV strains in South Korea to reduce the mortality rate of SFTS.

Keywords: severe fever with thrombocytopenia syndrome (STFS), reverse transcription loop-mediated isothermal amplification (LAMP), molecular diagnostics, virus detection

Acknowledgments

The present study was supported by a grant from the Next-Generation BioGreen21 Program (grant no. PJ011835), Rural Development Administration, Republic of Korea.

Conflict of Interest

The authors declare no conflict of interest.

References

  1. Baek YH, Cheon HS, Park SJ, Lloren KKS, Ahn SJ, Jeong JH, Choi WS, Yu MA, Kwon HI, Kwon JJ, et al. Simple, rapid and sensitive portable molecular diagnosis of sfts virus using reverse transcriptional loop-mediated isothermal amplification (RT-LAMP) J. Microbiol. Biotechnol. 2018;28:1928–1936. doi: 10.4014/jmb.1806.06016. [DOI] [PubMed] [Google Scholar]
  2. Choi SJ, Park SW, Bae IG, Kim SH, Ryu SY, Kim HA, Jang HC, Hur J, Jun JB, Jung Y, et al. Severe fever with thrombocytopenia syndrome in South Korea, 2013–2015. PLoS Negl. Trop. Dis. 2016;10:e0005264. doi: 10.1371/journal.pntd.0005264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cui L, Ge Y, Qi X, Xu G, Li H, Zhao K, Wu B, Shi Z, Guo X, Hu L, et al. Detection of severe fever with thrombocytopenia syndrome virus by reverse transcription-cross-priming amplification coupled with vertical flow visualization. J. Clin. Microbiol. 2012;50:3881–3885. doi: 10.1128/JCM.01931-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Deng MH, Zhong LY, Kamolnetr O, Limpanont Y, Lv ZY. Detection of helminths by loop-mediated isothermal amplification assay: a review of updated technology and future outlook. Infect. Dis. Poverty. 2019;8:20. doi: 10.1186/s40249-019-0530-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Devonshire AS, Elaswarapu R, Foy CA. Applicability of RNA standards for evaluating RT-qPCR assays and platforms. BMC Genomics. 2011;12:118. doi: 10.1186/1471-2164-12-118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fukuta S, Iida T, Mizukami Y, Ishida A, Ueda J, Kanbe M, Ishimoto Y. Detection of Japanese yam mosaic virus by RT-LAMP. Arch. Virol. 2003;148:1713–1720. doi: 10.1007/s00705-003-0134-5. [DOI] [PubMed] [Google Scholar]
  7. Gai Z, Liang M, Zhang Y, Zhang S, Jin C, Wang SW, Sun L, Zhou N, Zhang Q, Sun Y, et al. Person-to-person transmission of severe fever with thrombocytopenia syndrome bunyavirus through blood contact. Clin. Infect. Dis. 2012;54:249–252. doi: 10.1093/cid/cir776. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Guo CT, Lu QB, Ding SJ, Hu CY, Hu JG, Wo Y, Fan YD, Wang XJ, Qin SL, Cui N, et al. Epidemiological and clinical characteristics of severe fever with thrombocytopenia syndrome (SFTS) in China: an integrated data analysis. Epidemiol. Infect. 2016;144:1345–1354. doi: 10.1017/S0950268815002678. [DOI] [PubMed] [Google Scholar]
  9. Huang XY, Hu XN, Ma H, Du YH, Ma HX, Kang K, You AG, Wang HF, Zhang L, Chen HM, et al. Detection of new bunyavirus RNA by reverse transcription-loop-mediated isothermal amplification. J. Clin. Microbiol. 2014;52:531–535. doi: 10.1128/JCM.01813-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jiang T, Liu J, Deng YQ, Xu LJ, Li XF, Han JF, Cao RY, Qin ED, Qin CF. Development and evaluation of a reverse transcription-loop-mediated isothermal amplification assay for rapid detection of enterovirus 71. J. Clin. Microbiol. 2011;49:870–874. doi: 10.1128/JCM.02045-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jiao L, Ouyang S, Liang M, Niu F, Shaw N, Wu W, Ding W, Jin C, Peng Y, Zhu Y, et al. Structure of severe fever with thrombocytopenia syndrome virus nucleocapsid protein in complex with suramin reveals therapeutic potential. J. Virol. 