Skip to main content
PLOS Genetics logoLink to PLOS Genetics
. 2020 May 11;16(5):e1008797. doi: 10.1371/journal.pgen.1008797

UVR8-mediated inhibition of shade avoidance involves HFR1 stabilization in Arabidopsis

Eleni Tavridou 1,2, Emanuel Schmid-Siegert 3, Christian Fankhauser 4, Roman Ulm 1,2,*
Editor: Ortrun Mittelsten Scheid5
PMCID: PMC7241853  PMID: 32392219

Abstract

Sun-loving plants perceive the proximity of potential light-competing neighboring plants as a reduction in the red:far-red ratio (R:FR), which elicits a suite of responses called the “shade avoidance syndrome” (SAS). Changes in R:FR are primarily perceived by phytochrome B (phyB), whereas UV-B perceived by UV RESISTANCE LOCUS 8 (UVR8) elicits opposing responses to provide a counterbalance to SAS, including reduced shade-induced hypocotyl and petiole elongation. Here we show at the genome-wide level that UVR8 broadly suppresses shade-induced gene expression. A subset of this gene regulation is dependent on the UVR8-stabilized atypical bHLH transcription regulator LONG HYPOCOTYL IN FAR-RED 1 (HFR1), which functions in part redundantly with PHYTOCHROME INTERACTING FACTOR 3-LIKE 1 (PIL1). In parallel, UVR8 signaling decreases protein levels of the key positive regulators of SAS, namely the bHLH transcription factors PHYTOCHROME INTERACTING FACTOR 4 (PIF4) and PIF5, in a COP1-dependent but HFR1-independent manner. We propose that UV-B antagonizes SAS via two mechanisms: degradation of PIF4 and PIF5, and HFR1- and PIL1-mediated inhibition of PIF4 and PIF5 function. This work highlights the importance of typical and atypical bHLH transcription regulators for the integration of light signals from different photoreceptors and provides further mechanistic insight into the crosstalk of UVR8 signaling and SAS.

Author summary

Sunlight provides the energy that powers photosynthesis and is thus of the utmost importance for plant growth and development. Plants grow in constantly changing environments, including highly variable light conditions. They have evolved specific light sensors (photoreceptors) that allow optimization of photosynthesis and survival, and adjusting growth and development to the prevailing environment. An intriguing example is the perception of competitors due to changes in the light transmitted and reflected by their leaves. As red light, but not far-red, is strongly absorbed by photosynthetic pigments, the red:far-red ratio (R:FR) is strongly reduced in the presence of competitors which is sensed by the phytochrome red/far-red photoreceptors. Detection of competitors results in stem elongation in shade-intolerant plants to overtop the neighbors and reach full sunlight (shade avoidance syndrome). UV-B sensed by the UVR8 photoreceptor inhibits shade avoidance by reducing the abundance and activity of specific transcriptional regulators PIF4 and PIF5. We have discovered an important role for an atypical transcriptional regulator HFR1 that is stabilized under UV-B, strongly contributing to the UVR8 photoreceptor-mediated repression of shade responses by counteracting PIF4 and PIF5 activities. This contributes significantly to a deeper mechanistic understanding of how plants integrate information from a complex light environment.

Introduction

Plants have evolved sophisticated sensory systems to respond and adapt appropriately to the environment. Light, in addition to being an energy source, is an important source of information about the environment for plants. Specific photoreceptors allow the detection of changes in light quality, duration, direction, and intensity, which is crucial to optimize photosynthesis, growth, and development, as well as to cope with light stress [1,2]. For example, plants growing in close proximity to their neighbors are able to sense that light resources may become limiting and preemptively elicit a suite of responses to avoid future shading, collectively known as shade avoidance syndrome (SAS) [3,4]. SAS promotes petiole and stem elongation so that a plant can outcompete its neighbors for light. SAS can be triggered in high PAR (photosynthetically active radiation) conditions through alterations in spectral composition and due to foliage properties. Photosynthetic pigments strongly absorb red (R) and blue (B) light and preferentially reflect or transmit far-red (FR) light. Thus, plants perceive a reduction in R:FR due to the scattering of FR from non-shading neighbors and initiate SAS [3,5].

Changes in R:FR are perceived by phytochrome B (phyB), which interconverts between an inactive (PrB) and an active (PfrB) state. Under high R:FR, the phyB photoequilibrium is shifted towards the active PfrB conformer that interacts with bHLH transcription factors of the Phytochrome Interacting Factor (PIF) family, including PIF4 and PIF5 that play a major role in shade responses [4,6,7]. Upon interaction with active PfrB, PIF4 and PIF5 are phosphorylated and targeted for proteasomal degradation, hence reducing the expression of shade response-associated genes [8,9]. However, under low R:FR, phyB is primarily in the inactive PrB state and unable to interact with and repress PIFs, thus allowing PIF-mediated activation of shade-response genes [8]. PIFs’ main targets are other transcription regulators mainly involved in auxin signaling and cell elongation [10] as well as additional bHLH transcription regulators including PHYTOCHROME INTERACTING FACTOR 3-LIKE 1 (PIL1) and LONG HYPOCOTYL IN FAR-RED1 (HFR1). HFR1 provides a negative feedback loop by interacting with PIF4 and PIF5 and forming non-functional heterodimers that can no longer bind to DNA, thus preventing an exaggerated shade response [11].

Ultraviolet-B (UV-B) is perceived by the UV RESISTANCE LOCUS 8 (UVR8) photoreceptor [12]. Upon UV-B exposure, UVR8 monomerises and interacts with CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) to trigger downstream signaling [1214]. COP1 is an E3 ubiquitin ligase that targets for proteasomal degradation transcriptional regulators that generally promote light responses and photomorphogenesis [1517]. Interaction of activated UVR8 with COP1 leads to COP1 inactivation and thus accumulation of COP1 target proteins, such as the bZIP transcription factor ELONGATED HYPOCOTYL 5 (HY5) [13,18,19]. Stabilized HY5 is crucial for the regulation of numerous UV-B-induced genes, including those that function in UV-B acclimation and tolerance [14,2026]. UV-B photomorphogenesis involves the inhibition of hypocotyl elongation and in general elicits opposite responses to shade signals [13,2731]. For example, UV-B was shown to antagonize auxin signaling and suppress shade-induced hypocotyl and petiole elongation, as well as shade marker gene induction [28,3235]. Molecularly, UVR8 activity was associated with the degradation of PIF4 and PIF5 [27,28,32,36], the key inducers of SAS [3,8,37]. It was recently postulated that COP1 directly interacts with PIF5, causing PIF5 stabilization by an unknown mechanism [32]. Active UVR8 disrupts this stabilization through interaction with COP1, triggering PIF5 instability under UV-B [32]. In parallel, UV-B-stabilized DELLA proteins may form non-DNA-binding heterodimers with PIFs and stabilized HY5 may compete with PIFs for the same promoters [28,3841]. Notwithstanding the abovementioned studies, the molecular mechanisms by which UVR8 signaling antagonizes SAS remain poorly understood.

Here we show that UV-B-activated UVR8 leads to the stabilization of the COP1 substrate HFR1, partially accounting for the UV-B-mediated suppression of shade marker gene induction. Furthermore, our data suggest that HFR1 acts cooperatively with PIL1 in the UV-B-mediated suppression of SAS. Moreover, PIF4 and PIF5 binding to promoters of shade-induced genes is reduced under supplemental UV-B, in agreement with the activity of HFR1 as well as the degradation of PIF4 and PIF5 under these conditions.

Results

UVR8-dependent stabilization of HFR1 suppresses induction of shade marker genes

As HFR1 is a COP1 substrate and activated UVR8 inactivates COP1 [17,18,4245], we hypothesized that HFR1 stability is regulated by UVR8 in response to UV-B, which may contribute to the antagonistic effect of UV-B on SAS. We thus tested the effect of UV-B and low R:FR on HFR1 promoter-driven HFR1-HA protein levels in an uvr8 null mutant background compared to in a wild-type background. Seven-day-old seedlings were irradiated at Zeitgeber time ZT3 with 3-h supplemental UV-B (+UVB), 3-h supplemental FR to create low R:FR (+FR), or a combination of the two treatments (+UVB+FR), and compared to seedlings maintained in white light as control (WL; -UVB-FR). Low R:FR treatment slightly increased HFR1-HA protein level, both in the absence and presence of UVR8, whereas HFR1 exhibited greater stabilization under UV-B which was UVR8 dependent (Fig 1A). Moreover, UV-B and low R:FR stabilized HFR1 in an additive manner (Fig 1A). HFR1 accumulation was associated with only a weak transcriptional activation of HFR1 under UV-B (S1 Fig). These results indicate that active UVR8 signaling leads to post-translational HFR1 stabilization, likely through COP1 inhibition.

Fig 1. UVR8-dependent stabilization of HFR1 suppresses activation of shade marker genes.

Fig 1

(A) Anti-HA immunoblot analysis of HFR1-HA levels in 7-day-old Col/ProHFR1:HFR1-3xHA (HFR1-HA) and uvr8-6/ProHFR1:HFR1-3xHA (uvr8/HFR1-HA) seedlings grown in long-day conditions under white light (WL) or white light supplemented at ZT3 with 3-h UV-B (+UVB), low R:FR (+FR), or a combination of both (+FR+UVB). Wild type (Col) is shown as negative control. The immunoblot was re-probed with anti-UVR8, as well as anti-actin as loading control. (B–E) RT-qPCR analysis of (B) PIL1, (C) XTR7, (D) ATHB2, and (E) IAA29 expression in 7-day-old wild-type (Col), uvr8-6, and hfr1-101 seedlings grown under white light and exposed to either UV-B (+UVB), low R:FR (+FR), or both (+FR+UVB) for 3 h or maintained under white light (WL). Error bars represent SEM of three biological replicates. Asterisks indicate a significant difference in transcript abundance compared to that under WL in each genotype (* p < 0.05; ** p < 0.01).

