Skip to main content
PLOS One logoLink to PLOS One
. 2020 May 20;15(5):e0227591. doi: 10.1371/journal.pone.0227591

Cell wall O-acetyl and methyl esterification patterns of leaves reflected in atmospheric emission signatures of acetic acid and methanol

Rebecca A Dewhirst 1,*, Cassandra A Afseth 1,¤, Cristina Castanha 1, Jenny C Mortimer 2,3, Kolby J Jardine 1
Editor: Federico Brilli4
PMCID: PMC7239448  PMID: 32433654

Abstract

Plants emit high rates of methanol (meOH), generally assumed to derive from pectin demethylation, and this increases during abiotic stress. In contrast, less is known about the emission and source of acetic acid (AA). In this study, Populus trichocarpa (California poplar) leaves in different developmental stages were desiccated and quantified for total meOH and AA emissions together with bulk cell wall acetylation and methylation content. While young leaves showed high emissions of meOH (140 μmol m-2) and AA (42 μmol m-2), emissions were reduced in mature (meOH: 69%, AA: 60%) and old (meOH: 83%, AA: 76%) leaves. In contrast, the ratio of AA/meOH emissions increased with leaf development (young: 35%, mature: 43%, old: 82%), mimicking the pattern of O-acetyl/methyl ester ratios of leaf bulk cell walls (young: 35%, mature: 38%, old: 51%), which is driven by an increase in O-acetyl and decrease in methyl ester content with age. The results are consistent with meOH and AA emission sources from cell wall de-esterification, with young expanding tissues producing highly methylated pectin that is progressively demethyl-esterified. We highlight the quantification of AA/meOH emission ratios as a potential tool for rapid phenotype screening of structural carbohydrate esterification patterns.

Introduction

Plant cell walls are highly complex structures largely composed of polysaccharides such as cellulose [1], hemicellulose [2], and pectin [3], that account for the majority of plant biomass. Cell walls provide the shape, strength and flexibility needed for numerous physiological processes including cell adhesion and expansion, intercellular communication, and defense against abiotic and biotic stress [4]. The dynamic nature of cell wall response is facilitated by chemical modifications that can significantly alter physiochemical, mechanical, and biological properties. For example, many cell wall polysaccharides in higher plants can be heavily O-acetylated [5,6] and methylated [7] via ester bonds. Although little is known about the biochemical and physiological functions of those cell wall modifications in trees, recent evidence suggests that they are highly dynamic and play central roles in the control of cell wall growth and tissue development [8], facilitate within and between plant signaling in response to abiotic and biotic stress [912], and integrate into primary C1 and C2 metabolism [13]. Moreover, studies in Arabidopsis thaliana have highlighted the critical roles cell wall esterification and de-esterification play in the proper development and functioning of xylem vessels [14] and leaf stomata [15]. A lack of xylan O-acetylation resulted in collapsed xylem vessels which greatly altered plant water use [14] through a reduction in xylan–cellulose interactions [16]. Moreover, pectin de-methylesterification was shown to modify cell wall elasticity and growth rates [17,18], and transgenic plants with guard cell walls enriched in methyl-esterified pectin showed a decreased dynamic range of stomatal conductance with reduced evaporative cooling and growth [15]. The pattern and degree of pectin methylation also impacts plant susceptibility to microbial infection [19], for instance wheat cultivars with more blockwise distribution of methyl esters were more susceptible to fungal infection than cultivars with more random methylation patterns [20]. Therefore, changes in esterification of cell walls and associated transport and metabolism of the released methanol and acetic acid could provide a rapid mechanism for plants to respond to abiotic and biotic stress.

Many land-atmosphere flux studies above agricultural crops [21] and fruit plantations [22] as well as temperate [23,24], boreal [25], and tropical [26] forests have identified meOH as a major, sometimes dominant, component of ecosystem volatile emissions. MeOH production in plants is largely attributed to changes in chemical and physical cell wall properties associated with the hydrolysis of methyl esters of cell wall carbohydrates like pectin [11,2729]. However, this assertion lacks experimental evidence, which we aim to address in the present study. Foliar meOH emissions are tightly associated with growth, abiotic and biotic stress, and senescence processes and are generally attributed to pectin de-methylation reactions, including the action of pectin methylesterases [30], associated with physicochemical changes in cell walls [3133]. For example, foliar meOH emissions tightly correlate with leaf expansion rates [34] and numerous studies have shown that young expanding leaves emit greater amounts of meOH than mature leaves [27,34,35]. Moreover, foliar meOH emissions are highly sensitive to leaf temperature with a factor of 2.4 increase in emissions reported for each 10°C increase in leaf temperature [36]. Pectin methylesterases are activated during plant pathogen penetration of leaf cell walls, producing methanol [12]. This methanol is thought to have a priming role in leaves, increasing resistance to bacteria but increasing sensitivity to viruses in Nicotiana benthamiana [37].

In contrast to meOH, relatively few studies have reported plant acetic acid (AA) emissions and little information is available regarding its biochemical source(s). A recent study observed that during leaf senescence, both meOH and AA emissions were simultaneously stimulated [38]. Although acetate is a known product of O-acetylation hydrolysis of cell walls, connections between plant AA emissions and cell wall O-acetyl hydrolysis have not been investigated. Therefore, quantitative evidence linking changes in cell wall esterification and plant-atmosphere emissions of meOH and AA is lacking. Nonetheless, meOH and AA emissions from managed and natural ecosystems can be expected to increase with climate warming [39] and increased forest turnover rates associated with land use change including biomass burning [40], increased abiotic and biotic stress [41], and secondary forest regeneration through the release of suppressed trees and increased pioneer species recruitment rates [42]. Therefore, it is vital to quantify the relationships between cell wall esters and foliar meOH and AA emissions to evaluate the hypothesis that emissions derive from cell wall de-esterification and to understand their physiological and biochemical roles during plant growth and development, adaptation to abiotic and biotic stress, and mortality and decomposition.

Cell walls are widely used as a renewable feedstock source for the production of biofuels and bioproducts [43]. However, O-acetylation [6] of cell walls can compromise microbial fermentation yields. Acetate released during biomass processing can accumulate to concentrations higher than 10 g/L in cellulosic hydrolysates leading to the inhibition of ethanol production by some organisms, including Saccharomyces cerevisiae, the principal microorganism used to produce ethanol [44]. Economic models estimate that a 20% reduction in biomass O-acetylation could result in a 10% reduction in ethanol price [45]. However, engineering of the cell wall in wheat and tobacco to reduce pectin demethylation improved saccharification of plant tissues by 30–40% [46]. Thus, from a biotechnological point of view, O-acetylation and methyl esterification of cell wall polysaccharides impacts the efficiency of their conversion to ethanol in a complex manner by both inhibiting fermentation and enhancing saccharification. Therefore, the development of rapid, non-destructive tools to quantify cell wall esterification patterns in bioenergy plants is of high interest.

In this study, the economically, environmentally, and ecologically important California poplar (Populus trichocarpa), a tree species with emerging potential for use as a biofuel [47], was utilized to characterize quantitative relationships between meOH and AA emissions and bulk cell wall O-acetylation and methylation patterns. We hypothesized that the main biochemical source of foliar emissions of meOH and AA is cell wall de-esterification. Given previous observations of decreasing foliar meOH emissions with leaf age [34], and the de-esterification of cell walls throughout plant development [48,49] we hypothesize that similar phenological pattern can be observed for AA emissions. By normalizing O-acetyl ester content of isolated leaf cell walls with methyl ester content, this hypothesis also predicts that foliar emissions will reflect the cell wall O-acetyl/methyl ester ‘signature’.

Materials and methods

In this study, we quantified real-time and total meOH and AA emissions and water loss from detached poplar leaves undergoing desiccation together with bulk cell wall O-acetyl and methyl ester content of leaves in three stages of development (Fig 1).

Fig 1. Overview of experimental design.

Fig 1

Experimental design with coupled gas exchange and cell wall esterification analysis during leaf desiccation experiments.

