Skip to main content
World Journal of Diabetes logoLink to World Journal of Diabetes
editorial
. 2020 May 15;11(5):150–154. doi: 10.4239/wjd.v11.i5.150

Role of sodium-glucose co-transporter-2 inhibitors in the management of heart failure in patients with diabetes mellitus

Stelina Alkagiet 1, Konstantinos Tziomalos 2
PMCID: PMC7243487  PMID: 32477451

Abstract

Heart failure (HF) is a major complication of diabetes mellitus (DM). Patients with DM have considerably higher risk for HF than non-diabetic subjects and HF is also more severe in the former. Given the rising prevalence of DM, the management of HF in diabetic patients has become the focus of increased attention. In this context, the findings of several randomized, placebo-controlled trials that evaluated the effects of sodium-glucose co-transporter-2 inhibitors on the risk of hospitalization for HF in patients with type 2 DM represent a paradigm shift in the management of HF. These agents consistently reduced the risk of hospitalization for HF both in patients with and in those without HF. These benefits appear to be partly independent from glucose-lowering and have also been reported in patients without DM. However, there are more limited data regarding the benefit of sodium-glucose co-transporter-2 inhibitors in patients with HF and preserved left ventricular ejection fraction, which is the commonest type of HF in diabetic patients.

Keywords: Heart failure, Type 2 diabetes mellitus, Sodium-glucose co-transporter-2 inhibitors, Canagliflozin, Dapagliflozin, Empagliflozin


Core tip: Sodium-glucose co-transporter-2 inhibitors substantially reduce the risk of hospitalization for heart failure in patients with type 2 diabetes mellitus (T2DM). Accordingly, these agents should be considered in all patients with T2DM and HF with reduced left ventricular ejection fraction regardless of HbA1c levels. However, more studies are needed to clarify the role of sodium-glucose co-transporter-2 inhibitors in patients with T2DM and HF with preserved left ventricular ejection fraction, which is the commonest type of HF in this population.

EDITORIAL

During the last decades, the prevalence of diabetes mellitus (DM) worldwide has almost doubled, from 4.7% in 1984 to 9.3% in 2019[1]. Moreover, it is estimated that patients with DM will reach 300 million by 2025 and 366 million in 2030, with the majority of them living in low-income countries[2,3]. It has also been projected that the prevalence of DM globally will rise to 10.4% by 2040 and that 12% of healthcare expenditure will be dedicated to diabetic patients[4]. These trends are of great importance given the strong relationship between DM and cardiovascular disease (CVD). It is well-established that DM is a major cardiovascular risk factor[5]. Indeed, 75%-80% of patients with DM die due to CVD[6]. Accordingly, DM is one of the leading causes of death worldwide[7].

Among the manifestations of CVD in patients with DM, heart failure (HF) has become the focus of intense research in the last years. Heart failure is an important public health issue, affecting more than 23 million people all over the world and leading to excess morbidity and mortality[8,9]. Heart failure-related healthcare costs are also substantial and are mostly due to the repeated hospitalization of these patients[8,9]. Based on the left ventricular ejection fraction (LVEF), HF is categorized into HF with reduced EF (HFrEF), HF with midrange EF (HFmrEF) and HF with preserved EF (HFpEF)[10,11]. Patients with HFpEF have a higher prevalence of comorbidities including obesity, chronic obstructive pulmonary disease and DM than those with HFrEF[12,13]. Several studies showed that the incidence of HF is 2-5 times higher in diabetic patients than in those without DM[14,15]. Patients with type 1 DM also have a higher risk of developing HF[16]. In addition, diabetic patients with HF have longer HF-related hospital stays, more frequent HF-related readmissions and higher risk for cardiovascular mortality than patients with HF but without DM[17-20]. All-cause mortality and healthcare costs are also higher in the former[21-23].