To test the contribution of HFR1 to UVR8-mediated suppression of low R:FR response, we analyzed shade-induced expression of shade marker genes PIL1, XYLOGLUCAN ENDOTRANSGLYCOSYLASE 7 (XTR7), ARABIDOPSIS THALIANA HOMEOBOX PROTEIN 2 (ATHB2), and INDOLE-3-ACETIC ACID INDUCIBLE 29 (IAA29) in uvr8 and hfr1 mutants in comparison to that in wild type. In each genotype, all four tested genes showed induced expression in response to low R:FR (+FR, shade), which was strongly suppressed by supplemental UV-B (+FR+UVB) in wild type but not in uvr8 (Fig 1B–1E). Interestingly, UV-B suppression of shade-induced PIL1 and ATHB2 expression was also absent in hfr1, comparable to that in uvr8 (Fig 1B and 1D). However, the HFR1-dependent UV-B effect was found to be gene specific, as the other tested shade marker genes XTR7 and IAA29 were repressed by UV-B in hfr1 (Fig 1C and 1E). These data show that HFR1 is required to repress a subset of shade-induced genes in response to UV-B.

UVR8 broadly suppresses shade gene induction

To investigate the extent of UVR8- and HFR1-dependent UV-B repression of shade-induced gene expression at the genome-wide level, we performed an RNA-Seq analysis comparing uvr8 and hfr1 transcriptomes with that of wild type under WL, +FR, +UVB, and +FR+UVB conditions. Shade significantly induced 315, 330, and 365 genes in wild type, uvr8, and hfr1, respectively (fold change > 2 and p < 0.05, with FDR 5%), with an overlap of 204 robustly shade-induced genes (Fig 2A and 2B, S1A–S1C and S2 Tables). The shade induction of 77% of the shade-induced genes (+FR versus WL) was repressed by supplemental UV-B in wild type (i.e. no or less induction under +FR+UVB versus +FR) (Fig 2A). This repression by UV-B was UVR8 dependent, as a minimal proportion of shade-induced genes was UV-B suppressed in uvr8 mutants (<2%) (Fig 2A). In hfr1, 58% of the shade-induced genes were repressed by UV-B treatment, which is significantly less than in wild type (Fig 2A). Indeed, among the 204 shade-induced genes common to all three genotypes, a cluster of 44 genes was found to be similarly regulated as PIL1: shade induced and UVB suppressed in wild type, but not in uvr8 and hfr1 (herein referred to as the PIL1-like cluster) (Fig 2C, S3 Table). In two independent hfr1 mutant lines, reverse transcription quantitative PCR (RT-qPCR) analysis of two selected genes from the PIL1-like cluster, SULFOTRANSFERASE 2A (ST2A) and FLOWERING PROMOTING FACTOR 1-LIKE PROTEIN 1 (FLP1), supported an essential role of HFR1 in the UV-B-repressive effect on their shade-induced expression (Fig 2D and 2E). Our data suggest that the antagonizing effect of UV-B on shade-responsive gene expression is broad at the genome-wide level, fully dependent on UVR8, and dependent on HFR1 for a subset of genes.

Fig 2. UV-B-activated UVR8 broadly suppresses shade-responsive gene expression.

Fig 2

(A) Pie charts showing the percentage and number of shade-induced genes that are repressed by UV-B (FC > 2, adjusted pvalue < 0.05) in wild type (Col), uvr8-6, and hfr1-101 seedlings. (B) Venn diagram representing the intersection between shade-induced genes in wild type (Col +FR/WL ↑), uvr8-6 (uvr8 +FR/WL↑), and hfr1-101 (hfr1 +FR/WL ↑) seedlings (FC > 2, adjusted pvalue < 0.05). (C) Venn diagram representing the intersection between shade-induced genes that are repressed by UV-B in a UVR8-dependent manner in wild type (Col) but not in hfr1-101 (FC > 2, adjusted pvalue < 0.05). The intersection of 44 genes is referred to as the PIL1 cluster. (D, E) RT-qPCR analysis of (D) ST2A and (E) FLP1 expression in 7-day-old Col, hfr1-101, and hfr1-4 seedlings grown under the indicated light conditions for 3 h. Error bars represent SEM of three biological replicates. Asterisks indicate a significant difference compared to that under WL in each genotype (* p < 0.05; ** p < 0.01).

HFR1 and PIL1 act redundantly in UV-B suppression of shade-induced gene expression

Similar to HFR1, PIL1 is a negative regulator of shade responses and targeted for proteasomal degradation by COP1 [46,47]. As PIL1 is not UV-B repressed in hfr1 mutants, we tested whether PIL1 plays a redundant role with HFR1, particularly in the regulation of the subset of genes that are UV-B repressed in an HFR1-independent manner, as exemplified by the FAR-RED-ELONGATED HYPOCOTYL1-LIKE (FHL) gene. In agreement with the RNA-Seq data, FHL expression was induced under +FR and this expression induction was repressed by UV-B under +FR+UVB in wild type as well as in pil1 and hfr1 single mutants, although to a reduced extent in the latter (Fig 3A). By contrast, however, FHL shade-induced expression was not reduced by UV-B in the hfr1 pil1 double mutant (Fig 3A). This was observed to a much lesser extent for two further HFR1-independent marker genes, YUCCA8 (YUC8) and GH3.3 (S2A and S2B Fig). PIL2, a marker gene for which the UV-B-repressive effect on its shade-induced expression depends on HFR1, was typically repressed in the pil1 single mutant but hyper-induced in the hfr1 pil1 double mutant under +FR+UVB (Fig 3B). These results show that HFR1 and PIL1 play a redundant role in the UV-B repression of, at least, shade-induced FHL expression.

Fig 3. PIL1 and HFR1 act redundantly in UVR8-mediated repression of shade-induced FHL and PIL2 expression.

Fig 3

(A, B) RT-qPCR analysis of (A) FHL and (B) PIL2 expression in 7-day-old seedlings of wild type (Col), hfr1-101, pil1-6, and hfr1-101 pil1-6 grown under constant white light (WL) and transferred to the indicated experimental light conditions for 3 h. Error bars represent SEM obtained from three biological replicates. Asterisks indicate the statistical significance compared to WL in each genotype (* p < 0.05; ** p < 0.01).

UVR8 negatively regulates PIF4 and PIF5 levels and chromatin association

In order to understand how activated UVR8 may affect the key shade-response regulators PIF4 and PIF5, we tested the effect of UV-B on protein levels of PIF4-HA and PIF5-HA expressed under the constitutive CaMV 35S-promoter. In agreement with previous data [8,28], PIF4-HA and PIF5-HA accumulated under low R:FR (+FR) and UV-B severely decreased their protein abundances under +FR+UVB conditions (Fig 4A and 4B). UV-B-induced PIF4 and PIF5 degradation was shown to be UVR8 dependent, as their levels were not reduced in the absence of UVR8 (Fig 4A and 4B).

Fig 4. UVR8 induces PIF4 and PIF5 degradation in response to UV-B, independently of BOP2.

Fig 4

Anti-HA immunoblot analysis of HA-tagged PIF4 and PIF5 proteins in 7-day-old seedlings grown in long-day conditions under white light and exposed to low R:FR with (+) or without (-) 3-h supplemental narrowband UV-B at ZT3. Wild type (Col) is shown as negative control. (A) PIF4-HA protein levels were analyzed in Col/ProPIF4:PIF4-3xHA (PIF4-HA) and uvr8-6/ProPIF4:PIF4-3xHA (uvr8/PIF4-HA). (B) PIF5-HA protein levels were analyzed in Col/ProPIF5:PIF5-3xHA (PIF5-HA) and uvr8-6/ProPIF5:PIF5-3xHA (uvr8/PIF5-HA). (C) PIF4-HA protein levels were analyzed in pif4-101/ProPIF4:PIF4-3xHA (pif4/PIF4-HA) and pif4-101 bop2-2/ProPIF4:PIF4-3xHA (pif4 bop2/PIF4-HA). (D) PIF4-HA protein levels were analyzed in Col/ProPIF4:PIF4-3xHA (PIF4-HA) and cop1-4/ProPIF4:PIF4-3xHA (cop1-4/PIF4-HA). Blots were re-probed with anti-UVR8 (A and B) as well as anti-actin as loading control (A–D). Numbers under lanes indicate relative band intensities.

We used pif4/PIF4-HA and pif4 bop2/PIF4-HA lines to determine whether the BOP2 E3 ubiquitin ligase [48] was involved in UV-B-induced PIF4 degradation. However, although higher levels of PIF4-HA were detected in the absence of BOP2 under +FR conditions as expected, supplemental UV-B severely decreased PIF4-HA levels in both the bop2 and wild-type backgrounds (Fig 4C). Moreover, PIF4-HA levels were reduced in cop1-4 mutants compared to that in a wild-type background under +FR, but no UV-B effect could be detected in cop1-4 in agreement with the role of COP1 in UV-B signaling (Fig 4D) [14]. Furthermore, PIF4 and PIF5 expression levels were found to be downregulated by UV-B in a UVR8-dependent but HFR1-independent manner (S3A and S3B Fig). Our data suggest that activated UVR8 is responsible for the decrease in PIF4 and PIF5 levels under +FR+UVB conditions, which, at least in the case of PIF4, is independent of the E3 ubiquitin ligase BOP2.

In response to shade, PIF4 and PIF5 are known to directly bind to G-boxes in the promoters of shade-regulated genes. PIL1 and XTR7 are among those genes known to be direct targets of PIF4 and PIF5 [11,49,50]. Chromatin immunoprecipitation (ChIP) assays showed that UV-B, in a UVR8-dependent manner, abolished PIF4 and PIF5 association with regions of the PIL1, XTR7 and HFR1 promoters that contain G-boxes (Fig 5 and S4 Fig). Collectively, our data suggest that UVR8 signaling impairs PIF4 and PIF5 activities by eliciting their degradation.

Fig 5. UV-B impairs PIF4 binding to shade marker genes’ promoters in a UVR8-dependent manner.

Fig 5

(A) Schematic representation of PIL1 and XTR7 with G-boxes and regions amplified in ChIP-qPCR indicated. (B, C) PIF4-HA chromatin association in Col/ProPIF4:PIF4-3xHA (PIF4-HA) and uvr8-6/ProPIF4:PIF4-3xHA (uvr8/PIF4-HA). Ten-day-old seedlings were grown in long-day conditions under white light and exposed to low R:FR with (+) or without (-) 3-h supplemental narrowband UV-B at ZT3. ChIP-qPCR was performed for (B) PIL1 and (C) XTR7 promoters. ChIP data are presented as the percentage recovered from the total input DNA (% Input). Data shown are representative of three independent biological replicates (see S5A–S5D Fig). Error bars represent SD of three technical replicates. Immunoprecipitated DNA was quantified by qPCR using primers in the promoter regions containing G-boxes (region 1, ProPIL1_-1417; region 3, ProXTR7_-197) or control regions without G-boxes (region 2, ProPIL1_+1816; region 4, ProXTR7_-664).

