Skip to main content
NASA Author Manuscripts logoLink to NASA Author Manuscripts
. Author manuscript; available in PMC: 2020 May 22.
Published in final edited form as: Minor Planet Bull. 2019 Jul-Sep;46(3):365–371.

LIGHTCURVE PHOTOMETRY OPPORTUNITIES: 2019 JULY-SEPTEMBER

Brian D Warner 1, Alan W Harris 2, Josef Ďurech 3, Lance AM Benner 4
PMCID: PMC7243826  NIHMSID: NIHMS1570203  PMID: 32455421

Abstract

We present lists of asteroid photometry opportunities for objects reaching a favorable apparition and have no or poorly-defined lightcurve parameters. Additional data on these objects will help with shape and spin axis modeling via lightcurve inversion. We also include lists of objects that will or might be radar targets. Lightcurves for these objects can help constrain pole solutions and/or remove rotation period ambiguities that might not come from using radar data alone.


We present several lists of asteroids that are prime targets for photometry during the period 2019 July through September.

In the first three sets of tables, “Dec” is the declination and “U” is the quality code of the lightcurve. See the asteroid lightcurve data base (LCDB; Warner et al., 2009) documentation for an explanation of the U code:

http://www.minorplanet.info/lightcurvedatabase.html

The ephemeris generator on the CALL web site allows you to create custom lists for objects reaching V ≤ 18.0 during any month in the current year, e.g., limiting the results by magnitude and declination.

http://www.minorplanet.info/PHP/call_OppLCDBQuery.php

We refer you to past articles, e.g., Minor Planet Bulletin 36, 188, for more detailed discussions about the individual lists and points of advice regarding observations for objects in each list.

Once you’ve obtained and analyzed your data, it’s important to publish your results. Papers appearing in the Minor Planet Bulletin are indexed in the Astrophysical Data System (ADS) and so can be referenced by others in subsequent papers. It’s also important to make the data available at least on a personal website or upon request. We urge you to consider submitting your raw data to the ALCDEF database. This can be accessed for uploading and downloading data at

http://www.alcdef.org

Containing almost 3.2 million observations for more than 13380 objects, we believe this to be the largest publicly available database of raw asteroid time-series lightcurve data.

Now that many backyard astronomers and small colleges have access to larger telescopes, we have expanded the photometry opportunities and spin axis lists to include asteroids reaching V = 15.5 and brighter (sometimes 15.0 when the list has more than 100 objects.

Lightcurve/Photometry Opportunities

Objects with U = 3− or 3 are excluded from this list since they will likely appear in the list for shape and spin axis modeling. Those asteroids rated U = 1 should be given higher priority over those rated U = 2 or 2+, but not necessarily over those with no period. On the other hand, do not overlook asteroids with U = 2/2+ on the assumption that the period is sufficiently established. Regardless, do not let the existing period influence your analysis since even high quality ratings have been proven wrong at times. Note that the lightcurve amplitude in the tables could be more or less than what’s given. Use the listing only as a guide.

An entry in bold italics is a near-Earth asteroid (NEA).