Plant material

California poplar (Populus trichocarpa) trees were obtained from Plants of the Wild (Washington State, USA) and maintained outdoors at the Oxford Tract Experimental Farm in Berkeley, CA, USA, where they were regularly watered and maintained pest free. During active experimentation, single trees were moved into a growth chamber (Percival Intellus Control System, Iowa, USA) and kept at 27.5°C during the day (5:45 am-8:00 pm; 30% light) and 23°C at night (8:00 pm to 5:45 am).

Seven leaf samples from each age class (young, mature, and old) were used from a total of four individual trees. Leaf age was determined as previously reported [50], with young leaves light green and not fully expanded, mature leaves dark green and fully expanded, and old leaves with the beginnings of brown senescence on the edges.

For each sample, four leaves (two each for emissions and cell wall analysis) of the same age category were harvested from the tree, with leaf area and fresh weight determined for each pair of leaves. The leaves for emissions analysis were immediately placed in the dynamic leaf chamber, and the leaves designated for cell wall ester quantification were immediately flash frozen in liquid nitrogen and stored at -70°C.

Dynamic leaf chamber

A 475-ml glass chamber with a flow-through of 300 ml min-1 of dry hydrocarbon-free air exposed to 1000–1500 μmo1m-2 s-1 photosynthetic photon flux density was used to desiccate detached poplar leaves and quantify real-time (nmol m-2 s-1) and total emissions (nmol m2) of meOH and AA. A tee downstream of the chamber diverted 75 ml min-1 of the air exiting the chamber to the proton transfer reaction mass spectrometer (PTR-MS, described below) and 25 ml min-1 to the gas chromatography mass spectrometer (GC-MS) when sampling. Excess air was vented to the room via a second tee. Background measurements of volatile concentrations from the empty chamber were collected for approximately two hours by both analytical systems prior to the introduction of the leaves. Following the addition of the two leaves to the chamber, emissions were continuously quantified for 16.7 hours. The total amount of volatiles emitted per m2 of leaf was calculated by integrating the emission curve across the 16.7 hours.

Online PTR-MS and GC-MS

Gaseous samples containing meOH and AA from the desiccation chamber were collected and dehydrated with an air server interfaced with a Kori-xr dehumidifier coupled to a Unity-xr thermal desorption system (Markes International, UK). Air samples (25 mL/min x 10 min: 0.25 L) were first dehydrated by passing the air sample through the Kori-xr held at -20 oC before the volatiles were pre-concentrated onto the cold trap (Air toxics, Markes International, UK) held at -30 oC with the sample flow path maintained at 150 oC. The collected meOH and AA were subsequently quantified by GC-MS by injection onto a capillary column (Rtx-VMS, 60 m x 0.25 mm x 1.4 μm) interfaced with a gas chromatograph (7890B, Agilent Technologies, CA, USA) with a high efficiency source electron impact quadrupole mass spectrometer (5977B HES MSD, Agilent Technologies, CA, USA). During injection of the sample onto the analytical column, the cold trap was rapidly heated to 280 oC for three minutes while back-flushing with carrier gas at a flow of 6.5 mL/min. In order to improve peak shape and further reduce the amount of water introduced into the GC-MS, 5 mL/min of this flow was vented through the split while the remaining 1.5 mL/min was directed to the column, temperature programmed with an initial hold at 40°C for 1.5 min followed by an increase to 170°C at 15°C min-1. A post run temperature of 230°C was applied for 1.5 min. The mass spectrometer was configured for trace analysis (SIM Mode and 10 X detector gain factor) with 50 ms dwell times for the target compounds; methanol (m/z 31, 29, 15) and acetic acid (m/z 43, 45, 60). Quantification of the volatile concentrations was based on linear calibration curves of a primary gas standard (Restek Corporation, PA, USA). Calibration curves were generated for m/z 31 (meOH, retention time 6.0 min) and m/z 60 (AA, retention time 9.4 min) for 0.0, 2.3, 4.6, 6.9, 9.1 and 11.3 nL of the collected gas primary standard. The online GC-MS was programmed to automatically collect and analyze 5 sequential samples from the empty chamber, followed by 40 samples with the two sample leaves inside the chamber (measurement frequency 27–30 min).

In parallel with the GC-MS, quantification of meOH and AA gas-phase concentrations exiting the leaf chamber were made in real-time using a high sensitivity quadrupole proton transfer reaction mass spectrometry (PTR-MS, Ionicon, Austria, with a QMZ 422 quadrupole, Balzers, Switzerland). The PTR-MS was operated with a drift tube voltage of 600 V and pressure of 1.9 mb. The following mass to charge ratios (m/z) were sequentially monitored during each PTR-MS measurement cycle: m/z 32 (O2+) and m/z 37 (H2O-H3O+) with a dwell time of 10 ms, m/z 21 (H318O+) with a dwell time of 50 ms and m/z 25 (dark counts), m/z 33 (methanol), m/z 43 (acetate fragment) and m/z 61 (acetic acid) with a dwell time of 5 s each. Quantification of the volatile concentrations was based on linear calibration curves of a primary gas standard (Restek Corporation, USA). Calibration curves were generated for m/z 33 (methanol) and m/z 61 (acetic acid) for 0.0, 9.4, 18.5, 27.5, 36.4 and 45.0 ppb of the gas primary standard.

Preparation of leaf whole cell wall samples

Alcohol insoluble residue (AIR; composition dominated by whole cell wall material) of each leaf sample was prepared as previously described [51]. Briefly, leaf samples were flash frozen in liquid nitrogen and stored at -70°C before AIR preparation. The leaves were ground using a mortar and pestle on dry ice to avoid thawing, and the powder was then incubated in 70°C ethanol (96% v/v) for 30 minutes. The samples were centrifuged (Eppendorf Centrifuge 5417R, Germany) and the pellet was washed sequentially in 96% ethanol, 100% ethanol, twice in methanol:chloroform (2:3 v/v), 100% ethanol, 65% ethanol, 80% ethanol and 100% ethanol. The samples were incubated for 1 hour with shaking (1000 rpm) in each of the methanol:chloroform steps. After the final wash the samples were dried in a speedvac (Eppendorf Vacufuge Plus, Germany) at 30°C.

Bulk methyl and O-acetyl ester quantification in AIR samples

Bulk methyl and O-acetyl ester content of AIR samples was carried out using commercial kits (Methanol Assay Kit, and Acetate Assay Kit, BioVision, CA, USA). AIR samples (2.5 mg) were saponified with NaOH (1 M, 125 μL) for 16 hours then neutralized with 1 M HCl. The samples were centrifuged (10 minutes at 15000 rpm) and 5 μL of the supernatant was transferred to a 96-well plate. The samples were treated with the assay kit enzymes and plates incubated at 37°C for 30 minutes (for methanol) or at room temperature for 40 mins (for acetate). Absorbances were measured at 450 nm (for both assays) on a 96-well plate reader (SpectraMax M2; Molecular Devices, CA, USA). Total methyl and O-acetyl content of the AIR samples (μg/mg AIR) were determined by including a six-point calibration on each plate using the included standard).

Statistical analysis

Statistically significant differences in AA and meOH emissions and leaf bulk cell wall ester content between leaf developmental categories were assessed by a one-way analysis of variance (one-way ANOVA) and a Tukey’s post hoc test to evaluate significant differences between the means. The same statistical analysis was carried out on AA/meOH ratios from leaf emissions and AIR with all analysis carried out in R version 3.6.0.

Results

Methanol and acetic acid emissions as detected by online PTR-MS and GC-MS

A coupled PTR-MS and online GC-MS system was applied to the quantification of meOH and AA from desiccating leaf samples placed in an illuminated glass chamber with hydrocarbon free air flowing through. In the absence of a leaf, the empty chamber showed low background concentrations for meOH and AA of < 0.1 ppb, which greatly increased upon introducing the leaf to the chamber. For all leaf samples, meOH and AA emissions initially resulted in large peaks, typically lasting 20–40 min, that tapered off as the leaf dried (with humidity monitored qualitatively by m/z 37) (Fig 2).