In addition to atherosclerosis-related ischemic heart disease, small vessel dysfunction, renal dysfunction and a direct effect of insulin resistance on cardiomyocytes appear to play a role in the pathogenesis of HF in patients with DM[24,25]. The most profound feature of diabetic cardiomyopathy is LV diastolic impairment manifesting as HFpE whereas HFrEF is less prevalent in these patients[26,27]. Early signs of diastolic dysfunction in patients with DM include elevated LV filling pressures portrayed by reduced peak myocardial systolic velocity and reduced E/A ratio (transmittal early to late diastolic peak ratio), along with increased LV mass and wall thickness[28-31].

Given the rising prevalence of DM and its strong association with HF, the findings of several recent, randomized, placebo-controlled trials of sodium glucose co-transporter 2 (SGLT2) inhibitors might represent a paradigm shift in the management of these patients. In the Empagliflozin Cardiovascular Outcome Event Trial in Type 2 Diabetes Mellitus Patients trial [n = 7020 patients with type 2 DM (T2DM) and established CVD], treatment with empagliflozin reduced the risk of hospitalization for HF by 35% and reduced the incidence of the primary composite outcome (death from cardiovascular causes, nonfatal myocardial infarction or nonfatal stroke) by 14% during a median follow-up of 3.1 years[32]. In the Canagliflozin Cardiovascular Assessment Study (n = 10142 patients with T2DM who were either ≥ 30 years old with established CVD or ≥ 50 year-old with ≥ 2 of the following cardiovascular risk factors: T2DM duration ≥ 10 years, systolic blood pressure > 140 mmHg despite treatment with ≥ 1 antihypertensive agent, current smoking, micro- or macroalbuminuria, or high-density lipoprotein cholesterol level < 39 mg/dL), treatment with canagliflozin reduced the risk of hospitalization for HF by 33% and reduced the incidence of the primary composite outcome (death from cardiovascular causes, nonfatal myocardial infarction or nonfatal stroke) by 14% during a mean follow-up of 3.6 years[33]. In the Canagliflozin and Renal Events in Diabetes with Established Nephropathy Clinical Evaluation trial [n = 4401 patients with T2DM and chronic kidney disease (estimated glomerular filtration rate 30-90 mL/min/1.73 m2 and urinary albumin-to-creatinine ratio > 300 mg/g)], treatment with canagliflozin reduced the risk for hospitalization for HF by 39% during a mean follow-up of 2.6 years[34]. In the Dapagliflozin Effect on Cardiovascular Events trial (DECLARE TIMI-58) trial (n = 17160 patients with T2DM and either established CVD or multiple cardiovascular risk factors), dapagliflozin reduced the risk for hospitalization for HF by 27% compared with placebo during a median follow-up of 4.2 years[35]. In an observational study in 309056 patients with DM followed-up in real-world practice, treatment with SGLT2 inhibitors also resulted in a 39% reduction in the risk of hospitalization for HF compared with other antidiabetic agents[36]. Notably, SGLT2 inhibitors appeared to reduce the risk of hospitalization for HF to a similar degree in patients with and without a history of HF[37,38]. It is therefore possible that SGLT2 inhibitors might prevent the development of HF in diabetic patients. However, it is also possible that many patients in these trials had undiagnosed HF and that SGLT2 inhibitors are also effective in patients with less severe, asymptomatic HF. It is also noteworthy that, in the DECLARE TIMI-58 trial, dapagliflozin reduced the risk of hospitalization for HF to a similar degree in patients with HFrEF and in those with HFpEF[38]. However, this analysis was based on a small number of patients and should be considered exploratory and hypothesis-generating[38].