Brightest LCDB Data
Number Name Date Mag Dec Period Amp U
4717 Kaneko 07 01.2 15.0 −31
3882 Johncox 07 01.9 15.1 −14
3439 Lebofsky 07 03.5 15.1 −31 5.969 0.20 2
1055 Tynka 07 04.0 13.4 −15 11.893 0.06-0.33 2
18571 1997 WQ21 07 04.7 15.1 −20
10359 1993 TU36 07 04.9 15.4 −26 2.411 0.18 2
21910 1999 VT23 07 05.1 15.1 −13 9.4 0.35 2
6419 Susono 07 07.6 14.9 −19
9849 1990 RF2 07 08.3 15.5 −20 2.608 0.12 2
18765 1999 JN17 07 10.5 15.0 −13
3761 Romanskaya 07 12.8 14.4 +6 15.32 0.34 2
3638 Davis 07 13.9 15.1 −22 8.9 0.40 2
2587 Gardner 07 14.8 15.0 −23 11.631 0.48 2
21526 Mirano 07 15.4 14.9 −1
12069 1998 FC59 07 15.8 15.3 −9
11927 Mount Kent 07 15.9 15.4 −21
23120 Paulallen 07 16.4 14.8 −21
2938 Hopi 07 18.3 14.9 −30
900 Rosalinde 07 18.7 14.2 −1 16.648 0.28-0.52 2+
12228 1985 TZ3 07 20.7 15.3 −23
3578 Carestia 07 20.8 13.7 −12 9.93 0.13 2
4420 Alandreev 07 20.8 13.6 −22
24525 2001 CS4 07 21.0 15.4 −19 0.49
9900 Llull 07 21.4 14.6 −18 183.319 0.88 2
791 Ani 07 21.5 12.6 −15 16.72 0.17-0.38 2
8263 1986 QT 07 21.7 15.4 −20
13403 Sarahmousa 07 22.6 15.3 −32
6649 Yokotatakao 07 22.7 14.5 −27
6658 Akiraabe 07 22.9 15.3 −21 0.61
2158 Tietjen 07 24.0 14.6 −18
997 Priska 07 25.0 15.0 −4 16.22 0.61 2
455432 2003 RP8 07 25.5 14.1 −24
6934 1994 YN2 07 27.0 15.4 −28
13803 1998 WU10 07 27.9 15.4 −15
7241 Kuroda 07 31.0 15.3 −22 59.6 0.61 2
5250 Jas 08 01.2 15.2 −16
24730 1991 VM5 08 02.1 15.3 −30
23297 2001 AX3 08 02.2 15.0 −7
32897 Curtharris 08 02.3 14.7 −14 0.36
9065 1993 FN1 08 02.9 15.1 −13 3.064 0.19-0.19 2
1354 Botha 08 03.1 14.3 −27 4. 0.21 1+
2096 Vaino 08 05.5 14.9 −17 3.32 0.06-0.10 2
4342 Freud 08 07.4 15.2 −17
7217 Dacke 08 07.6 14.8 −20
19158 1990 SN7 08 08.4 15.4 −26
6260 Kelsey 08 08.8 14.4 −20 5.11 0.17 2
2519 Annagerman 08 08.9 14.8 −19 12.982 0.14 2
5900 Jensen 08 09.1 15.3 −12
7820 1990 TU8 08 10.2 15.4 −20
4139 Ul'yanin 08 12.0 15.3 −15
8096 Emilezola 08 12.4 15.0 −16
835 Olivia 08 12.8 15.4 −14
4864 1988 RA5 08 12.8 15.2 −20
26851 Sarapul 08 13.3 14.9 −12
8271 Imai 08 15.4 14.7 −15
3150 Tosa 08 15.5 15.4 −30
7248 Alvsjo 08 15.6 15.3 −18
15596 2000 GZ95 08 16.7 15.5 −14 2.923 0.25-0.35 2
12518 1998 HM52 08 17.6 15.0 −25
1066 Lobelia 08 17.9 13.8 −17
10990 Okunev 08 17.9 15.3 −6
2918 Salazar 08 19.0 15.3 −14
99915 1997 TR6 08 19.6 15.2 −14
6567 Shigemasa 08 19.7 15.1 −4
3502 Huangpu 08 20.4 15.1 −15
4643 Cisneros 08 21.6 15.0 −14 5.25 0.32-0.33 2
9053 Hamamelis 08 21.7 15.5 −23 10.386 0.29-0.33 2
3302 Schliemann 08 23.7 14.8 −11
153842 2001 XT30 08 23.8 15.1 −22
306381 1993 RR2 08 23.8 14.4 −8
13050 1990 SY 08 24.0 15.2 −11
8142 Zolotov 08 25.4 15.2 −17