HFR1 is not involved in the UV-B-mediated downregulation of PIF4 and PIF5

We further tested whether HFR1 could affect the regulation of PIF4 and/or PIF5 protein levels, similar to what has been previously suggested for PIF1 and HFR1 [51]. However, in an hfr1 background, PIF4-HA accumulation under +FR and degradation under +FR+UVB were comparable to that in the wild-type background (Fig 6A and 6B). In agreement, ChIP experiments showed that PIF4-HA chromatin association was reduced in both the hfr1 and wild-type backgrounds under +FR+UVB compared to that under +FR (Fig 6C). Although the effect seems reduced in hfr1 mutants, which would be in agreement with the known activity of HFR1 heterodimerizing with PIF4 and PIF5 [11], this has only been clearly observed in two out of three independent repetitions (Fig 6C, and S5E and S5F Fig). Notwithstanding this, these results illustrate that HFR1 is not required for the UVR8-mediated destabilization of PIF4 and PIF5. Thus, the absence of a UV-B effect on the shade-induced expression of PIL1 in hfr1 implies that the transcriptional regulation of PIL1 and likely PIL1-like cluster genes involves additional molecular players.

Fig 6. UV-B-induced PIF4 degradation and reduced association with shade marker genes’ promoters is independent of HFR1.

Fig 6

(A) Anti-HA immunoblot analysis of PIF4-HA in 7-day-old seedlings grown in long-day conditions under white light and exposed to 3-h low R:FR (+FR) at ZT3 in the presence (+UVB) or absence of supplemental UV-B (-UVB). Wild type (Col) treated with low R:FR is shown as negative control. PIF4-HA protein levels were analyzed in Col/ProPIF4:PIF4-3xHA (PIF4-HA) and hfr1-101/ProPIF4:PIF4-3xHA (hfr1/PIF4-HA). Blot was re-probed with anti-actin as loading control. (B) Quantification of the immunoblot shown in (A). Error bars represent SD of three biological replicates. (C) Chromatin association of PIF4-HA in 10-day-old Col/ProPIF4:PIF4-3xHA (PIF4-HA) and hfr1-101/ProPIF4:PIF4-3xHA (hfr1/PIF4-HA) seedlings grown in long-day conditions under white light and exposed at ZT3 to 3-h low R:FR with (+) or without (-) supplemental UV-B. Col was included as negative control. ChIP-qPCR was performed for the PIL1 promoter. ChIP of DNA associated with PIF4-HA is presented as the percentage recovered from the total input DNA (% Input). Data shown are representative of two independent biological replicates (see S5E and S5F Fig). Error bars represent SD of three technical replicates. Immunoprecipitated DNA was quantified by qPCR using primers in the promoter region containing a G-box (region 1, ProPIL1_-1417) or control region without a G-box (region 2, ProPIL1_+1816). (D) Schematic representation of PIL1 with G-boxes and regions amplified in ChIP-qPCR indicated.

Discussion

UV-B provides an unequivocal signal for sunlight exposure that inhibits SAS, which is applicable such as upon emergence of plant tissues from a canopy. UV-B perceived by UVR8 broadly suppresses shade-induced gene expression, and inhibits shade-induced hypocotyl and petiole elongation [28,33, and this work]. This study further shows that UVR8-mediated inhibition of the E3 ubiquitin ligase COP1 results in the stabilization of its target protein HFR1, a negative regulator of PIF4 and PIF5 transcription factors. In addition to PIF4 and PIF5 degradation, this mechanism involving HFR1 strongly contributes to UV-B-mediated SAS suppression. Our observations thus identify HFR1 as a molecular effector of UVR8 photoreceptor signaling to antagonize plant shade avoidance.

PIF4 and PIF5 are key bHLH proteins for elongation growth, particularly in response to elevated temperature and shade [4,6,52,53]. The regulation of PIF4 and PIF5 includes their direct interaction with phytochrome and cryptochrome photoreceptors, as well as their light-dependent degradation [8,9,5456]. Recently, the CUL3BOP2 E3 ubiquitin ligase complex was shown to ubiquitinate PIF4, thus targeting it for proteasomal degradation [48]. PIF5, on the other hand, has recently been shown to be stabilized by the CUL4COP1-SPA E3 ubiquitin ligase complex in the dark and in shade, whereas CUL4COP1-SPA promotes PIF5 ubiquitination in response to red light [32,57]. Interestingly, activated UVR8 was found to disrupt COP1 stabilization of PIF5 in shade, which contributes to PIF5 ubiquitination and degradation under UV-B [27,28,32]. In contrast to phytochrome and cryptochrome mechanisms involving direct protein-protein interactions with PIF4 and PIF5, no direct interaction has been detected between these transcription factors and UVR8 [28,32]. Moreover, whereas UVR8 is known to interact with and inhibit COP1 in response to UV-B [13,17,18], which is linked to PIF5 destabilization [32], our data suggest that PIF4 degradation under UV-B is independent of BOP2, despite clear stabilization of PIF4-HA in the bop2 background under our growth conditions that is in agreement with previously published data [48]. As PIF4 levels are also reduced in cop1-4 mutants and no additional UV-B-mediated degradation is detectable in the absence of functional COP1, COP1-mediated stabilization of PIF4 may be similarly disrupted by activated UVR8, as previously suggested for PIF5 [32]. It is interesting to note that UV-B-mediated degradation of PIF4 is temperature dependent in that it was observed at 20°C but not at the elevated temperature of 28°C in previous work [36]. Notwithstanding this, the E3 ubiquitin ligase for PIF4 and PIF5 ubiquitination and proteasomal degradation under UV-B remains to be identified.

The UVR8 photoreceptor contains a functionally relevant C-terminal domain with a domain that mimics the COP1 interaction domains of COP1 substrates, including that of HFR1 [18,45,58]. Activation of UVR8 results in high-affinity cooperative binding of COP1 through its VP motif and its photosensory domain, which prevents binding of COP1 to HFR1 and thus results in HFR1 stabilization under UV-B [18]. Stabilized HFR1 inhibits the remaining non-degraded PIF4 and PIF5 pool under UV-B through heterodimer formation and inhibition of their binding to DNA [11], thus contributing to the antagonizing effect of UVR8 on both thermomorphogenesis as well as shade responses [36, and this work]. In addition to the two post-translational mechanisms of regulating PIF4 and PIF5 activities, namely degradation and stabilization of the negative regulator HFR1, PIF4 and PIF5 are also transcriptionally repressed by UVR8 and COP1 in response to UV-B [28,32,36] (S3 Fig). The resulting repression of PIF4 and PIF5 activities results in repression of auxin synthesis and responses causing reduced hypocotyl and petiole elongation, thus underlying how UV-B strongly antagonizing SAS and thermomorphogenesis [7,28,34,36].

PIL1 is an early shade-responsive gene encoding the bHLH transcription factor PIL1, which is also targeted for ubiquitination and degradation by COP1 [11,47,59]. Although PIL1 is a well-established negative regulator of SAS, its mechanism of action remains poorly understood. PIL1 was found to interact with PIF5 and to form a negative feedback loop regulating the activity of its own promoter [46]. However, whether PIL1 competes with PIFs for binding to the same G-boxes or forms non-DNA-binding heterodimers, similar to HFR1, remains elusive [46,47]. Independent of the mechanistic aspects, we show that shade-induced PIL1 expression is UV-B repressed in the absence of HFR1. Interestingly, we find that PIL1 acts in partial redundancy with HFR1 to repress shade marker genes in the presence of UV-B (Fig 3). Additional atypical bHLH transcription regulators could be involved in the UV-B suppression of shade responses, such as PHYTOCHROME RAPIDLY REGULATED 1 (PAR1) and PAR2, which are negative regulators of SAS with similar activities as HFR1 [6062].

Collectively, we show that activated UVR8 broadly represses SAS, and that this is associated with negative regulation of PIF4 and PIF5 protein levels and activities, the latter likely involving HFR1 and PIL1 as inhibitors of PIF4 and PIF5. The involvement of additional PIF4 and/or PIF5 inhibitors in UVR8 repression of SAS remains to be investigated. In addition to the exposure of plants to full sunlight, SAS is also inhibited by sunflecks through phytochrome-, cryptochrome- and UVR8-mediated induction of the bZIP transcription factors HY5 and HYH [63,64]. The involvement of PIF4 and PIF5, as well as HFR1, under such conditions remains to be investigated and will contribute to our mechanistic understanding of SAS repression by a complex photoreceptor and signaling network.

Materials and methods

Plant material and generation of transgenic lines

The uvr8-6 [13], cop1-4 [65], hfr1-101 (formerly rsf1) [66], hfr1-4 [67], and pil1-6 [46] mutants are in the Columbia (Col) accession. The hfr1-101 pil1-6 double mutant was generated by genetic crossing followed by PCR genotyping of F2 plants (S4 Table).

hfr1-101/ProHFR1:HFR1-3xHA, pif5-1/ProPIF5:PIF5-3xHA, pif4-101/ProPIF4:PIF4-3xHA, and pif4-101 bop2-2/ProPIF4:PIF4-3xHA transgenic lines were described before [36, 48, 68]. cop1-4/ProPIF4:PIF4-3xHA, uvr8-6/ProPIF4:PIF4-3xHA, and uvr8-6/ProPIF5:PIF5-3xHA were generated by genetic crossing.

Growth conditions and light treatments

Arabidopsis seeds were surface sterilized with sodium hypochlorite and grown on half-strength Murashige and Skoog basal salt medium (MS; Duchefa) containing 1% (wt/vol) phytagel (Sigma) and 1% (wt/vol) sucrose in either a 16-h/8-h light/dark cycle or continuous light, as indicated.