Despite the consistently beneficial effects of SGLT2 inhibitors on the incidence of hospitalization for HF, it should be emphasized that only a small proportion of patients in these trials had HF at baseline (10%-15%)[32-35]. However, in the Dapagliflozin and Prevention of Adverse Outcomes in Heart Failure (DAPA-HF) trial, dapagliflozin reduced the risk of hospitalization for HF by 30% and reduced cardiovascular mortality by 18% compared with placebo in 4744 patients with New York Heart Association class II, III, or IV heart failure and an EF ≤ 40% during a median follow-up of 18.2 mo[39]. Therefore, the findings of this large study further support the benefits of SGLT2 inhibitors in the management of HF, particularly with reduced EF. Nevertheless, given the limited data on the effects of these agents in patients with HFpEF, more studies are needed in this important subgroup. It should also be mentioned that patients with DM (42% of the study population) experienced a similar reduction in the risk of hospitalization for HF as patients without DM[39]. This finding suggests that other actions of SGLT2 inhibitors besides glucose-lowering might play a role in the beneficial effects of these agents in patients with HF. Indeed, it has been reported that SGLT2 inhibitors promote reverse cardiac remodeling, improve myocardial energetics and filling conditions, reduce LV wall stress and mass and reduce blood pressure and arterial stiffness[40-43].

CONCLUSION

SGLT2 inhibitors substantially reduce the risk of hospitalization for HF in patients with DM. Accordingly, current guidelines recommend these agents in patients with T2DM and HFrEF regardless of HbA1c levels[44]. However, more studies are needed to clarify the role of SGLT2 inhibitors in patients with T2DM and HFpEF, which is the most common type of HF in this population.

Footnotes

Conflict-of-interest statement: All authors declare no conflict of interest related to this publication.

Manuscript source: Invited Manuscript

Peer-review started: January 4, 2020

First decision: February 25, 2020

Article in press: April 4, 2020

Specialty type: Endocrinology and metabolism

Country/Territory of origin:Greece

Peer-review report’s scientific quality classification

Grade A (Excellent): 0

Grade B (Very good): B

Grade C (Good): C

Grade D (Fair): 0

Grade E (Poor): 0

P-Reviewer: Rodrigo L, Sun XD S-Editor: Wang YQ L-Editor: A E-Editor: Ma YJ

Contributor Information

Stelina Alkagiet, Department of Cardiology, Georgios Papanikolaou Hospital, Thessaloniki 57010, Greece.

Konstantinos Tziomalos, First Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki 54636, Greece. ktziomalos@yahoo.com.