9061 1992 WC3 08 25.4 15.3 −22
5309 MacPherson 08 25.7 15.2 −4
5437 1990 DU3 08 25.7 15.2 −8
7752 Otauchunokai 08 25.9 15.1 −5
1136 Mercedes 08 27.0 13.1 +3 24.64 0.10-0.15 2
3568 ASCII 08 27.0 15.3 −40
52930 1998 SK127 08 27.3 15.2 −11
82676 2001 PV23 08 27.5 15.4 −20
19707 Tokunai 08 28.4 15.1 −19
1686 De Sitter 08 29.2 14.4 −10
6100 Kunitomoikkansa 08 29.3 15.3 −6 30.267 0.27 2-
1897 Hind 08 29.6 15.1 −17 2.633 0.09 2
7078 Unojonsson 08 30.6 15.1 −10
80593 2000 AG144 09 01.0 14.7 +13
2858 Carlosporter 09 01.2 14.9 −15 3.35 0.15-0.47 2
7365 Sejong 09 01.2 14.1 −8
11790 Goode 09 01.2 15.4 −12
4434 Nikulin 09 01.3 15.2 −7
4961 Timherder 09 01.3 15.3 −3
15815 1994 PY18 09 02.2 14.9 −4
7463 Oukawamine 09 03.6 14.7 −10
7534 1995 UA7 09 04.1 14.8 −17
24277 Schoch 09 04.1 15.4 −6
4268 Grebenikov 09 04.2 15.3 −10
3860 Plovdiv 09 04.8 14.6 +3 6.114 0.34-0.37 2+
2628 Kopal 09 05.2 15.5 −6
4264 Karljosephine 09 05.9 14.6 −4 30.96 0.09-0.45 2
1043 Beate 09 06.8 13.5 −7 44.3 0.47 2+
3056 INAG 09 07.0 14.7 −11
2629 Rudra 09 07.4 15.0 −5 123.171 0.58 2
2389 Dibaj 09 08.0 14.3 −3
2555 Thomas 09 08.3 15.1 −5
5857 Neglinka 09 08.9 15.5 −5
848 Inna 09 09.0 14.4 −5
4445 Jimstratton 09 09.5 15.1 −1 3.74 0.13 2
14441 1992 SJ 09 09.5 15.2 −10
5421 Ulanova 09 10.7 15.1 +1 9.814 0.60 2+
5890 Carlsberg 09 10.8 14.9 −21
2580 Smilevskia 09 11.2 13.7 −7
5391 Emmons 09 12.0 14.1 −3 3.028 0.16 2
8842 1990 KF 09 12.5 15.2 −13
7052 1988 VQ2 09 14.0 15.3 −34
4604 Stekarstrom 09 14.1 15.1 −4
3427 Szentmartoni 09 15.6 15.5 +0 0.75
467317 2000 QW7 09 15.9 14.0 −37 71.3 1.0 2
1073 Gellivara 09 16.2 15.0 −5 11.32 0.35 2
1366 Piccolo 09 16.4 13.8 −10 16.57 0.24-0.33 2
10090 Sikorsky 09 16.7 15.4 −1
707 Steina 09 17.5 13.8 +5 414. 1.00-1.00 2+
4300 Marg Edmondson 09 18.6 15.2 +2 9.328 0.12 2
13065 1991 PG11 09 18.9 15.0 −1
3340 Yinhai 09 19.1 14.7 −9
3811 Karma 09 19.6 14.5 +3 13.23 0.20-0.33 2+
7759 1990 QD2 09 19.9 15.3 −4
1725 CrAO 09 20.3 14.7 −5 21.45 0.08-0.28 2
5804 Bambinidipraga 09 20.8 15.4 +9 11.379 0.39 2
12374 Rakhat 09 20.8 15.4 −14 18.17 0.31 2
7527 Marples 09 23.2 15.2 +6
4021 Dancey 09 24.2 14.9 −5
354030 2001 RB18 09 25.5 14.6 +20
10418 1998 WZ23 09 26.2 15.3 −2
2466 Golson 09 26.3 14.3 −2
29032 2059 T-1 09 26.7 14.8 +2
1174 Marmara 09 27.0 14.8 +2 12. 0.2 2
10261 Nikdollezhal' 09 27.5 14.9 +13 16.747 0.06-0.09 2
7868 Barker 09 27.8 15.1 −3
11026 1986 RE1 09 28.4 15.1 +4
3346 Gerla 09 28.5 14.8 +3
4087 Part 09 28.6 15.1 −1 16.47 0.59 2
2226 Cunitza 09 29.4 14.9 +0
5640 Yoshino 09 30.4 15.1 +1
10720 Danzl 09 30.4 15.3 +2
29763 1999 CH20 09 30.7 15.4 +0
25632 2000 AO55 09 30.9 15.5 −7