Fig 2. Leaf emissions of AA and meOH during desiccation.

Fig 2

Example real-time leaf emissions of acetic acid (AA) and methanol (meOH) using simultaneous analysis by A) PTR-MS and B) online TD-GC-MS during a 16.7 hour (60,000 s) desiccation experiment.

Because leaf emissions initially changed quickly, whereas GC-MS collection occurs slowly (e.g. samples collected for 10 min every 30 min), the GC-MS typically underestimated the magnitude of emissions during this initial period relative to the PTR-MS, which has a 22 sec cycle time (e.g. Fig 2A and 2B). This is related to the fact that while the PTR-MS continuously monitored emissions following the introduction of the leaves into the chamber, the GC-MS had a delay of a few minutes while it prepared to collect the first sample, during which time a large proportion of the initial emissions had already occurred. However, over the remaining period, where emissions were lower but changed more slowly, a good quantitative comparison of the emission rates between PTR-MS and GC-MS was generally observed. AA, and to a lesser extent meOH, showed a second large peak in emissions several hours after the leaves were introduced, coinciding with a rapid decrease in chamber air humidity. As AA is highly water soluble, we attribute this trend observed in leaves of all developmental stages, to condensation of water inside the chamber from the initial leaf transpiration, dissolving leaf-derived AA into the water, followed by evaporation and release of gaseous AA associated with a rapid drop in chamber humidity following leaf desiccation. Despite issues with condensation, by integrating meOH and AA emissions throughout the entire 16.2 hour experiments, an accurate quantification of total meOH and AA was obtained. Following the drying of the chamber humidity and loss of water from the leaf, a small increase in meOH emissions (and sometimes AA) was observed (e.g. after 10 hr in Fig 2).

MeOH and AA emissions decrease with increasing leaf age

For each of the leaf developmental stages, mean total emissions of meOH and AA were quantified (Fig 3A and 3B). Young leaves showed strong emissions of meOH (140 μmol m-2) and AA (42 μmol m-2), while emissions were reduced in mature (meOH: 69%, AA: 60%) and old (meOH: 83%, AA: 76%) leaves. The difference in emissions of both meOH and AA across the developmental stages were statistically significant. Specifically, the differences between young and mature (p = 0.0012 for acetate and p = 0.0053 for methanol, ANOVA and Tukey post hoc analysis) and between young and old leaf emissions were statistically significant (p < 0.001, ANOVA and Tukey’s post hoc test, for both compounds). It is possible that like meOH, AA emissions also derived from the de-esterification of cell wall esters. To further investigate this possibility, we normalized AA emissions by meOH emissions and compared these ‘signatures’ to those from leaf cell wall methyl and O-acetyl esters.

Fig 3. Total emissions and cell wall esters across leaf developmental stages.

Fig 3

Average total leaf emissions of A. acetic acid (AA) and B. methanol (meOH), among 3 leaf developmental stages (young, mature, and old), were quantified using PTR-MS. Also shown as a function of leaf developmental stage are C. AA/meOH leaf emission ratios and D. AA/meOH ratios of saponified whole leaf cell wall preparations (AIR). Error bars represent +/- one standard deviation (n = 7 leaves for each age class). Statistically significant (p<0.01; ANOVA and Tukey post hoc analysis, n = 7) differences are indicated with different letters.

AA/meOH emissions ratios are reflected by cell wall O-acetyl/methyl ratios

With leaf age, while the absolute emission rates decreased, the ratio of AA to meOH emissions increased (Fig 3C). Moreover, the AA/meOH emission signatures showed similar magnitudes and dependence on leaf developmental stage as the O-acetyl/methyl ratios of the isolated leaf cell walls (Figs 3D and 4). Young leaves had an emissions ratio of 34.5 ± 13.0% and cell wall ester ratio of 35.0 ± 6.5%, mature leaves had emission ratios of 43.3 ± 17.9% and cell wall ester ratio of 38.2 ± 8.8%, and old leaves had an emission ratio of 82.2 ± 37.6% and a cell wall ester ratio of 50.7 ± 11.4%. The difference in AA/meOH emissions ratio across developmental stages was statistically significant (p = 0.0084 between young and old, and p = 0.027 between old and mature, ANOVA and Tukey’s post hoc analysis). Across all the age categories AA/meOH emissions ratios were correlated with AA/meOH cell wall ester content with an R2 value of 0.4 (Fig 4A). This R2 value increase to 0.99 when just the averages of each age category are considered (Fig 4B). These results are consistent with meOH and AA emission sources from cell wall de-esterification of both pectin and hemicelluloses. The increase in emission ratios with age was driven by an increase in total O-acetyl ester content and corresponding decrease in methyl ester content of cell walls (Fig 5). Old leaves had statistically higher levels of acetate esters (p = 0.045, ANOVA and Tukey’s post hoc analysis) than young leaves.

Fig 4. Correlation between AA/meOH ratios of emissions and cell wall ester contents.

Fig 4

The AA/meOH ratio for emissions was determined by PTR-MS and the cell wall ester contents were quantified using colorimetric assay kits on saponified AIR samples. The linear equations describing the relationship between emissions and cell wall ratios is shown ± standard deviation, along with the R2 value for all the data (A) and for the average of each leaf age category (B).

Fig 5. Average cell wall acetate and methanol content for each leaf age category.

Fig 5

Cell wall acetate and methanol were quantified from saponified AIR for each age category using colorimetric assay kits. Error bars represent ± one standard deviation (n = 7 for each age category). Statistically significant (p<0.05; ANOVA and Tukey post hoc analysis, n = 7) differences are indicated with different letters.

Discussion

Previous studies on volatile plant emissions rarely include both meOH and AA due to technical difficulty in quantifying low ppb concentrations of these compounds in high humidity air samples. While fast online techniques like PTR-MS are increasingly used to study plant volatile emissions, their accurate calibration with primary standards are often neglected. Moreover, validation of time-series using GC methods are rarely performed due to the high water solubility of AA, causing analytical losses when air samples are dehydrated, and its ‘sticky’ nature that often shows strong memory effects and even losses due to strong gas-surface interactions. Here we overcome these limitations and demonstrate for the first time the reliable and robust identification and quantification of both meOH and AA emissions using a coupled PTR-MS and online GC-MS system, optimized for high specificity and sensitivity to ppb concentrations of meOH and AA in humid air samples. Key to the direct quantification of trace AA emission by GC-MS was the high sensitivity of the GC-MS, which allowed analysis of low volume (250 mL) air samples, and dehydration of the air sample by passing it through inert tubing at -20°C, before quantitatively trapping the AA at -30°C on an activated carbon sorbent. Regular calibrations of the PTR-MS and GC-MS to a primary gas standard showed high linearity (R2 = 0.95–0.99) and sensitivity to meOH and AA (S1 Fig).

In this study, we observed two distinct emissions of meOH and sometimes AA, an initial emission as the leaves were starting to dry out, and a second smaller peak that occurred when the leaf was considered dry (e.g. the water vapor concentration in the leaf chamber returned to the value of the empty chamber with dry clean air passing through). This is consistent with what has been observed from cut grass and clover: A burst of meOH emissions due to cutting the leaves and stems followed by a second emission lasting for several hours when the vegetation was starting to dry out [52].

The observations that meOH emissions are reduced in mature leaves compared to young leaves are consistent with a number of studies showing a decrease in leaf meOH emissions with leaf age [27,34,35] including a recent study that demonstrated the fading of meOH emissions during Populus tremula leaf maturation [53]. While AA emissions throughout leaf development have been little studied, our observation that AA emissions followed the same phenological pattern as meOH emissions, supports the hypothesis that, like meOH, AA emissions derive from de-esterification of cell wall esters.

