Skip to main content
. 2019 Dec 28;157(5):1147–1157. doi: 10.1016/j.chest.2019.11.039

Table 1.

Selected Publications Using Machine Learning Methods to Identify Clusters or Disease Axes in COPD

Category PMID Year No. of Subjects No. of Clusters/Axes Method
Clustering 18248806 2008 415 2 clusters Fuzzy clustering
19501190 2009 415 2 clusters Multidimensional scaling and KHM clustering
20233420 2010 308 4 clusters K-means
20075045 2010 322 4 clusters Principal components analysis and hierarchical clustering
21177668 2011 342 3 clusters K-means
22154126 2012 102 2 clusters K-means
23236428 2012 527 3 clusters Principal components analysis and hierarchical clustering
23392440 2013 213 5 clusters Self-organizing maps
23613569 2013 1,543 3 clusters Tree-based clustering
23536961 2013 157 4 clusters Factor analysis and k-means
24563194 2014 8,288 4 clusters K-means
25642832 2015 2,164 5 clusters Factor analysis and random forests clustering
26773458 2016 364 4 clusters Network-based stratification
28943279 2017 9,210 3 clusters Random forests clustering
29097431 2017 6,060 5 clusters Hierarchical clustering
28637835 2017 17,146 Multiple solutions Random forests and k-medoids clustering
29671603 2018 4,606 4 trajectories Bayesian trajectory modeling
Disease axes 19480658 2009 127 4 disease axes Principal components analysis
29771274 2018 8,157 5 disease axes Factor analysis
31189730 2019 4,726 6 disease axes Weighted logistic regression