Low Phase Angle Opportunities

The Low Phase Angle list includes asteroids that reach very low phase angles. The “α” column is the minimum solar phase angle for the asteroid. Getting accurate, calibrated measurements (usually V band) at or very near the day of opposition can provide important information for those studying the “opposition effect.” Use the on-line query form for the LCDB to get more details about a specific asteroid.

http://www.minorplanet.info/PHP/call_OppLCDBQuery.php

You will have the best chance of success working objects with low amplitude and periods that allow covering at least half a cycle every night. Objects with large amplitudes and/or long periods are much more difficult for phase angle studies since, for proper analysis, the data must be reduced to the average magnitude of the asteroid for each night. This reduction requires that you determine the period and the amplitude of the lightcurve; for long period objects that can be difficult. Refer to Harris et al. (1989; Icarus 81, 365-374) for the details of the analysis procedure.

As an aside, some use the maximum light to find the phase slope parameter (G). However, this can produce a significantly different value for both H and G versus when using average light, which is the method used for values listed by the Minor Planet Center.

The International Astronomical Union (IAU) has adopted a new system, H-G12, introduced by Muinonen et al. (2010; Icarus 209, 542-555). It will be some years before H-G12 becomes the standard. Furthermore, it still needs refinement. That can be done mostly by having data for more asteroids, but only if at very low and moderate phase angles. We strongly encourage obtaining data every degree between 0° to 7°, the non-linear part of the curve that is due to the opposition effect. At angles α > 7°, well-calibrated data every 2° or so out to about 25-30°, if possible, should be sufficient. Coverage beyond about 50° is not generally helpful since the H-G system is best defined with data from 0-30°.