The observed increase in cell wall O-acetylation coupled with a decrease in methylation are similar to those reported in winter oil flax where O-acetylation of acid-soluble pectins increased throughout leaf development (23–40%) [54]. The observations are consistent with the emerging view that during cell wall biogenesis, the composition and corresponding architecture of the wall changes, which may impact the O-acetyl/methyl ratios. The matrix polysaccharide of primary cell wall pectin is partially replaced by hemicelluloses in the secondary cell wall that can have higher O-acetyl acetate content due to the high levels of O-acetyl-(4-O-methylglucurono)-xylan [55,56] (Fig 6A). Moreover, young growing leaves, where new cell walls are being synthesized, are enriched in highly methylated [48] pectin (Fig 6B) that is purportedly progressively demethyl-esterified throughout cell expansion and aging. For example, newly synthesized homogalacturonan is transported to the cell wall with a high degree of methylation. The methyl groups are then hydrolyzed by pectin methylesterases releasing meOH under tight spatial and temporal control during development [8]. In contrast, pectin can be both acetylated and deacetylated in muro by pectin acetylesterases [57]. Therefore, determining the location of O-acetyl and methyl groups on specific polysaccharides is a valuable next step in this study, which will allow us to test the hypothesis that leaf cell wall O-acetyl content increases throughout development due to an increase in total xylan content, and therefore total bulk cell wall O-acetylation. Moreover, the hypothesis that cumulative demethylation of pectin during leaf development accounts for the decrease in bulk leaf cell wall methyl content during aging could also be tested.

Fig 6. Structure of O-acetylated and methylated cell wall polysaccharides.

Fig 6

Structures of acetylated xylan (A) and acetylated and methylated pectin (B) are shown.

Currently the only methods for measuring O-acetyl and methyl ester content of plant cell walls are destructive, involving costly and time-consuming techniques of harvesting plant tissues, isolating cell walls, and conducting separate analysis of cell wall methyl and O-acetyl esters. In this study, we showed that P. trichocarpa leaf cell wall O-acetyl/methyl ester ratios, and their dependence on leaf developmental stage, were quantitatively reflected in the AA/meOH emission ratio during leaf desiccation, providing evidence for cell wall esters as the source of biogenic meOH and AA. We therefore suggest quantifying AA/meOH emission ratios may present a new non-destructive tool to study esterification in plant cell walls at various spatial (leaf to ecosystem) and temporal (minutes to seasons) scales. As esterification of plant cell walls can have a large impact on saccharification and fermentation of plant biomass, while influencing plant physiology, quantification of AA/meOH emission ratio may present a new method for rapid phenotype screening of cell wall ester composition of plants. In the near future, it will be necessary to grow dedicated bioenergy crops as a feedstock for the production of liquid transport fuels and bioproducts. The presented methods will help advance rapid phenotype screening and genetic manipulation of the cell wall ester content, with the goal of increasing biofuel yields and plant resistance to abiotic stress. Moreover, the methods can be used in future studies to help understand the impacts of cell wall esterification on cell wall structure and function, and numerous physiological and biochemical process including growth and development, stress responses and signaling, plant hydraulics, and central carbon metabolism. Therefore, in situ monitoring of atmospheric emissions of meOH and AA from terrestrial ecosystems could help improve predictions of both tree growth and mortality mechanisms and their sensitivities to environmental change.

Supporting information

S1 Fig. PTR-MS and online GC-MS calibration.

Example linear calibration responses for PTR-MS (A-B) and online GC-MS (C-D) to a primary gas-phase standard of acetic acid (AA) and methanol (meOH) on 22 June 2019.

(TIF)

S1 Dataset. Raw experimental data files.

(DOCX)

Acknowledgments

We would like to kindly acknowledge Christina M. Wistrom in the UC Berkeley Oxford Tract greenhouse for the support in growing and maintaining the commercial poplar trees used in this study. Fig 1 was created with Biorender.com.

Abbreviations

AA

acetic acid

AIR

alcohol insoluble residue

GC-MS

gas chromatography mass spectrometry

meOH

methanol

PTR-MS

proton transfer reaction mass spectrometry

Data Availability

All associated data files are available from Mendeley Data accessed at http://dx.doi.org/10.17632/7bdwbwy6wn.1

Funding Statement

This material is based upon work supported by the U.S. Department of Energy (DOE), Office of Science, Office of Biological and Environmental Research (BER), Biological System Science Division (BSSD), Early Career Research Program under Award number FP00007421 to Lawrence Berkeley National Laboratory. This work was also supported as part of the DOE Joint BioEnergy Institute (http://www.jbei.org) supported by the U. S. DOE, BER, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the US Department of Energy. This material is based upon work supported by the U.S. DOE, BER, Next-Generation Ecosystem Experiments–Tropics Project (NGEE-Tropics), of the U.S. Department of Energy under contract No. DE-AC02-05CH11231 The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