2013;87:6829–6839. doi: 10.1128/JVI.00672-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jiao Y, Zeng X, Guo X, Qi X, Zhang X, Shi Z, Zhou M, Bao C, Zhang W, Xu Y, et al. Preparation and evaluation of recombinant severe fever with thrombocytopenia syndrome virus nucleocapsid protein for detection of total antibodies in human and animal sera by double-antigen sandwich enzyme-linked immunosorbent assay. J. Clin. Microbiol. 2012;50:372–377. doi: 10.1128/JCM.01319-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kim YR, Yun Y, Bae SG, Park D, Kim S, Lee JM, Cho NH, Kim YS, Lee KH. Severe fever with thrombocytopenia syndrome virus infection, South Korea, 2010. Emerg. Infect. Dis. 2018;24:2103–2105. doi: 10.3201/eid2411.170756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kurosaki Y, Takada A, Ebihara H, Grolla A, Kamo N, Feldmann H, Kawaoka Y, Yasuda J. Rapid and simple detection of Ebola virus by reverse transcription-loop-mediated isothermal amplification. J. Virol. Methods. 2007;141:7883. doi: 10.1016/j.jviromet.2006.11.031. [DOI] [PubMed] [Google Scholar]
  15. Lee SG, Lee SH, Park SW, Suh CI, Jheong WH, Oh S, Paik SY. Standardized positive controls for detection of norovirus by reverse transcription PCR. Virol. J. 2011;8:260. doi: 10.1186/1743-422X-8-260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Li DX. Fever with thrombocytopenia associated with a novel bunyavirus in China. Chin. J. Exp. Clin. Virol. 2011;25:81–84. [PubMed] [Google Scholar]
  17. Li DX. Severe fever with thrombocytopenia syndrome: a newly discovered emerging infectious disease. Clin. Microbiol. Infect. 2015;21:614–620. doi: 10.1016/j.cmi.2015.03.001. [DOI] [PubMed] [Google Scholar]
  18. Liu Q, He B, Huang SY, Wei F, Zhu XQ. Severe fever with thrombocytopenia syndrome, an emerging tick-borne zoonosis. Lancet Infect. Dis. 2014;14:763–772. doi: 10.1016/S1473-3099(14)70718-2. [DOI] [PubMed] [Google Scholar]
  19. Lu J, Li C, Zhang FS, Wu W, Zhang QF, Zhang L, Wang T, Wang Q, Qiu PH, Liang MF, et al. Expression of structural and non-structural proteins of severe fever with thrombocytopenia syndrome bunyavirus. Chin. J. Virol. 2011;27:515–520. [PubMed] [Google Scholar]
  20. Ma XJ, Shu YL, Nie K, Qin M, Wang DY, Gao RB, Wang M, Wen LY, Han F, Zhou SM, et al. Visual detection of pandemic influenza A H1N1 Virus 2009 by reverse-transcription loop-mediated isothermal amplification with hydroxynaphthol blue dye. J. Virol. Methods. 2010;167:214–217. doi: 10.1016/j.jviromet.2010.03.027. [DOI] [PubMed] [Google Scholar]
  21. Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000;28:E63. doi: 10.1093/nar/28.12.e63. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Oh SS, Chae JB, Kang JG, Kim HC, Chong ST, Shin JH, Hur MS, Suh JH, Oh MD, Jeong SM, et al. Detection of severe fever with thrombocytopenia syndrome virus from wild animals and ixodidae ticks in the Republic of Korea. Vector Borne Zoonotic Dis. 2016;16:408–414. doi: 10.1089/vbz.2015.1848. [DOI] [PubMed] [Google Scholar]
  23. Parida M, Posadas G, Inoue S, Hasebe F, Morita K. Real-time reverse transcription loop-mediated isothermal amplification for rapid detection of West Nile virus. J. Clin. Microbiol. 2004;42:257–263. doi: 10.1128/JCM.42.1.257-263.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Parida M, Shukla J, Sharma S, Ranghia Santhosh S, Ravi V, Mani R, Thomas M, Khare S, Rai A, Kant Ratho R, et al. Development and evaluation of reverse transcription loopmediated isothermal amplification assay for rapid and real-time detection of the swine-origin influenza A H1N1 virus. J. Mol. Diagn. 2011;13:100–107. doi: 10.1016/j.jmoldx.2010.11.