Num Name Date α V Dec Period Amp U
323 Brucia 07 01.1 0.51 12.5 −24 9.463 0.19-0.36 3
424 Gratia 07 04.9 0.24 13.5 −24 19.47 0.32 3−
2524 Budovicium 07 10.1 0.09 14.3 −22 10.0819 0.17 3
371 Bohemia 07 10.9 0.40 11.8 −21 10.7391 0.12-0.18 3
351 Yrsa 07 11.0 0.69 13.2 −24 13.29 0.40-0.42 3
158 Koronis 07 12.1 0.12 13.1 −22 14.218 0.28-0.43 3
367 Amicitia 07 12.2 0.95 13.5 −24 5.0554 0.25-0.90 3
1171 Rusthawelia 07 13.5 0.27 14.5 −21 10.98 0.26-0.31 3
379 Huenna 07 15.1 0.83 12.5 −19 14.141 0.07-0.12 3
657 Gunlod 07 18.1 0.29 14.3 −22 15.6652 0.19-0.20 3
149 Medusa 07 20.4 0.55 13.0 −20 26.023 0.33-0.56 3
4420 Alandreev 07 20.8 0.77 13.5 −22
440 Theodora 07 23.2 0.20 14.3 −20 4.828 0.43-0.72 3
570 Kythera 07 23.4 0.77 13.4 −18 8.120 0.12-0.20 2
1162 Larissa 07 23.8 0.71 14.5 −23 6.516 0.12-0.20 3
1127 Mimi 07 29.3 0.48 14.1 −18 12.749 0.72-0.95 3
142 Polana 07 29.4 0.45 12.8 −18 9.764 0.11-0.21 3
1271 Isergina 07 29.7 0.13 14.4 −19 7.5993 0.25-0.36 3−
383 Janina 07 30.1 0.67 14.3 −21 6.4 0.06-0.17 3
206 Hersilia 08 01.8 0.59 12.3 −16 11.122 0.13-0.20 3
180 Garumna 08 02.9 0.08 14.5 −18 23.866 0.27-0.6 3
1727 Mette 08 06.6 0.35 14.1 −17 2.9811 0.19-0.38 3
16 Psyche 08 07.2 0.51 9.3 −15 4.196 0.03-0.34 3
181 Eucharis 08 09.6 0.89 12.8 −13 52.23 0.04-0.15 3
1641 Tana 08 18.0 0.68 13.9 −15 7.95 0.32-0.33 3−
723 Hammonia 08 20.2 0.74 13.9 −11 5.436 0.08-0.18 3
1467 Mashona 08 20.4 0.17 12.4 −12 9.76 0.24-0.31 3
203 Pompeja 08 22.9 0.61 12.2 −13 24.052 0.10 3
1686 De Sitter 08 29.2 0.21 14.5 −10
333 Badenia 08 30.6 0.63 12.9 −11 9.862 0.20-0.33 3
243 Ida 09 01.0 0.15 13.6 −08 4.634 0.45-0.86 3
7365 Sejong 09 01.2 0.48 14.2 −08
317 Roxane 09 02.6 0.30 11.9 −08 8.169 0.61-0.75 3
1128 Astrid 09 03.1 0.60 14.3 −09 10.228 0.13-0.35 2+
135 Hertha 09 06.2 0.15 9.6 −07 8.403 0.12-0.30 3
190 Ismene 09 06.5 0.44 13.1 −05 6.52 0.10-0.16 3
1043 Beate 09 06.8 0.36 13.5 −07 44.3 0.47 2+
268 Adorea 09 08.6 0.70 13.1 −08 7.80 0.15-0.20 3
848 Inna 09 09.0 0.44 14.4 −05
232 Russia 09 09.3 0.80 14.0 −07 21.905 0.14-0.31 3
624 Hektor 09 11.0 0.37 14.1 −03 6.924 0.10-1.10 3
5391 Emmons 09 12.1 0.73 14.2 −03 3.028 0.16 2
150 Nuwa 09 15.8 0.76 11.5 −01 8.1347 0.08-0.31 3
1494 Savo 09 16.8 0.99 13.7 −01 5.3501 0.38-0.63 3
748 Simeisa 09 17.1 0.81 14.3 +00 11.919 0.22-0.36 2
2006 Polonskaya 09 22.2 0.26 14.3 −01 3.1183 0.08-0.16 3
711 Marmulla 09 22.9 0.26 13.2 +00 2.721 0.03-0.18 3
247 Eukrate 09 23.1 0.23 10.4 −01 12.093 0.10-0.18 3
422 Berolina 09 24.5 0.96 11.6 −01 25.978 0.06-0.16 3
104 Klymene 09 25.6 0.94 12.2 −02 8.984 0.2 −0.3 3
1645 Waterfield 09 28.8 0.59 14.5 +03 4.861 0.18-0.20 3
611 Valeria 09 30.0 0.40 12.9 +04 6.977 0.08-0.16 3

Shape/Spin Modeling Opportunities

Those doing work for modeling should contact Josef Ďurech at the email address above. If looking to add lightcurves for objects with existing models, visit the Database of Asteroid Models from Inversion Techniques (DAMIT) web site

http://astro.troja.mff.cuni.cz/projects/asteroids3D

An additional dense lightcurve, along with sparse data, could lead to the asteroid being added to or improving one in DAMIT, thus increasing the total number of asteroids with spin axis and shape models.

Included in the list below are objects that:

  1. Are rated U = 3− or 3 in the LCDB

  2. Do not have reported pole in the LCDB Summary table

  3. Have at least three entries in the Details table of the LCDB where the lightcurve is rated U ≥ 2.

The caveat for condition #3 is that no check was made to see if the lightcurves are from the same apparition or if the phase angle bisector longitudes differ significantly from the upcoming apparition. The last check is often not possible because the LCDB does not list the approximate date of observations for all details records. Including that information is an on-going project.

Favorable apparitions are in bold text. NEAs are in italics.