For gene expression analysis, seeds were stratified for at least 2 days at 4°C and were germinated at 22°C in a standard growth chamber (Percival Scientific) that contains LED lampbanks (CLF floralLED series, CLF Plant Climatics) under constant white light (R:FR = 4.7) of 60 μmol m-2 s-1 overall intensity measured using a LI-COR 250A light meter (LI-COR Biosciences). For low R:FR treatments, PAR remained constant with enrichment in FR provided by supplementary FR LEDs resulting in a R:FR ratio of 0.05. Supplementary UV-B was provided by Philips TL20W/01RS narrowband tubes (0.06 mW cm−2 s-1; measured with a VLX-3W Ultraviolet Light Meter equipped with a CX-312 sensor, Vilber Lourmat). The UV-B range was modulated by the use of 3-mm transmission cut-off filters of the WG series (Schott Glaswerke).

For immunoblot analysis and ChIP assays, seeds were stratified for at least 2 days at 4°C and were germinated at 22°C in a standard growth chamber (MLR-350, Sanyo, Gunma, Japan) with 60 μmol m-2 s-1 white light and a 16-h/18-h light/dark cycle for 7 and 10 days, respectively. On day 7 or 10 at Zeitgeber Time 3 (ZT3), seedlings were transferred into a Percival growth chamber for a 3-h treatment under low R:FR (0.05) with or without supplemental UV-B (0.06 mW cm−2 s-1).

Hypocotyl length measurements

Measurement of hypocotyl length was performed by ImageJ software (https://imagej.nih.gov/ij/). A minimum of 40 seedlings were measured per treatment and genotype, with at least two independent experimental repetitions. For each experiment, ANOVA type I statistical analysis was performed followed by Tukey HSD’s post-hoc test. Letters were assigned to each statistically similar group with p > 0.05.

Protein extraction and immunoblot analysis

Total proteins were extracted from Arabidopsis seedlings in extraction buffer (50mM Tris-HCl pH 7.6, 150mM NaCl, 5mM MgCl2, 30% (v/v) glycerol, 10μM MG132, 10μM 3,4-dichloroisocoumarin, 1% (v/v) Sigma protease inhibitor cocktail, 0.1% (v/v) Igepal). Total protein was quantified by Bio-Rad Protein Assay (Bio-rad). Proteins were separated by SDS-PAGE and transferred to PVDF membranes according to the manufacturer’s instructions (Bio-rad). Anti-HA (HA.11, Covance), anti-actin (Sigma-Aldrich), and anti-UVR8(426–440) [13] were used as primary antibodies, with horseradish peroxidase (HRP)-conjugated anti-mouse and anti-rabbit immunoglobulins used as secondary antibodies. Chemiluminescent signals were generated by using an Amersham ECL Select Western Blotting Detection Reagent kit (GE Healthcare, Little Chalfont, UK) and detected with an ImageQuant LAS 4000 mini CCD camera system (GE Healthcare).

Reverse transcription quantitative PCR

Arabidopsis total RNA was isolated with Plant RNeasy kit (Qiagen) and treated with DNaseI according to the manufacturer’s instructions. cDNA synthesis and quantitative PCR (qPCR) using PowerUpSYBR Green Master Mix reagents (Applied Biosystems) and a QuantStudio 5 real-time PCR system (Thermo Fisher Scientific) were performed as previously described [69]. Gene-specific primers used for PIL1, XTR7, ATHB2, IAA29, ST2A, FLP1, FHL, PIL2, HFR1, GH3.3, YUC8, PIF4, PIF5, and PP2A (reference gene) are listed in S4 Table. Expression values were calculated using the ΔΔCt method [70] and normalized to that in the wild type. Each reaction was performed in technical triplicates; data shown are from three independent biological repetitions.

RNA-seq analysis

RNA quality control, library preparation using TruSeqUD Stranded mRNA (Illumina), and sequencing on an Illumina HiSeq 2500 system using 100-bp single-end reads protocol were performed at the iGE3 genomics platform of the University of Geneva. Quality control was performed with FastQC v.0.10.2. Reads were mapped to Arabidopsis TAIR-10 genome using TopHat v2.0.13, resulting in an average alignment rate of approximately 92%. The BAM files were further processed with PicardTools v1.80 and counts obtained using HTSeq v.0.6.1. Counts were filtered for lowly expressed genes (to 20,926 genes) and normalized according to library size. Normalization and differential expression analysis was performed with the R/Bioconductor package edgeR v.3.4.2.

Differentially expressed genes were estimated using a GLM approach (General Linear Model), negative binomial distribution and a quasi-likelihood F-test. Pairwise comparisons (GLM, quasi-likelihood F-test) were performed on the filtered dataset with 2 factors defined (genotype and condition). Genes with a fold change > 2 and p < 0.05 (with FDR 5%) were considered differentially expressed. For further analysis, data sets were filtered for genes differentially expressed in response to UV-B in the wild type but not in uvr8. Venn diagrams were generated using a webtool (http://bioinformatics.psb.ugent.be/webtools/Venn/).

Chromatin immunoprecipitation (ChIP) assays

Chromatin was immunoprecipitated with polyclonal ChIP-grade anti-HA antibodies (Abcam), as previously described [23,25]. ChIP-qPCR data were obtained using PowerUP SYBR Green Master Mix Kit and a QuantStudio 5 Real-Time PCR system (Applied Biosystems), with primers as listed in S4 Table. qPCR data were analyzed according to the percentage of input method [71]. Technical error bars represent standard deviation and were calculated according to the Applied Biosystems user manual.

Supporting information

S1 Fig. HFR1 expression in response to UV-B.

(A) RT-qPCR analysis of HFR1 expression in 4-day-old wild-type (Col) seedlings exposed to narrowband UV-B for 1 and 3 hours (1-h/3-h UVB) or not (WL). Error bars represent SEM of three independent biological replicates. Asterisks indicate a significant increase in transcript abundance compared to that under WL (*p < 0.05). (B) RT-qPCR analysis of HFR1-3xHA expression in 4-day-old seedlings of Col/ProHFR1:HFR1-3xHA (HFR1-HA) and uvr8-6/ProHFR1:HFR1-3xHA (uvr8/HFR1-HA) grown under white light (WL). Error bars represent SE of three independent biological replicates.

(PDF)

S2 Fig. PIL1 and HFR1 act redundantly in UVR8-mediated repression of shade-induced YUC8 and GH3.3 expression.

(A, B) RT-qPCR analysis of (A) YUC8 and (B) GH3.3 expression in 7-day-old wild-type (Col), hfr1-101 (hfr1), pil1-6 (pil1), and hfr1-101 pil1-6 (hfr1pil1) seedlings grown under white light (WL) and exposed to 3-h low R:FR (+FR) or to 3-h low R:FR with supplemental UV-B (+FR +UVB), compared to seedlings maintained under WL as control. Error bars represent SEM of three independent biological replicates. Asterisks indicate a significant difference in transcript abundance compared to that under WL in each genotype (* p < 0.05; ** p < 0.01). (C) Hypocotyl length measurements of Col, hfr1, pil1, and hfr1 pil1 seedlings grown in long-day conditions for 3 days before being transferred to WL, +UVB, +FR, and +FR+UVB for 4 days. Data represent mean length ± SE (n ≥ 40).

(PDF)

S3 Fig. HFR1 does not play a role in UVR8-dependent transcriptional repression of PIF4 and PIF5 under UV-B.

(A, B) RT-qPCR analysis of (A) PIF4 and (B) PIF5 expression in 7-day-old wild-type (Col), uvr8-6, and hfr1-101 seedlings grown under white light (WL) and exposed to supplemental 3-h UV-B (+UVB), low R:FR (+FR), or low R:FR and UV-B (+FR+UVB) compared to seedlings maintained under WL as control. Error bars represent SEM of three independent biological replicates. Asterisks indicate a significant difference in transcript abundance compared to that of WL in each genotype (* p < 0.05; ** p < 0.01).

(PDF)

S4 Fig. UV-B represses PIF5 binding to promoters of shade marker genes.

(A, B) PIF5-HA chromatin association in Col/ProPIF5:PIF5-3xHA (PIF5-HA). Ten-day-old seedlings were grown in long-day conditions under white light and exposed at ZT3 to 3-h low R:FR with or without supplemental narrowband UVB. ChIP-qPCR was performed for (A) PIL1 and (B) HFR1 promoters. The numbers of the analyzed DNA fragments indicate the positions of the 5’ base pair of the amplicon relative to the translation start site (referred to as position +1). Fragments designated as ProPIL1_-1417 and ProHFR1_-1689 contain a G-box, whereas ProPIL1_+1816 and ProHFR1_-202 are devoid of a G-box. ChIP of DNA associated with PIF5-HA is presented as the percentage recovered from the total input DNA (% Input). Data shown are representative of three independent biological replicates. Error bars represent SD of three technical replicates.

(PDF)

S5 Fig. Independent repetitions of ChIP data related to Fig 5B and 5C and Fig 6C.

(A-D) PIF4-HA chromatin association in Col/ProPIF4:PIF4-3xHA (PIF4-HA) and uvr8-6/ProPIF4:PIF4-3xHA (uvr8/PIF4-HA). Ten-day-old seedlings were grown in long-day conditions under white light and exposed to low R:FR with (+) or without (-) 3-h supplemental narrowband UV-B at ZT3. ChIP-qPCR was performed for (A,B) PIL1 (repetitions of data shown in Fig 5B) and (C,D) XTR7 promoters (repetitions of data shown in Fig 5C). (E,F) Chromatin association of PIF4-HA in 10-day-old Col/ProPIF4:PIF4-3xHA (PIF4-HA) and hfr1-101/ProPIF4:PIF4-3xHA (hfr1/PIF4-HA) seedlings grown in long-day conditions under white light and exposed at ZT3 to 3-h low R:FR with (+) or without (-) supplemental UV-B. ChIP-qPCR was performed for the PIL1 promoter (repetitions of data shown in Fig 6C). Error bars represent SD of three technical replicates.

(PDF)

S1 Table

Intersection of genes upregulated by low R:FR and repressed by UVB in wild type (Col, S1A Table), uvr8-6 (S1B Table) and hfr1-101 (S1C Table) (lists corresponding to Fig 2A).

(XLSX)

S2 Table. Genes upregulated by low R:FR in Col wild type, uvr8-6, and hfr1-101 (lists corresponding to Fig 2B).

(XLSX)

S3 Table. Intersection of genes upregulated by low R:FR and repressed by UV-B in wild type and genes upregulated by low R:FR and not repressed by UV-B in hfr1-101 mutant (lists corresponding to Fig 2C).