References

  • 1.Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, Colagiuri S, Guariguata L, Motala AA, Ogurtsova K, Shaw JE, Bright D, Williams R IDF Diabetes Atlas Committee. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract. 2019;157:107843. doi: 10.1016/j.diabres.2019.107843. [DOI] [PubMed] [Google Scholar]
  • 2.Campbell RK. Type 2 diabetes: where we are today: an overview of disease burden, current treatments, and treatment strategies. J Am Pharm Assoc (2003) 2009;49 Suppl 1:S3–S9. doi: 10.1331/JAPhA.2009.09077. [DOI] [PubMed] [Google Scholar]
  • 3.Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27:1047–1053. doi: 10.2337/diacare.27.5.1047. [DOI] [PubMed] [Google Scholar]
  • 4.Ogurtsova K, da Rocha Fernandes JD, Huang Y, Linnenkamp U, Guariguata L, Cho NH, Cavan D, Shaw JE, Makaroff LE. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract. 2017;128:40–50. doi: 10.1016/j.diabres.2017.03.024. [DOI] [PubMed] [Google Scholar]
  • 5.Shah AD, Langenberg C, Rapsomaniki E, Denaxas S, Pujades-Rodriguez M, Gale CP, Deanfield J, Smeeth L, Timmis A, Hemingway H. Type 2 diabetes and incidence of cardiovascular diseases: a cohort study in 1·9 million people. Lancet Diabetes Endocrinol. 2015;3:105–113. doi: 10.1016/S2213-8587(14)70219-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Manuel DG, Schultz SE. Health-related quality of life and health-adjusted life expectancy of people with diabetes in Ontario, Canada, 1996-1997. Diabetes Care. 2004;27:407–414. doi: 10.2337/diacare.27.2.407. [DOI] [PubMed] [Google Scholar]
  • 7.GBD 2016 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390:1211–1259. doi: 10.1016/S0140-6736(17)32154-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Heidenreich PA, Albert NM, Allen LA, Bluemke DA, Butler J, Fonarow GC, Ikonomidis JS, Khavjou O, Konstam MA, Maddox TM, Nichol G, Pham M, Piña IL, Trogdon JG American Heart Association Advocacy Coordinating Committee; Council on Arteriosclerosis, Thrombosis and Vascular Biology; Council on Cardiovascular Radiology and Intervention; Council on Clinical Cardiology; Council on Epidemiology and Prevention; Stroke Council. Forecasting the impact of heart failure in the United States: a policy statement from the American Heart Association. Circ Heart Fail. 2013;6:606–619. doi: 10.1161/HHF.0b013e318291329a. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Roger VL. Epidemiology of heart failure. Circ Res. 2013;113:646–659. doi: 10.1161/CIRCRESAHA.113.300268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, Falk V, González-Juanatey JR, Harjola VP, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GMC, Ruilope LM, Ruschitzka F, Rutten FH, van der Meer P ESC Scientific Document Group. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016;37:2129–2200. doi: 10.1093/eurheartj/ehw128. [DOI] [PubMed] [Google Scholar]
  • 11.Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Jr, Drazner MH, Fonarow GC, Geraci SA, Horwich T, Januzzi JL, Johnson MR, Kasper EK, Levy WC, Masoudi FA, McBride PE, McMurray JJ, Mitchell JE, Peterson PN, Riegel B, Sam F, Stevenson LW, Tang WH, Tsai EJ, Wilkoff BL American College of Cardiology Foundation; American Heart Association Task Force on Practice Guidelines. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013;62:e147–e239. doi: 10.1016/j.jacc.2013.05.019. [DOI] [PubMed] [Google Scholar]