Brightest LCDB Data
Num Name Date Mag Dec Period Amp U
323 Brucia 07 01.2 12.5 −24 9.463 0.19-0.36 3
713 Luscinia 07 02.0 13.6 −10 9.9143 0.09-0.40 3
428 Monachia 07 04.5 14.9 −34 3.6338 0.18-0.34 3
4375 Kiyomori 07 07.6 15.5 −17 6.4709 0.15-0.16 3
266 Aline 07 09.7 12.8 −6 13.018 0.05-0.10 3
3682 Welther 07 10.3 14.7 −10 3.5973 0.21-0.37 3
1694 Kaiser 07 12.1 14.2 −43 13.02 0.14-0.32 3
1171 Rusthawelia 07 13.5 14.5 −21 10.98 0.26-0.31 3
869 Mellena 07 14.0 14.1 −12 6.5155 0.20-0.27 3
1675 Simonida 07 14.8 15.0 −33 5.2885 0.16-0.65 3
947 Monterosa 07 16.1 13.3 −31 5.164 0.15-0.23 3−
3879 Machar 07 16.4 14.9 −31 4.131 0.19-0.23 3
657 Gunlod 07 18.0 14.3 −22 15.6652 0.19-0.20 3
214088 2004 JN13 07 21.4 13.9 −59 6.342 0.17-0.40 3
754 Malabar 07 23.8 14.0 +10 11.74 0.19-0.38 3
1777 Gehrels 07 26.2 14.9 −22 2.8355 0.21-0.27 3
1520 Imatra 07 26.6 14.6 −2 18.635 0.27-0.35 3−
618 Elfriede 07 28.3 12.3 −25 14.791 0.11-0.17 3
373 Melusina 07 29.4 13.2 −39 12.97 0.20-0.25 3
206 Hersilia 08 01.8 12.3 −16 11.122 0.13-0.20 3
1115 Sabauda 08 03.8 14.9 −35 6.718 0.16-0.27 3
1727 Mette 08 06.6 14.0 −17 2.9811 0.19-0.38 3
298 Baptistina 08 06.9 14.2 −25 16.23 0.10-0.25 3
654 Zelinda 08 07.5 12.4 +9 31.735 0.08- 0.3 3
635 Vundtia 08 07.8 13.5 −5 11.79 0.15-0.27 3
255 Oppavia 08 08.3 14.5 −28 19.499 0.14-0.16 3
252 Clementina 08 11.8 14.0 −3 10.864 0.32-0.44 3
2131 Mayall 08 12.9 14.1 +17 2.5678 0.05-0.09 3
235 Carolina 08 14.9 12.7 −27 17.61 0.25-0.38 3
1342 Brabantia 08 15.0 14.7 −8 4.1754 0.17-0.21 3
971 Alsatia 08 17.3 14.2 −31 9.614 0.17-0.29 3
289 Nenetta 08 19.4 12.5 −7 6.902 0.18-0.19 3
970 Primula 08 19.4 14.6 −11 2.777 0.16-0.30 3
3028 Zhangguoxi 08 20.8 15.0 −3 4.826 0.12-0.25 3
975 Perseverantia 08 22.0 14.3 −16 7.267 0.17-0.23 3
911 Agamemnon 08 24.1 14.8 −15 6.592 0.04-0.29 3
1509 Esclangona 08 25.5 15.0 +25 3.2528 0.11-0.35 3
348 May 08 28.7 13.8 −22 7.3812 0.14-0.16 3
504 Cora 08 28.8 12.6 −27 7.588 0.15- 0.4 3−
333 Badenia 08 30.7 12.9 −11 9.862 0.20-0.33 3
66146 1998 TU3 08 31.8 11.9 −85 2.375 0.07-0.15 3
305 Gordonia 08 31.9 13.5 −4 12.893 0.10-0.23 3
472 Roma 09 01.9 12.2 −21 9.8007 0.27-0.46 3
3870 Mayre 09 02.1 15.0 +6 3.9915 0.44-0.45 3
759 Vinifera 09 04.3 13.1 +10 14.229 0.36-0.40 3
380 Fiducia 09 04.9 12.4 −16 13.69 0.04-0.32 3
143 Adria 09 05.2 12.9 −4 22.005 0.07-0.10 3
232 Russia 09 09.2 14.0 −7 21.905 0.14-0.31 3
4224 Susa 09 11.3 14.5 +5 6.178 0.21-0.27 3−
2486 Metsahovi 09 17.5 15.0 −4 4.4518 0.04-0.13 3
3948 Bohr 09 17.9 14.7 −1 24.884 0.2-0.90 3
240 Vanadis 09 19.9 11.6 −5 10.64 0.08-0.34 3
3332 Raksha 09 20.5 14.8 −16 4.8065 0.25-0.36 3
275 Sapientia 09 22.1 13.3 −5 14.931 0.05-0.12 3−
2006 Polonskaya 09 22.2 14.2 −1 3.1183 0.08-0.16 3
592 Bathseba 09 22.6 13.2 −3 7.7465 0.22-0.32 3
888 Parysatis 09 29.1 12.7 −18 5.9314 0.22-0.26 3
483 Seppina 09 29.2 12.9 −3 12.727 0.14-0.29 3
611 Valeria 09 30.1 12.9 +4 6.977 0.08-0.16 3