(XLSX)

S4 Table. Oligonucleotide sequences used in this study.

(XLSX)

Acknowledgments

We thank Emilie Demarsy for helpful comments on the manuscript, Ove Nilsson for kindly providing bop2-related seeds, and Patricia Hornitschek and Séverine Lorrain for generating hfr1-101/ProHFR1:HFR1-3xHA and pif5-1/ProPIF5:PIF5-3xHA lines, respectively. RNA-Seq experiments were performed at the iGE3 genomics platform of the University of Geneva (https://ige3.genomics.unige.ch/). We thank Natacha Civic and Céline Delucinge-Vivier of the iGE3 genomics platform for initial bioinformatics analysis of the RNA-Seq data.

Data Availability

RNA-Seq data reported in this article have been deposited in NCBI’s Gene Expression Omnibus and are accessible through GEO Series accession number GSE146125.

Funding Statement

This work was supported by the University of Geneva and the Swiss National Science Foundation (grants no. 31003A_175774 to RU, and CRSII3_154438 to RU and CF). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

  • 1.Galvao VC, Fankhauser C. Sensing the light environment in plants: photoreceptors and early signaling steps. Curr Opin Neurobiol. 2015; 34: 46–53. 10.1016/j.conb.2015.01.013 [DOI] [PubMed] [Google Scholar]
  • 2.Demarsy E, Goldschmidt-Clermont M, Ulm R. Coping with 'dark sides of the sun' through photoreceptor signaling. Trends Plant Sci. 2018; 23: 260–271. 10.1016/j.tplants.2017.11.007 [DOI] [PubMed] [Google Scholar]
  • 3.Casal JJ. Shade avoidance. Arabidopsis Book. 2012; 10: e0157 10.1199/tab.0157 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Fiorucci AS, Fankhauser C. Plant strategies for enhancing access to sunlight. Curr Biol. 2017; 27: R931–R40. 10.1016/j.cub.2017.05.085 [DOI] [PubMed] [Google Scholar]
  • 5.Ballare CL, Pierik R. The shade-avoidance syndrome: multiple signals and ecological consequences. Plant Cell Environ. 2017; 40: 2530–2543. 10.1111/pce.12914 [DOI] [PubMed] [Google Scholar]
  • 6.Casal JJ. Photoreceptor signaling networks in plant responses to shade. Annu Rev Plant Biol. 2013; 64: 403–427. 10.1146/annurev-arplant-050312-120221 [DOI] [PubMed] [Google Scholar]
  • 7.Fraser DP, Hayes S, Franklin KA. Photoreceptor crosstalk in shade avoidance. Curr Opin Plant Biol. 2016; 33: 1–7. 10.1016/j.pbi.2016.03.008 [DOI] [PubMed] [Google Scholar]
  • 8.Lorrain S, Allen T, Duek PD, Whitelam GC, Fankhauser C. Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors. Plant J. 2008; 53: 312–323. 10.1111/j.1365-313X.2007.03341.x [DOI] [PubMed] [Google Scholar]
  • 9.Shen Y, Khanna R, Carle CM, Quail PH. Phytochrome induces rapid PIF5 phosphorylation and degradation in response to red-light activation. Plant Physiol. 2007; 145: 1043–1051. 10.1104/pp.107.105601 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Leivar P, Monte E. PIFs: systems integrators in plant development. Plant Cell. 2014; 26: 56–78. 10.1105/tpc.113.120857 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Hornitschek P, Lorrain S, Zoete V, Michielin O, Fankhauser C. Inhibition of the shade avoidance response by formation of non-DNA binding bHLH heterodimers. EMBO J. 2009; 28: 3893–3902. 10.1038/emboj.2009.306 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Rizzini L, Favory JJ, Cloix C, Faggionato D, O'Hara A, Kaiserli E, et al. Perception of UV-B by the Arabidopsis UVR8 protein. Science. 2011; 332: 103–106. 10.1126/science.1200660 [DOI] [PubMed] [Google Scholar]
  • 13.Favory JJ, Stec A, Gruber H, Rizzini L, Oravecz A, Funk M, et al. Interaction of COP1 and UVR8 regulates UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis. EMBO J. 2009; 28: 591–601. 10.1038/emboj.2009.4 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Oravecz A, Baumann A, Mate Z, Brzezinska A, Molinier J, Oakeley EJ, et al. CONSTITUTIVELY PHOTOMORPHOGENIC1 is required for the UV-B response in Arabidopsis. Plant Cell. 2006; 18: 1975–1990. 10.1105/tpc.105.040097 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Lau OS, Deng XW. The photomorphogenic repressors COP1 and DET1: 20 years later. Trends Plant Sci. 2012; 17: 584–593. 10.1016/j.tplants.2012.05.004 [DOI] [PubMed] [Google Scholar]
  • 16.Hoecker U. The activities of the E3 ubiquitin ligase COP1/SPA, a key repressor in light signaling. Curr Opin Plant Biol. 2017; 37: 63–69. 10.1016/j.pbi.2017.03.015 [DOI] [PubMed] [Google Scholar]
  • 17.Podolec R, Ulm R. Photoreceptor-mediated regulation of the COP1/SPA E3 ubiquitin ligase. Curr Opin Plant Biol. 2018; 45: 18–25. 10.1016/j.pbi.2018.04.018 [DOI] [PubMed] [Google Scholar]
  • 18.Lau K, Podolec R, Chappuis R, Ulm R, Hothorn M. Plant photoreceptors and their signaling components compete for COP1 binding via VP peptide motifs. EMBO J. 2019: e102140 10.15252/embj.2019102140 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Huang X, Ouyang X, Yang P, Lau OS, Chen L, Wei N, et al. Conversion from CUL4-based COP1-SPA E3 apparatus to UVR8-COP1-SPA complexes underlies a distinct biochemical function of COP1 under UV-B. Proc Natl Acad Sci USA. 2013; 110: 16669–16674. 10.1073/pnas.1316622110 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Ulm R, Baumann A, Oravecz A, Mate Z, Adam E, Oakeley EJ, et al. Genome-wide analysis of gene expression reveals function of the bZIP transcription factor HY5 in the UV-B response of Arabidopsis. Proc Natl Acad Sci USA. 2004; 101: 1397–1402. 10.1073/pnas.0308044100 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Brown BA, Cloix C, Jiang GH, Kaiserli E, Herzyk P, Kliebenstein DJ, et al. A UV-B-specific signaling component orchestrates plant UV protection. Proc Natl Acad Sci USA. 2005; 102: 18225–18230. 10.1073/pnas.0507187102 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Gruber H, Heijde M, Heller W, Albert A, Seidlitz HK, Ulm R. Negative feedback regulation of UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis. Proc Natl Acad Sci USA. 2010; 107: 20132–20137. 10.1073/pnas.0914532107 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Stracke R, Favory JJ, Gruber H, Bartelniewoehner L, Bartels S, Binkert M, et al. The Arabidopsis bZIP transcription factor HY5 regulates expression of the PFG1/MYB12 gene in response to light and ultraviolet-B radiation. Plant Cell Environ. 2010; 33: 88–103. 10.1111/j.1365-3040.2009.02061.x [DOI] [PubMed] [Google Scholar]
  • 24.Huang X, Ouyang X, Yang P, Lau OS, Li G, Li J, et al. Arabidopsis FHY3 and HY5 positively mediate induction of COP1 transcription in response to photomorphogenic UV-B light. Plant Cell. 2012; 24: 4590–4606. 10.1105/tpc.112.103994 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Binkert M, Kozma-Bognar L, Terecskei K, De Veylder L, Nagy F, Ulm R. UV-B-responsive association of the Arabidopsis bZIP transcription factor ELONGATED HYPOCOTYL5 with target genes, including its own promoter. Plant Cell. 2014; 26: 4200–4213. 10.1105/tpc.114.130716 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Brown BA, Jenkins GI. UV-B signaling pathways with different fluence-rate response profiles are distinguished in mature Arabidopsis leaf tissue by requirement for UVR8, HY5, and HYH. Plant Physiol. 2008; 146: 576–588. 10.1104/pp.107.108456 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Tavridou E, Pireyre M, Ulm R. Degradation of the transcription factors PIF4 and PIF5 under UV-B promotes UVR8-mediated hypocotyl growth inhibition in Arabidopsis. Plant J. 2020; 101: 507–517. 10.1111/tpj.14556 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Hayes S, Velanis CN, Jenkins GI, Franklin KA. UV-B detected by the UVR8 photoreceptor antagonizes auxin signaling and plant shade avoidance. Proc Natl Acad Sci USA. 2014; 111: 11894–11899. 10.1073/pnas.1403052111 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Liang T, Mei S, Shi C, Yang Y, Peng Y, Ma L, et al. UVR8 interacts with BES1 and BIM1 to regulate transcription and photomorphogenesis in Arabidopsis. Dev Cell. 2018; 44: 512–523 10.1016/j.devcel.2017.12.028 [DOI] [PubMed] [Google Scholar]
  • 30.Yang Y, Liang T, Zhang L, Shao K, Gu X, Shang R, et al. UVR8 interacts with WRKY36 to regulate HY5 transcription and hypocotyl elongation in Arabidopsis. Nat Plants. 2018; 4: 98–107. 10.1038/s41477-017-0099-0 [DOI] [PubMed] [Google Scholar]
  • 31.Kliebenstein DJ, Lim JE, Landry LG, Last RL. Arabidopsis UVR8 regulates ultraviolet-B signal transduction and tolerance and contains sequence similarity to human regulator of chromatin condensation 1. Plant Physiol. 2002; 130: 234–243. 10.1104/pp.005041 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Sharma A, Sharma B, Hayes S, Kerner K, Hoecker U, Jenkins GI, et al. UVR8 disrupts stabilisation of PIF5 by COP1 to inhibit plant stem elongation in sunlight. Nat Commun. 2019; 10: 4417 10.1038/s41467-019-12369-1 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Mazza CA, Ballare CL. Photoreceptors UVR8 and phytochrome B cooperate to optimize plant growth and defense in patchy canopies. New Phytol. 2015; 207: 4–9. 10.1111/nph.13332 [DOI] [PubMed] [Google Scholar]
  • 34.Vandenbussche F, Tilbrook K, Fierro AC, Marchal K, Poelman D, Van Der Straeten D, et al. Photoreceptor-mediated bending towards UV-B in Arabidopsis. Mol Plant. 2014; 7: 1041–1052. 10.1093/mp/ssu039 [DOI] [PubMed] [Google Scholar]
  • 35.Fraser DP, Sharma A, Fletcher T, Budge S, Moncrieff C, Dodd AN, et al. UV-B antagonises shade avoidance and increases levels of the flavonoid quercetin in coriander (Coriandrum sativum). Sci Rep. 2017; 7: 17758 10.1038/s41598-017-18073-8 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Hayes S, Sharma A, Fraser DP, Trevisan M, Cragg-Barber CK, Tavridou E, et al. UV-B perceived by the UVR8 photoreceptor inhibits plant thermomorphogenesis. Curr Biol. 2017; 27: 120–127. 10.1016/j.cub.2016.11.004 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Lorrain S, Trevisan M, Pradervand S, Fankhauser C. Phytochrome interacting factors 4 and 5 redundantly limit seedling de-etiolation in continuous far-red light. Plant J. 2009; 60: 449–461. 10.1111/j.1365-313X.2009.03971.x [DOI] [PubMed] [Google Scholar]