  • 1.Delmer DP, Amor Y. Cellulose biosynthesis. Plant Cell. 1995;7: 987–1000. 10.1105/tpc.7.7.987 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Scheller HV, Ulvskov P. Hemicelluloses. Annu Rev Plant Biol. 2010;61: 263–289. 10.1146/annurev-arplant-042809-112315 [DOI] [PubMed] [Google Scholar]
  • 3.Harholt J, Suttangkakul A, Scheller HV. Biosynthesis of pectin. Plant Physiol. 2010;153: 384–395. 10.1104/pp.110.156588 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Keegstra K. Plant cell walls. Plant Physiol. 2010;154: 483–486. 10.1104/pp.110.161240 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Scheller HV. Plant cell wall: Never too much acetate. Nat Plants. 2017;3: 17024 10.1038/nplants.2017.24 [DOI] [PubMed] [Google Scholar]
  • 6.Gille S, Pauly M. O-acetylation of plant cell wall polysaccharides. Front Plant Sci. 2012;3: 12 10.3389/fpls.2012.00012 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Voxeur A, Höfte H. Cell wall integrity signaling in plants: “To grow or not to grow that’s the question”. Glycobiology. 2016;26: 950–960. 10.1093/glycob/cww029 [DOI] [PubMed] [Google Scholar]
  • 8.Wolf S, Mouille G, Pelloux J. Homogalacturonan methyl-esterification and plant development. Mol Plant. 2009;2: 851–860. 10.1093/mp/ssp066 [DOI] [PubMed] [Google Scholar]
  • 9.Ridley BL, O’Neill MA, Mohnen D. Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry. 2001;57: 929–967. 10.1016/s0031-9422(01)00113-3 [DOI] [PubMed] [Google Scholar]
  • 10.Baldwin IT, Halitschke R, Paschold A, von Dahl CC, Preston CA. Volatile signaling in plant-plant interactions: “talking trees” in the genomics era. Science. 2006;311: 812–815. 10.1126/science.1118446 [DOI] [PubMed] [Google Scholar]
  • 11.von Dahl CC, Hävecker M, Schlögl R, Baldwin IT. Caterpillar-elicited methanol emission: a new signal in plant-herbivore interactions? Plant J. 2006;46: 948–960. 10.1111/j.1365-313X.2006.02760.x [DOI] [PubMed] [Google Scholar]
  • 12.Komarova TV, Sheshukova EV, Dorokhov YL. Cell wall methanol as a signal in plant immunity. Front Plant Sci. 2014;5: 101 10.3389/fpls.2014.00101 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Jardine KJ, Fernandes de Souza V, Oikawa P, Higuchi N, Bill M, Porras R, et al. Integration of C₁ and C₂ metabolism in trees. Int J Mol Sci. 2017;18 10.3390/ijms18102045 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Yuan Y, Teng Q, Zhong R, Haghighat M, Richardson EA, Ye Z-H. Mutations of arabidopsis TBL32 and TBL33 affect xylan acetylation and secondary wall deposition. PLoS One. 2016;11: e0146460 10.1371/journal.pone.0146460 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Amsbury S, Hunt L, Elhaddad N, Baillie A, Lundgren M, Verhertbruggen Y, et al. Stomatal Function Requires Pectin De-methyl-esterification of the Guard Cell Wall. Curr Biol. 2016;26: 2899–2906. 10.1016/j.cub.2016.08.021 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Busse-Wicher M, Gomes TCF, Tryfona T, Nikolovski N, Stott K, Grantham NJ, et al. The pattern of xylan acetylation suggests xylan may interact with cellulose microfibrils as a twofold helical screw in the secondary plant cell wall of Arabidopsis thaliana. Plant J. 2014;79: 492–506. 10.1111/tpj.12575 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Peaucelle A, Braybrook SA, Le Guillou L, Bron E, Kuhlemeier C, Höfte H. Pectin-induced changes in cell wall mechanics underlie organ initiation in Arabidopsis. Curr Biol. 2011;21: 1720–1726. 10.1016/j.cub.2011.08.057 [DOI] [PubMed] [Google Scholar]
  • 18.Peaucelle A, Wightman R, Höfte H. The control of growth symmetry breaking in the arabidopsis hypocotyl. Curr Biol. 2015;25: 1746–1752. 10.1016/j.cub.2015.05.022 [DOI] [PubMed] [Google Scholar]
  • 19.Lionetti V, Cervone F, Bellincampi D. Methyl esterification of pectin plays a role during plant-pathogen interactions and affects plant resistance to diseases. J Plant Physiol. 2012;169: 1623–1630. 10.1016/j.jplph.2012.05.006 [DOI] [PubMed] [Google Scholar]
  • 20.Wiethölter N, Graessner B, Mierau M, Mort AJ, Moerschbacher BM. Differences in the methyl ester distribution of homogalacturonans from near-isogenic wheat lines resistant and susceptible to the wheat stem rust fungus. Mol Plant Microbe Interact. 2003;16: 945–952. 10.1094/MPMI.2003.16.10.945 [DOI] [PubMed] [Google Scholar]
  • 21.Karl T, Guenther A, Lindinger C, Jordan A, Fall R, Lindinger W. Eddy covariance measurements of oxygenated volatile organic compound fluxes from crop harvesting using a redesigned proton-transfer-reaction mass spectrometer. J Geophys Res. 2001;106: 24157–24167. 10.1029/2000JD000112 [DOI] [Google Scholar]
  • 22.Fares S, Park JH, Gentner DR, Weber R. Seasonal cycles of biogenic volatile organic compound fluxes and concentrations in a California citrus orchard. Atmos Chem Phys Discuss. 2012; 10.5194/acpd-12-5065-2012 [DOI] [Google Scholar]
  • 23.Schade GW, Goldstein AH. Fluxes of oxygenated volatile organic compounds from a ponderosa pine plantation. J Geophys Res. 2001;106: 3111–3123. 10.1029/2000JD900592 [DOI] [Google Scholar]
  • 24.Karl T, Guenther A, Spirig C, Hansel A, Fall R. Seasonal variation of biogenic VOC emissions above a mixed hardwood forest in northern Michigan. Geophys Res Lett. 2003;30 10.1029/2003GL018432 [DOI] [Google Scholar]
  • 25.Kolari P, Bäck J, Taipale R, Ruuskanen TM, Kajos MK, Rinne J, et al. Evaluation of accuracy in measurements of VOC emissions with dynamic chamber system. Atmos Environ. 2012;62: 344–351. 10.1016/j.atmosenv.2012.08.054 [DOI] [Google Scholar]
  • 26.Jardine KJ, Yañez Serrano A, Arneth A, Abrell L, Jardine A, Artaxo P, et al. Ecosystem-scale compensation points of formic and acetic acid in the central Amazon. Biogeosciences. 2011;8: 3709–3720. 10.5194/bg-8-3709-2011 [DOI] [Google Scholar]
  • 27.Nemecek-Marshall M, MacDonald RC, Franzen JJ, Wojciechowski CL, Fall R. Methanol Emission from Leaves (Enzymatic Detection of Gas-Phase Methanol and Relation of Methanol Fluxes to Stomatal Conductance and Leaf Development). Plant Physiol. 1995;108: 1359–1368. 10.1104/pp.108.4.1359 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Fall R, Benson AA. Leaf methanol—the simplest natural product from plants. Trends Plant Sci. 1996;1: 296–301. 10.1016/S1360-1385(96)88175-0 [DOI] [Google Scholar]
  • 29.MacDonald RC, Fall R. Detection of substantial emissions of methanol from plants to the atmosphere. Atmospheric Environment Part A General Topics. 1993;27: 1709–1713. 10.1016/0960-1686(93)90233-O [DOI] [Google Scholar]
  • 30.Dorokhov YL, Sheshukova EV, Komarova TV. Methanol in plant life. Front Plant Sci. 2018;9: 1623 10.3389/fpls.2018.01623 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Fall R. Abundant oxygenates in the atmosphere: a biochemical perspective. Chem Rev. 2003;103: 4941–4952. 10.1021/cr0206521 [DOI] [PubMed] [Google Scholar]
  • 32.Saffer AM. Expanding roles for pectins in plant development. J Integr Plant Biol. 2018;60: 910–923. 10.1111/jipb.12662 [DOI] [PubMed] [Google Scholar]
  • 33.Wormit A, Usadel B. The multifaceted role of pectin methylesterase inhibitors (PMEIs). Int J Mol Sci. 2018;19: 2878 10.3390/ijms19102878 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Hüve K, Christ MM, Kleist E, Uerlings R, Niinemets U, Walter A, et al. Simultaneous growth and emission measurements demonstrate an interactive control of methanol release by leaf expansion and stomata. J Exp Bot. 2007;58: 1783–1793. 10.1093/jxb/erm038 [DOI] [PubMed] [Google Scholar]
  • 35.Jardine KJ, Jardine AB, Souza VF, Carneiro V, Ceron JV, Gimenez BO, et al. Methanol and isoprene emissions from the fast growing tropical pioneer species Vismia guianensis (Aubl.) Pers. (Hypericaceae) in the central Amazon forest. Atmos Chem Phys. 2016;16: 6441–6452. 10.5194/acp-16-6441-2016 [DOI] [Google Scholar]
  • 36.Harley P, Greenberg J, Niinemets Ü. Environmental controls over methanol emission from leaves. Biogeosciences. 2007;4: 1083–1099. [Google Scholar]
  • 37.Dorokhov YL, Komarova TV, Petrunia IV, Frolova OY, Pozdyshev DV, Gleba YY. Airborne signals from a wounded leaf facilitate viral spreading and induce antibacterial resistance in neighboring plants. PLoS Pathog. 2012;8: e1002640 10.1371/journal.ppat.1002640 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Mozaffar A, Schoon N, Bachy A, Digrado A, Heinesch B, Aubinet M, et al. Biogenic volatile organic compound emissions from senescent maize leaves and a comparison with other leaf developmental stages. Atmos Environ. 2018;176: 71–81. 10.1016/j.atmosenv.2017.12.020 [DOI] [Google Scholar]
  • 39.Hansen J, Ruedy R, Sato M, Lo K. Global Warming Continues. Science. 2002;295: 275c–275. 10.1126/science.295.5553.275c [DOI] [PubMed] [Google Scholar]
  • 40.Karl T, Christian TJ, Yokelson RJ, Artaxo P, Hao WM, Guenther A. The Tropical Forest and Fire Emissions Experiment: method evaluation of volatile organic compound emissions measured by PTR-MS, FTIR, and GC from tropical biomass burning. Atmos Chem Phys. 2007;7: 5883–5897. [Google Scholar]
  • 41.Brienen RJW, Phillips OL, Feldpausch TR, Gloor E, Baker TR, Lloyd J, et al. Long-term decline of the Amazon carbon sink. Nature. 2015;519: 344–348. 10.1038/nature14283 [DOI] [PubMed] [Google Scholar]
  • 42.Bugmann H. A review of forest gap models. Clim Change. 2001;51: 259–305. [Google Scholar]
  • 43.Baral NR, Sundstrom ER, Das L, Gladden JM, Eudes A, Mortimer J, et al. Approaches for more efficient biological conversion of lignocellulosic feedstocks to biofuels and bioproducts. ACS Sustain Chem Eng. 2019;7: 9062–9079. 10.1021/acssuschemeng.9b01229 [DOI] [Google Scholar]
  • 44.Henningsen BM, Hon S, Covalla SF, Sonu C, Argyros DA, Barrett TF, et al. Increasing anaerobic acetate consumption and ethanol yields in Saccharomyces cerevisiae with NADPH-specific alcohol dehydrogenase. Appl Environ Microbiol. 2015;81: 8108–8117. 10.1128/AEM.01689-15 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW. The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioeng. 2012;109: 1083–1087. 10.1002/bit.24370 [DOI] [PubMed] [Google Scholar]
  • 46.Lionetti V, Francocci F, Ferrari S, Volpi C, Bellincampi D, Galletti R, et al. Engineering the cell wall by reducing de-methyl-esterified homogalacturonan improves saccharification of plant tissues for bioconversion. Proc Natl Acad Sci USA. 2010;107: 616–621. 10.1073/pnas.0907549107 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Sannigrahi P, Ragauskas AJ, Tuskan GA. Poplar as a feedstock for biofuels: A review of compositional characteristics. Biofuels, Bioprod Bioref. 2010;4: 209–226. 10.1002/bbb.206 [DOI] [Google Scholar]
  • 48.Pelloux J, Rustérucci C, Mellerowicz EJ. New insights into pectin methylesterase structure and function. Trends Plant Sci. 2007;12: 267–277. 10.1016/j.tplants.2007.04.001 [DOI] [PubMed] [Google Scholar]
  • 49.Wolf S, Greiner S. Growth control by cell wall pectins. Protoplasma. 2012;249 Suppl 2: S169–75. 10.1007/s00709-011-0371-5 [DOI] [PubMed] [Google Scholar]
  • 50.Eller ASD, de Gouw J, Graus M, Monson RK. Variation among different genotypes of hybrid poplar with regard to leaf volatile organic compound emissions. Ecol Appl. 2012;22: 1865–1875. 10.1890/11-2273.1 [DOI] [PubMed] [Google Scholar]
  • 51.Mortimer JC, Miles GP, Brown DM, Zhang Z, Segura MP, Weimar T, et al. Absence of branches from xylan in Arabidopsis gux mutants reveals potential for simplification of lignocellulosic biomass. Proc Natl Acad Sci USA. 2010;107: 17409–17414. 10.1073/pnas.1005456107 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.de Gouw JA, Howard CJ, Custer TG, Fall R. Emissions of volatile organic compounds from cut grass and clover are enhanced during the drying process. Geophys Res Lett. 1999;26: 811–814. 10.1029/1999GL900076 [DOI] [Google Scholar]
  • 53.Portillo-Estrada M, Kazantsev T, Niinemets Ü. Fading of wound-induced volatile release during Populus tremula leaf expansion. J Plant Res. 2017;130: 157–165. 10.1007/s10265-016-0880-6 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Bédouet L, Denys E, Courtois B, Courtois J. Changes in esterified pectins during development in the flax stems and leaves. Carbohydr Polym. 2006;65: 165–173. 10.1016/j.carbpol.2005.12.041 [DOI] [Google Scholar]
  • 55.Gou J-Y, Park S, Yu X-H, Miller LM, Liu C-J. Compositional characterization and imaging of “wall-bound” acylesters of Populus trichocarpa reveal differential accumulation of acyl molecules in normal and reactive woods. Planta. 2008;229: 15–24. 10.1007/s00425-008-0799-9 [DOI] [PubMed] [Google Scholar]
  • 56.Lee C, Teng Q, Zhong R, Ye Z-H. The four Arabidopsis reduced wall acetylation genes are expressed in secondary wall-containing cells and required for the acetylation of xylan. Plant Cell Physiol. 2011;52: 1289–1301. 10.1093/pcp/pcr075 [DOI] [PubMed] [Google Scholar]
  • 57.Gou J-Y, Miller LM, Hou G, Yu X-H, Chen X-Y, Liu C-J. Acetylesterase-mediated deacetylation of pectin impairs cell elongation, pollen germination, and plant reproduction. Plant Cell. 2012;24: 50–65. 10.1105/tpc.111.092411 [DOI] [PMC free article] [PubMed] [Google Scholar]