Radar-Optical Opportunities

Past radar targets:

http://echo.jpl.nasa.gov/~lance/radar.nea.periods.html

Arecibo targets:

http://www.naic.edu/~pradar

http://www.naic.edu/~pradar/ephemfuture.txt

Goldstone targets:

http://echo.jpl.nasa.gov/asteroids/goldstone_asteroid_schedule.html

These are based on known targets at the time the list was prepared. It is very common for newly discovered objects to move up the list and become radar targets on short notice. We recommend that you keep up with the latest discoveries the Minor Planet Center observing tools

In particular, monitor NEAs and be flexible with your observing program. In some cases, you may have only 1-3 days when the asteroid is within reach of your equipment. Be sure to keep in touch with the radar team (through Dr. Benner’s email or their Facebook or Twitter accounts) if you get data. The team may not always be observing the target but your initial results may change their plans. In all cases, your efforts are greatly appreciated.

Use the ephemerides below as a guide to your best chances for observing, but remember that photometry may be possible before and/or after the ephemerides given below. Note that geocentric positions are given. Use these web sites to generate updated and topocentric positions:

MPC: http://www.minorplanetcenter.net/iau/MPEph/MPEph.html

JPL: http://ssd.jpl.nasa.gov/?horizons

In the ephemerides below, ED and SD are, respectively, the Earth and Sun distances (AU), V is the estimated Johnson V magnitude, and α is the phase angle. SE and ME are the great circles distances (in degrees) of the Sun and Moon from the asteroid. MP is the lunar phase and GB is the galactic latitude. “PHA” indicates that the object is a “potentially hazardous asteroid”, meaning that at some (long distant) time, its orbit might take it very close to Earth.

About YORP Acceleration

Many, if not all, of the targets in this section are near-Earth asteroids. These objects are particularly sensitive to YORP acceleration. YORP (Yarkovsky–O'Keefe–Radzievskii–Paddack) is the asymmetric thermal re-radiation of sunlight that can cause an asteroid’s rotation period to increase or decrease. High precision lightcurves at multiple apparitions can be used to model the asteroid’s sidereal rotation period and see if it’s changing.

It usually takes four apparitions to have sufficient data to determine if the asteroid rotation rate is changing under the influence of YORP. This is why observing asteroids that already have well-known periods is still a valuable use of telescope time. It is even more so when considering the BYORP (binary-YORP) effect among binary asteroids that has stabilized the spin so that acceleration of the primary body is not the same as if it would be if there were no satellite.