  • 38.Toledo-Ortiz G, Johansson H, Lee KP, Bou-Torrent J, Stewart K, Steel G, et al. The HY5-PIF regulatory module coordinates light and temperature control of photosynthetic gene transcription. PLoS Genet. 2014; 10: e1004416 10.1371/journal.pgen.1004416 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Gangappa SN, Kumar SV. DET1 and HY5 Control PIF4-Mediated Thermosensory Elongation Growth through Distinct Mechanisms. Cell Rep. 2017; 18: 344–351. 10.1016/j.celrep.2016.12.046 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.de Lucas M, Daviere JM, Rodriguez-Falcon M, Pontin M, Iglesias-Pedraz JM, Lorrain S, et al. A molecular framework for light and gibberellin control of cell elongation. Nature. 2008; 451: 480–484. 10.1038/nature06520 [DOI] [PubMed] [Google Scholar]
  • 41.Feng S, Martinez C, Gusmaroli G, Wang Y, Zhou J, Wang F, et al. Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature. 2008; 451: 475–479. 10.1038/nature06448 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Duek PD, Elmer MV, van Oosten VR, Fankhauser C. The degradation of HFR1, a putative bHLH class transcription factor involved in light signaling, is regulated by phosphorylation and requires COP1. Curr Biol. 2004; 14: 2296–2301. 10.1016/j.cub.2004.12.026 [DOI] [PubMed] [Google Scholar]
  • 43.Jang IC, Yang JY, Seo HS, Chua NH. HFR1 is targeted by COP1 E3 ligase for post-translational proteolysis during phytochrome A signaling. Genes Dev. 2005; 19: 593–602. 10.1101/gad.1247205 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Yang J, Lin R, Sullivan J, Hoecker U, Liu B, Xu L, et al. Light regulates COP1-mediated degradation of HFR1, a transcription factor essential for light signaling in Arabidopsis. Plant Cell. 2005; 17: 804–821. 10.1105/tpc.104.030205 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Yin R, Arongaus AB, Binkert M, Ulm R. Two distinct domains of the UVR8 photoreceptor interact with COP1 to initiate UV-B signaling in Arabidopsis. Plant Cell. 2015; 27: 202–213. 10.1105/tpc.114.133868 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Li L, Zhang Q, Pedmale UV, Nito K, Fu W, Lin L, et al. PIL1 participates in a negative feedback loop that regulates its own gene expression in response to shade. Mol Plant. 2014; 7: 1582–1585. 10.1093/mp/ssu068 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Luo Q, Lian HL, He SB, Li L, Jia KP, Yang HQ. COP1 and phyB physically interact with PIL1 to regulate its stability and photomorphogenic development in Arabidopsis. Plant Cell. 2014; 26: 2441–2456. 10.1105/tpc.113.121657 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Zhang B, Holmlund M, Lorrain S, Norberg M, Bako L, Fankhauser C, et al. BLADE-ON-PETIOLE proteins act in an E3 ubiquitin ligase complex to regulate PHYTOCHROME INTERACTING FACTOR 4 abundance. Elife. 2017; 6 10.7554/eLife.26759.001 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Hornitschek P, Kohnen MV, Lorrain S, Rougemont J, Ljung K, Lopez-Vidriero I, et al. Phytochrome interacting factors 4 and 5 control seedling growth in changing light conditions by directly controlling auxin signaling. Plant J. 2012; 71: 699–711. 10.1111/j.1365-313X.2012.05033.x [DOI] [PubMed] [Google Scholar]
  • 50.Zhang Y, Mayba O, Pfeiffer A, Shi H, Tepperman JM, Speed TP, et al. A quartet of PIF bHLH factors provides a transcriptionally centered signaling hub that regulates seedling morphogenesis through differential expression-patterning of shared target genes in Arabidopsis. PLoS Genet. 2013; 9: e1003244 10.1371/journal.pgen.1003244 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Xu X, Kathare PK, Pham VN, Bu Q, Nguyen A, Huq E. Reciprocal proteasome-mediated degradation of PIFs and HFR1 underlies photomorphogenic development in Arabidopsis. Development. 2017; 144: 1831–1840. 10.1242/dev.146936 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Casal JJ, Balasubramanian S. Thermomorphogenesis. Annu Rev Plant Biol. 2019; 70: 321–346. 10.1146/annurev-arplant-050718-095919 [DOI] [PubMed] [Google Scholar]
  • 53.Keller MM, Jaillais Y, Pedmale UV, Moreno JE, Chory J, Ballare CL. Cryptochrome 1 and phytochrome B control shade-avoidance responses in Arabidopsis via partially independent hormonal cascades. Plant J. 2011; 67: 195–207. 10.1111/j.1365-313X.2011.04598.x [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Pedmale UV, Huang SS, Zander M, Cole BJ, Hetzel J, Ljung K, et al. Cryptochromes interact directly with PIFs to control plant growth in limiting blue light. Cell. 2016;164: 233–245. 10.1016/j.cell.2015.12.018 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Ma D, Li X, Guo Y, Chu J, Fang S, Yan C, et al. Cryptochrome 1 interacts with PIF4 to regulate high temperature-mediated hypocotyl elongation in response to blue light. Proc Natl Acad Sci USA. 2016; 113: 224–229. 10.1073/pnas.1511437113 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Huq E, Quail PH. PIF4, a phytochrome-interacting bHLH factor, functions as a negative regulator of phytochrome B signaling in Arabidopsis. EMBO J. 2002; 21: 2441–2450. 10.1093/emboj/21.10.2441 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Pham VN, Kathare PK, Huq E. Dynamic regulation of PIF5 by COP1-SPA complex to optimize photomorphogenesis in Arabidopsis. Plant J. 2018; 96: 260–273. 10.1111/tpj.14074 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Cloix C, Kaiserli E, Heilmann M, Baxter KJ, Brown BA, O'Hara A, et al. C-terminal region of the UV-B photoreceptor UVR8 initiates signaling through interaction with the COP1 protein. Proc Natl Acad Sci USA. 2012; 109: 16366–16370. 10.1073/pnas.1210898109 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Salter MG, Franklin KA, Whitelam GC. Gating of the rapid shade-avoidance response by the circadian clock in plants. Nature. 2003; 426: 680–683. 10.1038/nature02174 [DOI] [PubMed] [Google Scholar]
  • 60.Galstyan A, Cifuentes-Esquivel N, Bou-Torrent J, Martinez-Garcia JF. The shade avoidance syndrome in Arabidopsis: a fundamental role for atypical basic helix-loop-helix proteins as transcriptional cofactors. Plant J. 2011; 66: 258–267. 10.1111/j.1365-313X.2011.04485.x [DOI] [PubMed] [Google Scholar]
  • 61.Hao Y, Oh E, Choi G, Liang Z, Wang ZY. Interactions between HLH and bHLH factors modulate light-regulated plant development. Mol Plant. 2012; 5: 688–697. 10.1093/mp/sss011 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Roig-Villanova I, Bou-Torrent J, Galstyan A, Carretero-Paulet L, Portoles S, Rodriguez-Concepcion M, et al. Interaction of shade avoidance and auxin responses: a role for two novel atypical bHLH proteins. EMBO J. 2007; 26: 4756–4767. 10.1038/sj.emboj.7601890 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Moriconi V, Binkert M, Costigliolo C, Sellaro R, Ulm R, Casal JJ. Perception of sunflecks by the UV-B photoreceptor UV RESISTANCE LOCUS8. Plant Physiol. 2018; 177: 75–81. 10.1104/pp.18.00048 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Sellaro R, Yanovsky MJ, Casal JJ. Repression of shade-avoidance reactions by sunfleck induction of HY5 expression in Arabidopsis. Plant J. 2011; 68: 919–928. 10.1111/j.1365-313X.2011.04745.x [DOI] [PubMed] [Google Scholar]
  • 65.McNellis TW, von Arnim AG, Araki T, Komeda Y, Misera S, Deng XW. Genetic and molecular analysis of an allelic series of cop1 mutants suggests functional roles for the multiple protein domains. Plant Cell. 1994; 6: 487–500. 10.1105/tpc.6.4.487 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Fankhauser C, Chory J. RSF1, an Arabidopsis locus implicated in phytochrome A signaling. Plant Physiol. 2000; 124: 39–45. 10.1104/pp.124.1.39 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Sessa G, Carabelli M, Sassi M, Ciolfi A, Possenti M, Mittempergher F, et al. A dynamic balance between gene activation and repression regulates the shade avoidance response in Arabidopsis. Genes Dev. 2005; 19: 2811–2815. 10.1101/gad.364005 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.de Wit M, Keuskamp DH, Bongers FJ, Hornitschek P, Gommers CMM, Reinen E, et al. Integration of phytochrome and cryptochrome signals determines plant growth during competition for light. Curr Biol. 2016; 26: 3320–3326. 10.1016/j.cub.2016.10.031 [DOI] [PubMed] [Google Scholar]
  • 69.Arongaus AB, Chen S, Pireyre M, Glockner N, Galvao VC, Albert A, et al. Arabidopsis RUP2 represses UVR8-mediated flowering in noninductive photoperiods. Genes Dev. 2018; 32: 1332–1343. 10.1101/gad.318592.118 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001; 25: 402–408. 10.1006/meth.2001.1262 [DOI] [PubMed] [Google Scholar]
  • 71.Haring M, Offermann S, Danker T, Horst I, Peterhansel C, Stam M. Chromatin immunoprecipitation: optimization, quantitative analysis and data normalization. Plant Methods. 2007; 3: 11 10.1186/1746-4811-3-11 [DOI] [PMC free article] [PubMed] [Google Scholar]

Decision Letter 0

Ortrun Mittelsten Scheid, Gregory P Copenhaver

18 Feb 2020

* Please note while forming your response, if your article is accepted, you may have the opportunity to make the peer review history publicly available. The record will include editor decision letters (with reviews) and your responses to reviewer comments. If eligible, we will contact you to opt in or out. *

Dear Dr Ulm,

Thank you very much for submitting your Research Article entitled 'UVR8-mediated inhibition of shade avoidance involves HFR1 stabilization in Arabidopsis' to PLOS Genetics. Your manuscript was fully evaluated at the editorial level and by independent peer reviewers. The reviewers appreciated the attention to an important topic but identified some aspects of the manuscript that should be improved.