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Park SW, Ryou J, Choi WY, Han MG, Lee WJ. Epidemiological and clinical features of severe fever with thrombocytopenia syndrome during an outbreak in South Korea, 2013–2015. Am. J. Trop. Med. Hyg. 2016;95:1358–1361. doi: 10.4269/ajtmh.16-0251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Poon LLM, Wong BWY, Chan KH, Ng SSF, Yuen KY, Guan Y, Peiris JSM. Evaluation of real-time reverse transcriptase PCR and real-time loop-mediated amplification assays for severe acute respiratory syndrome coronavirus detection. J. Clin. Microbiol. 2005;43:3457–3459. doi: 10.1128/JCM.43.7.3457-3459.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sun Y, Liang M, Qu J, Jin C, Zhang Q, Li J, Jiang X, Wang Q, Lu J, Gu W, et al. Early diagnosis of novel SFTS bunyavirus infection by quantitative real-time RT-PCR assay. J. Clin. Virol. 2012;53:48–53. doi: 10.1016/j.jcv.2011.09.031. [DOI] [PubMed] [Google Scholar]
  28. Takayama-Ito M, Saijo M. Antiviral drugs against severe fever with thrombocytopenia syndrome virus infection. Front. Microbiol. 2020;11:150. doi: 10.3389/fmicb.2020.00150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wang H, Cong F, Zeng F, Lian Y, Liu X, Luo M, Guo P, Ma J. Development of a real time reverse transcription loopmediated isothermal amplification method (RT-LAMP) for detection of a novel swine acute diarrhea syndrome coronavirus (SADS-CoV) J. Virol. Methods. 2018;260:45–48. doi: 10.1016/j.jviromet.2018.06.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Won YJ, Kang LH, Lee SG, Park SW, Han JI, Paik SY. Molecular genomic characterization of severe fever with thrombocytopenia syndrome virus isolates from South Korea. J. Microbiol. 2019;57:927–937. doi: 10.1007/s12275-019-9174-8. [DOI] [PubMed] [Google Scholar]
  31. Wu HC, Xu XP, Wu C, Lu QB, Ding ZY, Lin JF. Spatial analysis and prediction of severe fever with thrombocytopenia syndrome in Zhejiang province, 2011–2015. Chin. J. Epidemiol. 2016;37:1485–1490. doi: 10.3760/cma.j.issn.0254-6450.2016.11.011. [DOI] [PubMed] [Google Scholar]
  32. Xiong WY, Feng ZJ, Matsui T, Foxwell AR. Risk assessment of human infection with a novel bunyavirus in China. Western Pac. Surveill. Response J. 2012;3:69–74. doi: 10.5365/wpsar.2012.3.4.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Yang G, Li B, Liu L, Huang W, Zhang W, Liu Y. Development and evaluation of a reverse transcription loop-mediated isothermal amplification assay for rapid detection of a new SFTS bunyavirus. Arch. Virol. 2012;157:1779–1783. doi: 10.1007/s00705-012-1348-1. [DOI] [PubMed] [Google Scholar]
  34. Yoshikawa T, Fukushi S, Tani H, Fukuma A, Taniguchi S, Toda S, Shimazu Y, Yano K, Morimitsu T, Ando K, et al. Sensitive and specific PCR systems for detection of both Chinese and Japanese severe fever with thrombocytopenia syndrome virus strains and prediction of patient survival based on viral load. J. Clin. Microbiol. 2014;52:3325–3333. doi: 10.1128/JCM.00742-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Yu XJ, Liang MF, Zhang SY, Liu Y, Li JD, Sun YL, Zhang L, Zhang QF, Popov VL, Li C, et al. Fever with thrombocytopenia associated with a novel bunyavirus in China. N. Engl. J. Med. 2011;364:1523–1532. doi: 10.1056/NEJMoa1010095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Zeng F, Cong F, Liu X, Lian Y, Wu M, Xiao L, Yuan W, Huang R, Ma J, Guo P, et al. Development of a real time loop-mediated isothermal amplification method for detection of Senecavirus A. J. Virol. Methods. 2018;261:98–103. doi: 10.1016/j.jviromet.2018.08.005. [DOI] [PubMed] [Google Scholar]
  37. Zhang Y, Shen S, Shi J, Su Z, Li M, Zhang W, Li M, Hu Z, Peng C, Zheng X, et al. Isolation, characterization, and phylogenic analysis of three new severe fever with thrombocytopenia syndrome bunyavirus strains derived from Hubei Province, China. Virol. Sin. 2017;32:89–96. doi: 10.1007/s12250-017-3953-3. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Microbiology (Seoul, Korea) are provided here courtesy of Nature Publishing Group

RESOURCES