  • 12.Mentz RJ, Kelly JP, von Lueder TG, Voors AA, Lam CS, Cowie MR, Kjeldsen K, Jankowska EA, Atar D, Butler J, Fiuzat M, Zannad F, Pitt B, O'Connor CM. Noncardiac comorbidities in heart failure with reduced versus preserved ejection fraction. J Am Coll Cardiol. 2014;64:2281–2293. doi: 10.1016/j.jacc.2014.08.036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Lindman BR, Dávila-Román VG, Mann DL, McNulty S, Semigran MJ, Lewis GD, de las Fuentes L, Joseph SM, Vader J, Hernandez AF, Redfield MM. Cardiovascular phenotype in HFpEF patients with or without diabetes: a RELAX trial ancillary study. J Am Coll Cardiol. 2014;64:541–549. doi: 10.1016/j.jacc.2014.05.030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Nichols GA, Gullion CM, Koro CE, Ephross SA, Brown JB. The incidence of congestive heart failure in type 2 diabetes: an update. Diabetes Care. 2004;27:1879–1884. doi: 10.2337/diacare.27.8.1879. [DOI] [PubMed] [Google Scholar]
  • 15.Kannel WB, Hjortland M, Castelli WP. Role of diabetes in congestive heart failure: the Framingham study. Am J Cardiol. 1974;34:29–34. doi: 10.1016/0002-9149(74)90089-7. [DOI] [PubMed] [Google Scholar]
  • 16.Rosengren A, Vestberg D, Svensson AM, Kosiborod M, Clements M, Rawshani A, Pivodic A, Gudbjörnsdottir S, Lind M. Long-term excess risk of heart failure in people with type 1 diabetes: a prospective case-control study. Lancet Diabetes Endocrinol. 2015;3:876–885. doi: 10.1016/S2213-8587(15)00292-2. [DOI] [PubMed] [Google Scholar]
  • 17.Romero SP, Garcia-Egido A, Escobar MA, Andrey JL, Corzo R, Perez V, Garcia-Domiguez GJ, Gomez F. Impact of new-onset diabetes mellitus and glycemic control on the prognosis of heart failure patients: a propensity-matched study in the community. Int J Cardiol. 2013;167:1206–1216. doi: 10.1016/j.ijcard.2012.03.134. [DOI] [PubMed] [Google Scholar]
  • 18.Sarma S, Mentz RJ, Kwasny MJ, Fought AJ, Huffman M, Subacius H, Nodari S, Konstam M, Swedberg K, Maggioni AP, Zannad F, Bonow RO, Gheorghiade M EVEREST investigators. Association between diabetes mellitus and post-discharge outcomes in patients hospitalized with heart failure: findings from the EVEREST trial. Eur J Heart Fail. 2013;15:194–202. doi: 10.1093/eurjhf/hfs153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Tribouilloy C, Rusinaru D, Mahjoub H, Tartière JM, Kesri-Tartière L, Godard S, Peltier M. Prognostic impact of diabetes mellitus in patients with heart failure and preserved ejection fraction: a prospective five-year study. Heart. 2008;94:1450–1455. doi: 10.1136/hrt.2007.128769. [DOI] [PubMed] [Google Scholar]
  • 20.Gustafsson I, Brendorp B, Seibaek M, Burchardt H, Hildebrandt P, Køber L, Torp-Pedersen C Danish Investigatord of Arrhythmia and Mortality on Dofetilde Study Group. Influence of diabetes and diabetes-gender interaction on the risk of death in patients hospitalized with congestive heart failure. J Am Coll Cardiol. 2004;43:771–777. doi: 10.1016/j.jacc.2003.11.024. [DOI] [PubMed] [Google Scholar]
  • 21.Dauriz M, Mantovani A, Bonapace S, Verlato G, Zoppini G, Bonora E, Targher G. Prognostic Impact of Diabetes on Long-term Survival Outcomes in Patients With Heart Failure: A Meta-analysis. Diabetes Care. 2017;40:1597–1605. doi: 10.2337/dc17-0697. [DOI] [PubMed] [Google Scholar]
  • 22.Zhu J, Kahn P, Knudsen J, Mehta SN, Gabbay RA. Predictive Model for Estimating the Cost of Incident Diabetes Complications. Diabetes Technol Ther. 2016;18:625–634. doi: 10.1089/dia.2016.0132. [DOI] [PubMed] [Google Scholar]
  • 23.Sandesara PB, O'Neal WT, Kelli HM, Samman-Tahhan A, Hammadah M, Quyyumi AA, Sperling LS. The Prognostic Significance of Diabetes and Microvascular Complications in Patients With Heart Failure With Preserved Ejection Fraction. Diabetes Care. 2018;41:150–155. doi: 10.2337/dc17-0755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Lehrke M, Marx N. Diabetes Mellitus and Heart Failure. Am J Cardiol. 2017;120:S37–S47. doi: 10.1016/j.amjcard.2017.05.014. [DOI] [PubMed] [Google Scholar]