Decision Letter 0

Federico Brilli

7 Feb 2020

PONE-D-19-34824

Cell wall O-acetyl and methyl esterification patterns of leaves reflected in atmospheric emission signatures of acetic acid and methanol

PLOS ONE

Dear Dr Dewhirst,

Thank you for submitting your manuscript to PLOS ONE. Your manuscript has been peer-reviewed by two experts in the field. As you can see from the comments reported below, both the reviewers found your study very interesting and worthy of publication following some revisions. In short, reviewer #1 asked to expand the ‘Introduction’ and ‘Discussion’ sections to describe more fully the importance of this research work, while reviewer #2 arose some points to be addressed, particularly a more correct presentation of the statistical analysis.

Therefore, we invite you to submit a revised version of the manuscript that includes the reviewers' requests.

We would appreciate receiving your revised manuscript by 07th of March, 2020. When you are ready to submit your revision, log on to https://www.editorialmanager.com/pone/ and select the 'Submissions Needing Revision' folder to locate your manuscript file.

If you would like to make changes to your financial disclosure, please include your updated statement in your cover letter.

To enhance the reproducibility of your results, we recommend that if applicable you deposit your laboratory protocols in protocols.io, where a protocol can be assigned its own identifier (DOI) such that it can be cited independently in the future. For instructions see: http://journals.plos.org/plosone/s/submission-guidelines#loc-laboratory-protocols

Please include the following items when submitting your revised manuscript:

  • A rebuttal letter that responds to each point raised by the academic editor and reviewer(s). This letter should be uploaded as separate file and labeled 'Response to Reviewers'.

  • A marked-up copy of your manuscript that highlights changes made to the original version. This file should be uploaded as separate file and labeled 'Revised Manuscript with Track Changes'.

  • An unmarked version of your revised paper without tracked changes. This file should be uploaded as separate file and labeled 'Manuscript'.

Please note while forming your response, if your article is accepted, you may have the opportunity to make the peer review history publicly available. The record will include editor decision letters (with reviews) and your responses to reviewer comments. If eligible, we will contact you to opt in or out.

We look forward to receiving your revised manuscript.

Kind regards,

Federico Brilli, Ph.D.

Academic Editor

PLOS ONE

Journal Requirements:

When submitting your revision, we need you to address these additional requirements.

1. Please ensure that your manuscript meets PLOS ONE's style requirements, including those for file naming. The PLOS ONE style templates can be found at

http://www.journals.plos.org/plosone/s/file?id=wjVg/PLOSOne_formatting_sample_main_body.pdf and http://www.journals.plos.org/plosone/s/file?id=ba62/PLOSOne_formatting_sample_title_authors_affiliations.pdf

2. We note that Figure 1 in your submission contain copyrighted images. All PLOS content is published under the Creative Commons Attribution License (CC BY 4.0), which means that the manuscript, images, and Supporting Information files will be freely available online, and any third party is permitted to access, download, copy, distribute, and use these materials in any way, even commercially, with proper attribution. For more information, see our copyright guidelines: http://journals.plos.org/plosone/s/licenses-and-copyright.

We require you to either (1) present written permission from the copyright holder to publish these figures specifically under the CC BY 4.0 license, or (2) remove the figures from your submission:

1.         You may seek permission from the original copyright holder of Figure 1 to publish the content specifically under the CC BY 4.0 license.

We recommend that you contact the original copyright holder with the Content Permission Form (http://journals.plos.org/plosone/s/file?id=7c09/content-permission-form.pdf) and the following text:

“I request permission for the open-access journal PLOS ONE to publish XXX under the Creative Commons Attribution License (CCAL) CC BY 4.0 (http://creativecommons.org/licenses/by/4.0/). Please be aware that this license allows unrestricted use and distribution, even commercially, by third parties. Please reply and provide explicit written permission to publish XXX under a CC BY license and complete the attached form.”