As you will see from the detailed comments of the reviewers, they consider the findings important and appreciate the well-written manuscript, adding a connecting element to a plausible model how UV exposure overcomes the shade avoidance response. Both reviewers suggest minor improvements that indeed could make the paper even stronger, but these should be easy to incorporate and address.

We therefore ask you to modify the manuscript according to the review recommendations before we can consider your manuscript for acceptance. Your revisions should address the specific points made by each reviewer.

In addition we ask that you:

1) Provide a detailed list of your responses to the review comments and a description of the changes you have made in the manuscript.

2) Upload a Striking Image with a corresponding caption to accompany your manuscript if one is available (either a new image or an existing one from within your manuscript). If this image is judged to be suitable, it may be featured on our website. Images should ideally be high resolution, eye-catching, single panel square images. For examples, please browse our archive. If your image is from someone other than yourself, please ensure that the artist has read and agreed to the terms and conditions of the Creative Commons Attribution License. Note: we cannot publish copyrighted images.

We hope to receive your revised manuscript within the next 30 days. If you anticipate any delay in its return, we would ask you to let us know the expected resubmission date by email to plosgenetics@plos.org.

If present, accompanying reviewer attachments should be included with this email; please notify the journal office if any appear to be missing. They will also be available for download from the link below. You can use this link to log into the system when you are ready to submit a revised version, having first consulted our Submission Checklist.

While revising your submission, please upload your figure files to the Preflight Analysis and Conversion Engine (PACE) digital diagnostic tool. PACE helps ensure that figures meet PLOS requirements. To use PACE, you must first register as a user. Then, login and navigate to the UPLOAD tab, where you will find detailed instructions on how to use the tool. If you encounter any issues or have any questions when using PACE, please email us at figures@plos.org.

Please be aware that our data availability policy requires that all numerical data underlying graphs or summary statistics are included with the submission, and you will need to provide this upon resubmission if not already present. In addition, we do not permit the inclusion of phrases such as "data not shown" or "unpublished results" in manuscripts. All points should be backed up by data provided with the submission.

PLOS has incorporated Similarity Check, powered by iThenticate, into its journal-wide submission system in order to screen submitted content for originality before publication. Each PLOS journal undertakes screening on a proportion of submitted articles. You will be contacted if needed following the screening process.

To resubmit, you will need to go to the link below and 'Revise Submission' in the 'Submissions Needing Revision' folder.

[LINK]

Please let us know if you have any questions while making these revisions.

Yours sincerely,

Ortrun Mittelsten Scheid

Associate Editor

PLOS Genetics

Gregory P. Copenhaver

Editor-in-Chief

PLOS Genetics

Reviewer's Responses to Questions

Comments to the Authors:

Please note here if the review is uploaded as an attachment.

Reviewer #1: Under FR-rich light, as under a canopy, plants exhibit a shade avoidance response (SAS) leading to enhanced elongation growth. The UV-B receptor UVR8 represses the shade avoidance response under UV-B. This mechanism might lead to a rapid stop in the shade avoidance response when plants grow out of the canopy into the direct sunlight. The molecular mechanisms leading to UV-B-induced suppression of the SAS are poorly understood and currently of great interest to plant biologists.

In this manuscript, the authors demonstrate the important function of the transcription factor HFR1 in UV-B-induced suppression of the SAS. HFR1 is an important repressor of the SAS. The authors show that UV-B enhances the activity of HFR1 by stabilizing the HFR1 protein. They further show that HFR1 is indeed necessary for the UV-B-induced suppression of a subset of SAS marker genes. Indeed, UV-B inhibits binding of PIF4 to the promoter of a subset of shade marker genes and this inhibition is to a large extent dependent on HFR1. Because UV-B induced PIF4 degradation is HFR1-independent, HFR1 activity on PIF4 is independent of the regulation of PIF4 stability.

This manuscript very conclusively uncovers the important role of HFR1 in UV-B signaling under shade conditions. The data therefore very nicely link the activities of UVR8, COP1, HFR1 and PIF4. Their results support the conclusions drawn by the authors. The manuscript is well written.

Major comments:

- the molecular phenotype of the hfr1 mutant in +FR+UV-B is very well analyzed and presented. I am wondering about the visible phenotype of an hfr1 mutant in +FR+UV-B in comparison to +FR? I.e. hypocotyl elongation.

Minor comments:

- please provide a statistical analysis of the ChIP data.

- it appears to me that Fig. 6C very nicely demonstrates that UV-B shows a much weaker inhibition of PIF4-binding to the PIL1 promoter in an hfr1 mutant than in the WT – despite no change in PIF4 protein levels in hfr1 vs. WT in +UV-B (Fig. 6A). In my view, this very nicely demonstrates that UV-B – via HFR1 – inhibits the DNA-binding activity of PIF4 – which is consistent with the known activity of HFR1 which heterodimerizes with PIFs. However, the authors do not really make this point in the results section. Is there a reason for that?

Reviewer #2: The present manuscript by Tavridou et al investigates the molecular details of UVB-mediated inhibition of shade avoidance syndrome (SAS). SAS is induced by low red:far-red (R:FR) light ratios indicating neighbouring plants in close proximity and is characterised by the induction of a well-defined gene set by the PIF4 and PIF5 transcription factors, eventually resulting in accelerated elongation. UVB, perceived by the UVR8 receptor, inhibits this response. The authors showed that UVB promotes the accumulation of the HFR1 transcription factor probably via the UVR8-mediated sequestration of the COP1 E3 ubq ligase, which targets HFR1 for degradation in the dark or in shade conditions. HFR1 forms inactive heterodimers with PIF4 and PIF5 transcription factors that attenuates SAS-related gene expression. They showed that PIL1, another transcription factor implicated in the regulation of SAS acts redundantly with HFR1 in this process. This newly identified molecular mechanism along with the previously described UVB-induced degradation of PIF4 and PIF5 have an important role in the termination of elongation once the plant has overgrown shade.

The experiments are well-planned and executed, providing convincing results. The text is focused, easy to read. The figures are informative and of good quality.

I have just a few minor comments and questions to this manuscript. Answers to the questions might be even incorporated in the Discussion.

1. Abstract, line 33: I would say ‘PIl1-mediated inhibition of PIF4 and PIF5 function’, to indicate that this regulation does not target the expression/level of PIFs.

2. I suggest to quantitate signals on all Western-blots (not only the one in Fig.6). Statistical analysis of these data would provide a robust support for the key statements/findings.

3. Fig.S4 seems to be not finalized yet: „devoid G” should be changed to „devoid G-box” (and explain this in the legends), and indicate HA-derived or mock immunoprecipitation in panel A as well.

4. Fig.2B demonstrates that a significant number of genes are induced by FR in the uvr8 mutant, but not in Col. How could the authors explain this if UVR8 was told to have function in UVB only?

5. Fig.2 deals with shade-induced genes. Did the authors identify shade-repressed genes in their RNA-seq assay? If yes, how was the repression affected by the UVB treatment?

**********

Have all data underlying the figures and results presented in the manuscript been provided?

Large-scale datasets should be made available via a public repository as described in the PLOS Genetics data availability policy, and numerical data that underlies graphs or summary statistics should be provided in spreadsheet form as supporting information.

Reviewer #1: Yes

Reviewer #2: Yes

**********

PLOS authors have the option to publish the peer review history of their article (what does this mean?). If published, this will include your full peer review and any attached files.

If you choose “no”, your identity will remain anonymous but your review may still be made public.

Do you want your identity to be public for this peer review? For information about this choice, including consent withdrawal, please see our Privacy Policy.

Reviewer #1: No

Reviewer #2: No

Decision Letter 1

Ortrun Mittelsten Scheid, Gregory P Copenhaver

26 Apr 2020

Dear Dr Ulm,

We are pleased to inform you that your manuscript entitled "UVR8-mediated inhibition of shade avoidance involves HFR1 stabilization in Arabidopsis" has been editorially accepted for publication in PLOS Genetics. Congratulations!

Before your submission can be formally accepted and sent to production you will need to complete our formatting changes, which you will receive in a follow up email. Please be aware that it may take several days for you to receive this email; during this time no action is required by you. Please note: the accept date on your published article will reflect the date of this provisional accept, but your manuscript will not be scheduled for publication until the required changes have been made.

Once your paper is formally accepted, an uncorrected proof of your manuscript will be published online ahead of the final version, unless you’ve already opted out via the online submission form. If, for any reason, you do not want an earlier version of your manuscript published online or are unsure if you have already indicated as such, please let the journal staff know immediately at plosgenetics@plos.org.

In the meantime, please log into Editorial Manager at https://www.editorialmanager.com/pgenetics/, click the "Update My Information" link at the top of the page, and update your user information to ensure an efficient production and billing process. Note that PLOS requires an ORCID iD for all corresponding authors. Therefore, please ensure that you have an ORCID iD and that it is validated in Editorial Manager. To do this, go to ‘Update my Information’ (in the upper left-hand corner of the main menu), and click on the Fetch/Validate link next to the ORCID field.  This will take you to the ORCID site and allow you to create a new iD or authenticate a pre-existing iD in Editorial Manager.