  • 25.Nielsen R, Jorsal A, Iversen P, Tolbod L, Bouchelouche K, Sørensen J, Harms HJ, Flyvbjerg A, Bøtker HE, Wiggers H. Heart failure patients with prediabetes and newly diagnosed diabetes display abnormalities in myocardial metabolism. J Nucl Cardiol. 2018;25:169–176. doi: 10.1007/s12350-016-0622-0. [DOI] [PubMed] [Google Scholar]
  • 26.Fang ZY, Prins JB, Marwick TH. Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications. Endocr Rev. 2004;25:543–567. doi: 10.1210/er.2003-0012. [DOI] [PubMed] [Google Scholar]
  • 27.Maisch B, Alter P, Pankuweit S. Diabetic cardiomyopathy--fact or fiction? Herz. 2011;36:102–115. doi: 10.1007/s00059-011-3429-4. [DOI] [PubMed] [Google Scholar]
  • 28.Diamant M, Lamb HJ, Groeneveld Y, Endert EL, Smit JW, Bax JJ, Romijn JA, de Roos A, Radder JK. Diastolic dysfunction is associated with altered myocardial metabolism in asymptomatic normotensive patients with well-controlled type 2 diabetes mellitus. J Am Coll Cardiol. 2003;42:328–335. doi: 10.1016/s0735-1097(03)00625-9. [DOI] [PubMed] [Google Scholar]
  • 29.Fang ZY, Najos-Valencia O, Leano R, Marwick TH. Patients with early diabetic heart disease demonstrate a normal myocardial response to dobutamine. J Am Coll Cardiol. 2003;42:446–453. doi: 10.1016/s0735-1097(03)00654-5. [DOI] [PubMed] [Google Scholar]
  • 30.Ofstad AP, Urheim S, Dalen H, Orvik E, Birkeland KI, Gullestad L, W Fagerland M, Johansen OE, Aakhus S. Identification of a definite diabetic cardiomyopathy in type 2 diabetes by comprehensive echocardiographic evaluation: A cross-sectional comparison with non-diabetic weight-matched controls. J Diabetes. 2015;7:779–790. doi: 10.1111/1753-0407.12239. [DOI] [PubMed] [Google Scholar]
  • 31.Ragonese P, Ferrazza A, Paolini A, Reale F. Left ventricular diastolic filling in type I diabetes mellitus: a pulsed Doppler echocardiographic study. Eur J Med. 1992;1:69–74. [PubMed] [Google Scholar]
  • 32.Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, Mattheus M, Devins T, Johansen OE, Woerle HJ, Broedl UC, Inzucchi SE EMPA-REG OUTCOME Investigators. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med. 2015;373:2117–2128. doi: 10.1056/NEJMoa1504720. [DOI] [PubMed] [Google Scholar]
  • 33.Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, Shaw W, Law G, Desai M, Matthews DR CANVAS Program Collaborative Group. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N Engl J Med. 2017;377:644–657. doi: 10.1056/NEJMoa1611925. [DOI] [PubMed] [Google Scholar]
  • 34.Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, Edwards R, Agarwal R, Bakris G, Bull S, Cannon CP, Capuano G, Chu PL, de Zeeuw D, Greene T, Levin A, Pollock C, Wheeler DC, Yavin Y, Zhang H, Zinman B, Meininger G, Brenner BM, Mahaffey KW CREDENCE Trial Investigators. Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. N Engl J Med. 2019;380:2295–2306. doi: 10.1056/NEJMoa1811744. [DOI] [PubMed] [Google Scholar]
  • 35.Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, Silverman MG, Zelniker TA, Kuder JF, Murphy SA, Bhatt DL, Leiter LA, McGuire DK, Wilding JPH, Ruff CT, Gause-Nilsson IAM, Fredriksson M, Johansson PA, Langkilde AM, Sabatine MS DECLARE–TIMI 58 Investigators. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2019;380:347–357. doi: 10.1056/NEJMoa1812389. [DOI] [PubMed] [Google Scholar]