Please upload the completed Content Permission Form or other proof of granted permissions as an "Other" file with your submission. 

In the figure caption of the copyrighted figure, please include the following text: “Reprinted from [ref] under a CC BY license, with permission from [name of publisher], original copyright [original copyright year].”

2.    If you are unable to obtain permission from the original copyright holder to publish these figures under the CC BY 4.0 license or if the copyright holder’s requirements are incompatible with the CC BY 4.0 license, please either i) remove the figure or ii) supply a replacement figure that complies with the CC BY 4.0 license. Please check copyright information on all replacement figures and update the figure caption with source information. If applicable, please specify in the figure caption text when a figure is similar but not identical to the original image and is therefore for illustrative purposes only.

3. In your Data Availability statement, you have not specified where the minimal data set underlying the results described in your manuscript can be found. PLOS defines a study's minimal data set as the underlying data used to reach the conclusions drawn in the manuscript and any additional data required to replicate the reported study findings in their entirety. All PLOS journals require that the minimal data set be made fully available. For more information about our data policy, please see http://journals.plos.org/plosone/s/data-availability.

Upon re-submitting your revised manuscript, please upload your study’s minimal underlying data set as either Supporting Information files or to a stable, public repository and include the relevant URLs, DOIs, or accession numbers within your revised cover letter. For a list of acceptable repositories, please see http://journals.plos.org/plosone/s/data-availability#loc-recommended-repositories. Any potentially identifying patient information must be fully anonymized.

Important: If there are ethical or legal restrictions to sharing your data publicly, please explain these restrictions in detail. Please see our guidelines for more information on what we consider unacceptable restrictions to publicly sharing data: http://journals.plos.org/plosone/s/data-availability#loc-unacceptable-data-access-restrictions. Note that it is not acceptable for the authors to be the sole named individuals responsible for ensuring data access.

We will update your Data Availability statement to reflect the information you provide in your cover letter.

Reviewers' comments:

Reviewer's Responses to Questions

Comments to the Author

1. Is the manuscript technically sound, and do the data support the conclusions?

The manuscript must describe a technically sound piece of scientific research with data that supports the conclusions. Experiments must have been conducted rigorously, with appropriate controls, replication, and sample sizes. The conclusions must be drawn appropriately based on the data presented.

Reviewer #1: Yes

Reviewer #2: Partly

**********

2. Has the statistical analysis been performed appropriately and rigorously?

Reviewer #1: Yes

Reviewer #2: No

**********

3. Have the authors made all data underlying the findings in their manuscript fully available?

The PLOS Data policy requires authors to make all data underlying the findings described in their manuscript fully available without restriction, with rare exception (please refer to the Data Availability Statement in the manuscript PDF file). The data should be provided as part of the manuscript or its supporting information, or deposited to a public repository. For example, in addition to summary statistics, the data points behind means, medians and variance measures should be available. If there are restrictions on publicly sharing data—e.g. participant privacy or use of data from a third party—those must be specified.

Reviewer #1: No

Reviewer #2: Yes

**********

4. Is the manuscript presented in an intelligible fashion and written in standard English?

PLOS ONE does not copyedit accepted manuscripts, so the language in submitted articles must be clear, correct, and unambiguous. Any typographical or grammatical errors should be corrected at revision, so please note any specific errors here.

Reviewer #1: Yes

Reviewer #2: Yes

**********

5. Review Comments to the Author

Please use the space provided to explain your answers to the questions above. You may also include additional comments for the author, including concerns about dual publication, research ethics, or publication ethics. (Please upload your review as an attachment if it exceeds 20,000 characters)

Reviewer #1: I very much enjoyed this manuscript and have an unusual recommendation for the authors. I found the Intro and Disc sections well written but somewhat telegraphic. I'm concerned that the significance of the realists may not come across to the general reader. I encourage the authors to consider expanding these sections to discuss the importance of their work at greater length.

Also, I did not see the data link that, I believe, PLOS One requires. If I missed it, I apologize. If it's not yet in the ms., it should be added

Reviewer #2: The manuscript “Cell wall O-acetyl and methyl esterification patterns of leaves reflected in atmospheric emission signatures of acetic acid and methanol” regards to the quantification of total meOH and AA emissions in Populus trichocarpa desiccated leaves at different developmental stages were taking into account the cell wall acetylation and methylation content highlighting the quantification of AA/meOH emission ratios as a potential tool for rapid phenotype screening of structural carbohydrate esterification. I consider the manuscript very interesting and topical in the field of plant physiography and biofuels. Developing a method based on two experimental approaches, able to dynamically quantify acetic acid simultaneously with methanol is very innovative. I find the presentation of the work quite good and I don't find too many problems in the language. However, there are some aspects that need to be reviewed before the work can be presentable.

Comments:

1) The introduction should be reviewed trying to replace some slightly dated references (Micheli et al etc). The role of PME, pectin methylesterification and methanol release in defense against pathogens should be described a little more thoroughly. For references see papers of these authors Bethke, Lionetti, Dorokhov.

2) The sentence on page 5 lane 106 suggests that the AA is expected to shrink during development ... review

3) Should figures 2 in the abscissa axis be seconds or minutes?

4) The statistical treatment of the data is not correctly presented. The histograms are not accompanied by any statistical sign (letters for ANOVA, asterisks, etc.). It is also unclear how many repetitions have been made. Every figure must have adequate references in this regard.

5) Figure 6 is more to review. It must be moved to supplementary materials

**********

6. PLOS authors have the option to publish the peer review history of their article (what does this mean?). If published, this will include your full peer review and any attached files.

If you choose “no”, your identity will remain anonymous but your review may still be made public.

Do you want your identity to be public for this peer review? For information about this choice, including consent withdrawal, please see our Privacy Policy.

Reviewer #1: No

Reviewer #2: No

[NOTE: If reviewer comments were submitted as an attachment file, they will be attached to this email and accessible via the submission site. Please log into your account, locate the manuscript record, and check for the action link "View Attachments". If this link does not appear, there are no attachment files to be viewed.]

While revising your submission, please upload your figure files to the Preflight Analysis and Conversion Engine (PACE) digital diagnostic tool, https://pacev2.apexcovantage.com/. PACE helps ensure that figures meet PLOS requirements. To use PACE, you must first register as a user. Registration is free. Then, login and navigate to the UPLOAD tab, where you will find detailed instructions on how to use the tool. If you encounter any issues or have any questions when using PACE, please email us at figures@plos.org. Please note that Supporting Information files do not need this step.

PLoS One. 2020 May 20;15(5):e0227591. doi: 10.1371/journal.pone.0227591.r002

Author response to Decision Letter 0


17 Mar 2020

Reviewer 1

Comment 1: I very much enjoyed this manuscript and have an unusual recommendation for the authors. I found the Intro and Disc sections well written but somewhat telegraphic. I'm concerned that the significance of the realists may not come across to the general reader. I encourage the authors to consider expanding these sections to discuss the importance of their work at greater length.

Response 1: We have included more detail on the role of pectin methylesterases and methanol in plant pathogen response, as suggested by Reviewer 2. We have also expanded the introduction and discussion to emphasize the importance of this work. This includes statements that highlight the broader importance of this work in terms of plant responses to abiotic and biotic stresses:

Line 64: “The pattern and degree of pectin methylation also impacts plant susceptibility to microbial infection [19], for instance wheat cultivars with more blockwise distribution of methyl esters were more susceptible to fungal infection than cultivars with more random methylation patterns [20]. Therefore, changes in esterification of cell walls and associated transport and metabolism of the released methanol and acetic acid could provide a rapid mechanism for plants to respond to abiotic and biotic stress.”

Line 73: “MeOH production in plants is largely attributed to changes in chemical and physical cell wall properties associated with the hydrolysis of methyl esters of cell wall carbohydrates like pectin [11,27–29]. However, this assertion lacks experimental evidence, which we aim to address in the present study.”