If you have a press-related query, or would like to know about one way to make your underlying data available (as you will be aware, this is required for publication), please see the end of this email. If your institution or institutions have a press office, please notify them about your upcoming article at this point, to enable them to help maximise its impact. Inform journal staff as soon as possible if you are preparing a press release for your article and need a publication date.

Thank you again for supporting open-access publishing; we are looking forward to publishing your work in PLOS Genetics!

Yours sincerely,

Ortrun Mittelsten Scheid

Associate Editor

PLOS Genetics

Gregory P. Copenhaver

Editor-in-Chief

PLOS Genetics

www.plosgenetics.org

Twitter: @PLOSGenetics

----------------------------------------------------

Comments from the reviewers (if applicable):

Reviewer's Responses to Questions

Comments to the Authors:

Please note here if the review is uploaded as an attachment.

Reviewer #1: The authors addressed my comments satisfactorily.

Reviewer #2: The authors have addressed all of my concerns and I accept all of their responses to my specific questions. In my opinion, neither further experiments nor modifications to the text are required.

**********

Have all data underlying the figures and results presented in the manuscript been provided?

Large-scale datasets should be made available via a public repository as described in the PLOS Genetics data availability policy, and numerical data that underlies graphs or summary statistics should be provided in spreadsheet form as supporting information.

Reviewer #1: Yes

Reviewer #2: Yes

**********

PLOS authors have the option to publish the peer review history of their article (what does this mean?). If published, this will include your full peer review and any attached files.

If you choose “no”, your identity will remain anonymous but your review may still be made public.

Do you want your identity to be public for this peer review? For information about this choice, including consent withdrawal, please see our Privacy Policy.

Reviewer #1: No

Reviewer #2: No

----------------------------------------------------

Data Deposition

If you have submitted a Research Article or Front Matter that has associated data that are not suitable for deposition in a subject-specific public repository (such as GenBank or ArrayExpress), one way to make that data available is to deposit it in the Dryad Digital Repository. As you may recall, we ask all authors to agree to make data available; this is one way to achieve that. A full list of recommended repositories can be found on our website.

The following link will take you to the Dryad record for your article, so you won't have to re‐enter its bibliographic information, and can upload your files directly: 

http://datadryad.org/submit?journalID=pgenetics&manu=PGENETICS-D-20-00017R1

More information about depositing data in Dryad is available at http://www.datadryad.org/depositing. If you experience any difficulties in submitting your data, please contact help@datadryad.org for support.

Additionally, please be aware that our data availability policy requires that all numerical data underlying display items are included with the submission, and you will need to provide this before we can formally accept your manuscript, if not already present.

----------------------------------------------------

Press Queries

If you or your institution will be preparing press materials for this manuscript, or if you need to know your paper's publication date for media purposes, please inform the journal staff as soon as possible so that your submission can be scheduled accordingly. Your manuscript will remain under a strict press embargo until the publication date and time. This means an early version of your manuscript will not be published ahead of your final version. PLOS Genetics may also choose to issue a press release for your article. If there's anything the journal should know or you'd like more information, please get in touch via plosgenetics@plos.org.

Acceptance letter

Ortrun Mittelsten Scheid, Gregory P Copenhaver

5 May 2020

PGENETICS-D-20-00017R1

UVR8-mediated inhibition of shade avoidance involves HFR1 stabilization in Arabidopsis

Dear Dr Ulm,

We are pleased to inform you that your manuscript entitled "UVR8-mediated inhibition of shade avoidance involves HFR1 stabilization in Arabidopsis" has been formally accepted for publication in PLOS Genetics! Your manuscript is now with our production department and you will be notified of the publication date in due course.

The corresponding author will soon be receiving a typeset proof for review, to ensure errors have not been introduced during production. Please review the PDF proof of your manuscript carefully, as this is the last chance to correct any errors. Please note that major changes, or those which affect the scientific understanding of the work, will likely cause delays to the publication date of your manuscript.

Soon after your final files are uploaded, unless you have opted out or your manuscript is a front-matter piece, the early version of your manuscript will be published online. The date of the early version will be your article's publication date. The final article will be published to the same URL, and all versions of the paper will be accessible to readers.

Thank you again for supporting PLOS Genetics and open-access publishing. We are looking forward to publishing your work!

With kind regards,

Jason Norris

PLOS Genetics

On behalf of:

The PLOS Genetics Team

Carlyle House, Carlyle Road, Cambridge CB4 3DN | United Kingdom

plosgenetics@plos.org | +44 (0) 1223-442823

plosgenetics.org | Twitter: @PLOSGenetics

Associated Data

    This section collects any data citations, data availability statements, or supplementary materials included in this article.

    Supplementary Materials

    S1 Fig. HFR1 expression in response to UV-B.

    (A) RT-qPCR analysis of HFR1 expression in 4-day-old wild-type (Col) seedlings exposed to narrowband UV-B for 1 and 3 hours (1-h/3-h UVB) or not (WL). Error bars represent SEM of three independent biological replicates. Asterisks indicate a significant increase in transcript abundance compared to that under WL (*p < 0.05). (B) RT-qPCR analysis of HFR1-3xHA expression in 4-day-old seedlings of Col/ProHFR1:HFR1-3xHA (HFR1-HA) and uvr8-6/ProHFR1:HFR1-3xHA (uvr8/HFR1-HA) grown under white light (WL). Error bars represent SE of three independent biological replicates.

    (PDF)

    S2 Fig. PIL1 and HFR1 act redundantly in UVR8-mediated repression of shade-induced YUC8 and GH3.3 expression.

    (A, B) RT-qPCR analysis of (A) YUC8 and (B) GH3.3 expression in 7-day-old wild-type (Col), hfr1-101 (hfr1), pil1-6 (pil1), and hfr1-101 pil1-6 (hfr1pil1) seedlings grown under white light (WL) and exposed to 3-h low R:FR (+FR) or to 3-h low R:FR with supplemental UV-B (+FR +UVB), compared to seedlings maintained under WL as control. Error bars represent SEM of three independent biological replicates. Asterisks indicate a significant difference in transcript abundance compared to that under WL in each genotype (* p < 0.05; ** p < 0.01). (C) Hypocotyl length measurements of Col, hfr1, pil1, and hfr1 pil1 seedlings grown in long-day conditions for 3 days before being transferred to WL, +UVB, +FR, and +FR+UVB for 4 days. Data represent mean length ± SE (n ≥ 40).

    (PDF)

    S3 Fig. HFR1 does not play a role in UVR8-dependent transcriptional repression of PIF4 and PIF5 under UV-B.

    (A, B) RT-qPCR analysis of (A) PIF4 and (B) PIF5 expression in 7-day-old wild-type (Col), uvr8-6, and hfr1-101 seedlings grown under white light (WL) and exposed to supplemental 3-h UV-B (+UVB), low R:FR (+FR), or low R:FR and UV-B (+FR+UVB) compared to seedlings maintained under WL as control. Error bars represent SEM of three independent biological replicates. Asterisks indicate a significant difference in transcript abundance compared to that of WL in each genotype (* p < 0.05; ** p < 0.01).

    (PDF)

    S4 Fig. UV-B represses PIF5 binding to promoters of shade marker genes.

    (A, B) PIF5-HA chromatin association in Col/ProPIF5:PIF5-3xHA (PIF5-HA). Ten-day-old seedlings were grown in long-day conditions under white light and exposed at ZT3 to 3-h low R:FR with or without supplemental narrowband UVB. ChIP-qPCR was performed for (A) PIL1 and (B) HFR1 promoters. The numbers of the analyzed DNA fragments indicate the positions of the 5’ base pair of the amplicon relative to the translation start site (referred to as position +1). Fragments designated as ProPIL1_-1417 and ProHFR1_-1689 contain a G-box, whereas ProPIL1_+1816 and ProHFR1_-202 are devoid of a G-box. ChIP of DNA associated with PIF5-HA is presented as the percentage recovered from the total input DNA (% Input). Data shown are representative of three independent biological replicates. Error bars represent SD of three technical replicates.

    (PDF)

    S5 Fig. Independent repetitions of ChIP data related to Fig 5B and 5C and Fig 6C.

    (A-D) PIF4-HA chromatin association in Col/ProPIF4:PIF4-3xHA (PIF4-HA) and uvr8-6/ProPIF4:PIF4-3xHA (uvr8/PIF4-HA). Ten-day-old seedlings were grown in long-day conditions under white light and exposed to low R:FR with (+) or without (-) 3-h supplemental narrowband UV-B at ZT3. ChIP-qPCR was performed for (A,B) PIL1 (repetitions of data shown in Fig 5B) and (C,D) XTR7 promoters (repetitions of data shown in Fig 5C). (E,F) Chromatin association of PIF4-HA in 10-day-old Col/ProPIF4:PIF4-3xHA (PIF4-HA) and hfr1-101/ProPIF4:PIF4-3xHA (hfr1/PIF4-HA) seedlings grown in long-day conditions under white light and exposed at ZT3 to 3-h low R:FR with (+) or without (-) supplemental UV-B. ChIP-qPCR was performed for the PIL1 promoter (repetitions of data shown in Fig 6C). Error bars represent SD of three technical replicates.

    (PDF)

    S1 Table

    Intersection of genes upregulated by low R:FR and repressed by UVB in wild type (Col, S1A Table), uvr8-6 (S1B Table) and hfr1-101 (S1C Table) (lists corresponding to Fig 2A).

    (XLSX)

    S2 Table. Genes upregulated by low R:FR in Col wild type, uvr8-6, and hfr1-101 (lists corresponding to Fig 2B).

    (XLSX)

    S3 Table. Intersection of genes upregulated by low R:FR and repressed by UV-B in wild type and genes upregulated by low R:FR and not repressed by UV-B in hfr1-101 mutant (lists corresponding to Fig 2C).

    (XLSX)

    S4 Table. Oligonucleotide sequences used in this study.

    (XLSX)

    Attachment

    Submitted filename: Tavridou_PLoSGenet_Response_to_Reviewers_Comments_2020.pdf

    Data Availability Statement

    RNA-Seq data reported in this article have been deposited in NCBI’s Gene Expression Omnibus and are accessible through GEO Series accession number GSE146125.


    Articles from PLoS Genetics are provided here courtesy of PLOS

    RESOURCES