  • 36.Kosiborod M, Cavender MA, Fu AZ, Wilding JP, Khunti K, Holl RW, Norhammar A, Birkeland KI, Jørgensen ME, Thuresson M, Arya N, Bodegård J, Hammar N, Fenici P CVD-REAL Investigators and Study Group*. Lower Risk of Heart Failure and Death in Patients Initiated on Sodium-Glucose Cotransporter-2 Inhibitors Versus Other Glucose-Lowering Drugs: The CVD-REAL Study (Comparative Effectiveness of Cardiovascular Outcomes in New Users of Sodium-Glucose Cotransporter-2 Inhibitors) Circulation. 2017;136:249–259. doi: 10.1161/CIRCULATIONAHA.117.029190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Fitchett D, Zinman B, Wanner C, Lachin JM, Hantel S, Salsali A, Johansen OE, Woerle HJ, Broedl UC, Inzucchi SE EMPA-REG OUTCOME® trial investigators. Heart failure outcomes with empagliflozin in patients with type 2 diabetes at high cardiovascular risk: results of the EMPA-REG OUTCOME® trial. Eur Heart J. 2016;37:1526–1534. doi: 10.1093/eurheartj/ehv728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Kato ET, Silverman MG, Mosenzon O, Zelniker TA, Cahn A, Furtado RHM, Kuder J, Murphy SA, Bhatt DL, Leiter LA, McGuire DK, Wilding JPH, Bonaca MP, Ruff CT, Desai AS, Goto S, Johansson PA, Gause-Nilsson I, Johanson P, Langkilde AM, Raz I, Sabatine MS, Wiviott SD. Effect of Dapagliflozin on Heart Failure and Mortality in Type 2 Diabetes Mellitus. Circulation. 2019;139:2528–2536. doi: 10.1161/CIRCULATIONAHA.119.040130. [DOI] [PubMed] [Google Scholar]
  • 39.McMurray JJV, Solomon SD, Inzucchi SE, Køber L, Kosiborod MN, Martinez FA, Ponikowski P, Sabatine MS, Anand IS, Bělohlávek J, Böhm M, Chiang CE, Chopra VK, de Boer RA, Desai AS, Diez M, Drozdz J, Dukát A, Ge J, Howlett JG, Katova T, Kitakaze M, Ljungman CEA, Merkely B, Nicolau JC, O'Meara E, Petrie MC, Vinh PN, Schou M, Tereshchenko S, Verma S, Held C, DeMets DL, Docherty KF, Jhund PS, Bengtsson O, Sjöstrand M, Langkilde AM DAPA-HF Trial Committees and Investigators. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N Engl J Med. 2019;381:1995–2008. doi: 10.1056/NEJMoa1911303. [DOI] [PubMed] [Google Scholar]
  • 40.Verma S, Mazer CD, Yan AT, Mason T, Garg V, Teoh H, Zuo F, Quan A, Farkouh ME, Fitchett DH, Goodman SG, Goldenberg RM, Al-Omran M, Gilbert RE, Bhatt DL, Leiter LA, Jüni P, Zinman B, Connelly KA. Effect of Empagliflozin on Left Ventricular Mass in Patients With Type 2 Diabetes Mellitus and Coronary Artery Disease: The EMPA-HEART CardioLink-6 Randomized Clinical Trial. Circulation. 2019;140:1693–1702. doi: 10.1161/CIRCULATIONAHA.119.042375. [DOI] [PubMed] [Google Scholar]
  • 41.Verma S, Rawat S, Ho KL, Wagg CS, Zhang L, Teoh H, Dyck JE, Uddin GM, Oudit GY, Mayoux E, Lehrke M, Marx N, Lopaschuk GD. Empagliflozin Increases Cardiac Energy Production in Diabetes: Novel Translational Insights Into the Heart Failure Benefits of SGLT2 Inhibitors. JACC Basic Transl Sci. 2018;3:575–587. doi: 10.1016/j.jacbts.2018.07.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Cherney DZ, Perkins BA, Soleymanlou N, Har R, Fagan N, Johansen OE, Woerle HJ, von Eynatten M, Broedl UC. The effect of empagliflozin on arterial stiffness and heart rate variability in subjects with uncomplicated type 1 diabetes mellitus. Cardiovasc Diabetol. 2014;13:28. doi: 10.1186/1475-2840-13-28. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Tikkanen I, Narko K, Zeller C, Green A, Salsali A, Broedl UC, Woerle HJ EMPA-REG BP Investigators. Empagliflozin reduces blood pressure in patients with type 2 diabetes and hypertension. Diabetes Care. 2015;38:420–428. doi: 10.2337/dc14-1096. [DOI] [PubMed] [Google Scholar]
  • 44.American Diabetes Association. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes-2020. Diabetes Care. 2020;43:S98–S110. doi: 10.2337/dc20-S009. [DOI] [PubMed] [Google Scholar]

Articles from World Journal of Diabetes are provided here courtesy of Baishideng Publishing Group Inc

RESOURCES