Line 101: “Therefore, it is vital to quantify the relationships between cell wall esters and foliar meOH and AA emissions to evaluate the hypothesis that emissions derive from cell wall de-esterification and to understand their physiological and biochemical roles during plant growth and development, adaptation to abiotic and biotic stress, mortality, and biomass decomposition.”

Line 396: “Therefore, in situ monitoring of atmospheric emissions of meOH and AA from terrestrial ecosystems could help improve predictions of both tree growth and mortality mechanisms and their sensitivities to environmental change.”

Comment 2: Also, I did not see the data link that, I believe, PLOS One requires. If I missed it, I apologize. If it's not yet in the ms., it should be added.

Response 2: We now include a link to download the data within the supporting information section:

Line 585: “Supporting material consisting of the raw experimental data files collected and analyzed in this study are available in electronic form free of charge: accessed through Mendeley Data (http://dx.doi.org/10.17632/7bdwbwy6wn.1). The supplementary data (Size: 169 MB) includes raw methanol and acetic acid emission data obtained from the PTR-MS and online TD-GC-MS as well as raw colorimetric assay data for leaf bulk methyl and O-acetyl ester content organized as follows:

Volatile emission folder:

• Real-time time meOH and AA emission data during leaf desiccation experiments (PTR-MS)

• Near real-time time meOH and AA emission data during leaf desiccation experiments (online GC-MS)

Cell wall esterification folder:

• Raw absorbance data and derived total methyl ester content of AIR samples (methyl ester assays)

• Raw absorbance data and derived total acetate ester content of AIR samples (acetate ester assays)

• Derived and compiled methyl and acetate ester content of AIR samples”

Reviewer 2

Comment 1: The manuscript “Cell wall O-acetyl and methyl esterification patterns of leaves reflected in atmospheric emission signatures of acetic acid and methanol” regards to the quantification of total meOH and AA emissions in Populus trichocarpa desiccated leaves at different developmental stages were taking into account the cell wall acetylation and methylation content highlighting the quantification of AA/meOH emission ratios as a potential tool for rapid phenotype screening of structural carbohydrate esterification. I consider the manuscript very interesting and topical in the field of plant physiography and biofuels. Developing a method based on two experimental approaches, able to dynamically quantify acetic acid simultaneously with methanol is very innovative. I find the presentation of the work quite good and I don't find too many problems in the language. However, there are some aspects that need to be reviewed before the work can be presentable.

Response 1: We greatly appreciate reviewer 2 for the review and support of our innovative approaches to study cell wall acetylation and methylation through simultaneous quantification of leaf cell wall esterification and atmospheric AA/meOH emission ratios.

Comment 2: The introduction should be reviewed trying to replace some slightly dated references (Micheli et al etc). The role of PME, pectin methylesterification and methanol release in defense against pathogens should be described a little more thoroughly. For references see papers of these authors Bethke, Lionetti, Dorokhov.

Response 2: We have updated some references in the introduction; replacing Micheli et al (2001) with Wormit et al, International Journal of Molecular Sciences (2018), Dorokhov et al, Frontiers in Plant Science (2018) and Saffer, Journal of Integrative Plant Biology (2018) (ref numbers 30, 32, 33). We have also included more detailed explanations of pectin methylation and methanol release in relation to pathogen defense (Line 64; and Line 87), including references (ref numbers 19, 20, 37: Lionetti et al, Journal of Plant Physiology (2012), Weitholter et al, Molecular Plant Microbe Interactions (2003), Dorokhov et al, PLOS Pathology (2012).

Comment 3: The sentence on page 5 lane 106 suggests that the AA is expected to shrink during development ... review

Response 3: We have included some further clarification and references in the sentence to explain why we suggest that AA emissions are hypothesized to decrease with increasing leaf age.

Line 123: “Given previous observations of decreasing foliar meOH emissions with leaf age [34], and the de-esterification of cell wall esters throughout plant development [48,49] we hypothesize that similar phenological pattern can be observed for AA emissions.”

Comment 4: Should figures 2 in the abscissa axis be seconds or minutes?

Response 4: The abscissa axis is in seconds.

Comment 5: The statistical treatment of the data is not correctly presented. The histograms are not accompanied by any statistical sign (letters for ANOVA, asterisks, etc.). It is also unclear how many repetitions have been made. Every figure must have adequate references in this regard.

Response 5: We have updated the figures to include statistical signs where appropriate (figures 3 and 5). The figure legends also contain a statement “n=7” indicating the number of replicates that were included in each figure and statistical test.

Comment 6: Figure 6 is more to review. It must be moved to supplementary materials

Response 6: We believe that this figure is valuable for understanding the results by an inter-disciplinary audience likely unfamiliar with the structure and esterification patterns of plant carbohydrates, therefore we believe it is justified to leave this figure within the main article.

Attachment

Submitted filename: Response to reviewers_22Feb2020.docx

Decision Letter 1

Federico Brilli

7 Apr 2020

Cell wall O-acetyl and methyl esterification patterns of leaves reflected in atmospheric emission signatures of acetic acid and methanol

PONE-D-19-34824R1

Dear Dr. Dewhirst,

I am pleased to inform you that your revised manuscript has successfully addressed the reviewers' comments and it will be formally accepted for publication once it complies with all outstanding technical requirements.

Within one week, you will receive an e-mail containing information on the amendments required prior to publication. When all required modifications have been addressed, you will receive a formal acceptance letter and your manuscript will proceed to our production department and be scheduled for publication.

Shortly after the formal acceptance letter is sent, an invoice for payment will follow. To ensure an efficient production and billing process, please log into Editorial Manager at https://www.editorialmanager.com/pone/, click the "Update My Information" link at the top of the page, and update your user information. If you have any billing related questions, please contact our Author Billing department directly at authorbilling@plos.org.

If your institution or institutions have a press office, please notify them about your upcoming paper to enable them to help maximize its impact. If they will be preparing press materials for this manuscript, you must inform our press team as soon as possible and no later than 48 hours after receiving the formal acceptance. Your manuscript will remain under strict press embargo until 2 pm Eastern Time on the date of publication. For more information, please contact onepress@plos.org.

With kind regards,

Federico Brilli, Ph.D.

Academic Editor

PLOS ONE

Additional Editor Comments (optional):

Reviewers' comments:

Acceptance letter

Federico Brilli

8 May 2020

PONE-D-19-34824R1

Cell wall O-acetyl and methyl esterification patterns of leaves reflected in atmospheric emission signatures of acetic acid and methanol

Dear Dr. Dewhirst:

I am pleased to inform you that your manuscript has been deemed suitable for publication in PLOS ONE. Congratulations! Your manuscript is now with our production department.

If your institution or institutions have a press office, please notify them about your upcoming paper at this point, to enable them to help maximize its impact. If they will be preparing press materials for this manuscript, please inform our press team within the next 48 hours. Your manuscript will remain under strict press embargo until 2 pm Eastern Time on the date of publication. For more information please contact onepress@plos.org.

For any other questions or concerns, please email plosone@plos.org.

Thank you for submitting your work to PLOS ONE.

With kind regards,

PLOS ONE Editorial Office Staff

on behalf of

Dr. Federico Brilli

Academic Editor

PLOS ONE

Associated Data

    This section collects any data citations, data availability statements, or supplementary materials included in this article.

    Supplementary Materials

    S1 Fig. PTR-MS and online GC-MS calibration.

    Example linear calibration responses for PTR-MS (A-B) and online GC-MS (C-D) to a primary gas-phase standard of acetic acid (AA) and methanol (meOH) on 22 June 2019.

    (TIF)

    S1 Dataset. Raw experimental data files.

    (DOCX)

    Attachment

    Submitted filename: Response to reviewers_22Feb2020.docx

    Data Availability Statement

    All associated data files are available from Mendeley Data accessed at http://dx.doi.org/10.17632/7bdwbwy6wn.1


    Articles from PLoS ONE are provided here courtesy of PLOS

    RESOURCES