To help focus efforts in YORP detection, Table I gives a quick summary of this quarter’s radar-optical targets. The family or group for the asteroid is given under the number name. Also under the name will be additional flags such as “PHA” for Potentially Hazardous Asteroid, NPAR for a tumbler, and/or “BIN” to indicate the asteroid is a binary (or multiple) system. “BIN?” means that the asteroid is a suspected but not confirmed binary. The period is in hours and, in the case of binary, for the primary. The Amp column gives the known range of lightcurve amplitudes. The App columns gives the number of different apparitions at which a lightcurve period was reported while the Last column gives the year for the last reported period. The R SNR column indicates the estimated radar SNR using the tool at

Table I.

Summary of radar-optical opportunities for the current quarter. Period and amplitude data are from the asteroid lightcurve database (Warner et al., 2009; Icarus 202, 134-146). SNR values are estimates that are affected by power output of the radar along with rotation period, size, and distance. They are given for relative comparisons among the objects in the list.

Asteroid Period Amp App Last R SNR
(418900) 2009 BE2 - - - - A 35
NEA G -
(494999) 2010 JU39 - - - - A 110
NEA PHA G 35
(441987) 2010 NY65 5.541 0.16 3 2018 A 2340
NEA 0.24 G 780
(11500) Tomaiyowit NEA 73 0.5 1 1998 A 10
(90403) 2003 YE45 500 0.81 1 2019 A 180
NEA G 60
(293054) 2006 WP127 NEA 5.311 0.35 1 2015 A 40
(455432) 2003 RP8 NEA - - - - A 13
(66146) 1998 TU3 2.375 0.07 6 2017 A 25
NEA 0.15 G 25
(237805) 2002 CF26 3.776 0.99 1 2017 A 60
NEA G 20
(141593) 2002 HK12 12.690 1.5 1 2002 A 470
NEA G 160
(1620) Geographos 5.222 0.95 4 2019 G 25
NEA 2.03
(504800) 2010 CO1 - - - - A 15
NEA G 25
(467317) 2000 QW7 71.3 1.0 1 2000 A 2950
NEA G 990
(2100) Ra-Shalom 19.797 0.30 4 2016 A 35
NEA 0.55 G 12
(354030) 2001 RB18 - - - - A 40
NEA G 15
(297418) 2000 SP43 - - - - G 47
NEA
1996 TC1 - - - - A 2870
NEA G 960

http://www.naic.edu/~eriverav/scripts/index.php

The “A” is for Arecibo; “G” is for Goldstone. The calculator SNRs for Arecibo are based on a reduced power of 600 kW.

The SNRs were calculated using the current MPCORB absolute magnitude (H), a period of 4 hours (2 hours if D ≤ 200 m) if it’s not known, and the approximate minimum Earth distance during the current quarter.

If the SNR value is in bold text, the object was found on the radar planning pages listed above. Otherwise, the planning tool at

http://www.minorplanet.info/PHP/call_OppLCDBQuery.php

was used to find known NEAs that were V < 18.0 during the quarter. An object is usually placed on the list only if the estimated Arecibo SNR > 10 when using the SNR calculator mentioned above.

(418900) 2009 BE2 (H = 19.2)

The estimated size is 430 m for the asteroid with no reported rotation period. Because of its size, the period is likely P > 2.2 h.

DATE RA Dec ED SD V α SE ME MP GB
06/20 14 04.0 +31 07 0.12 1.05 17.1 70.9 103 101 −0.93 +74
06/23 14 12.7 +18 47 0.11 1.06 16.8 65.1 109 127 −0.72 +70
06/26 14 21.6 +04 41 0.10 1.07 16.5 58.8 116 156 −0.44 +59
06/29 14 30.9 −09 40 0.11 1.08 16.4 53.6 122 170 −0.17 +46
07/02 14 40.5 −22 35 0.11 1.09 16.5 50.2 125 135 −0.01 +34
07/05 14 50.7 −33 09 0.13 1.10 16.8 48.6 126 98 +0.07 +23
07/08 15 01.4 −41 22 0.15 1.11 17.0 48.0 126 64 +0.34 +15
07/11 15 12.6 −47 39 0.17 1.12 17.3 47.8 125 39 +0.67 +9
07/14 15 24.4 −52 26 0.19 1.13 17.6 47.8 124 38 +0.92 +4
07/17 15 36.8 −56 06 0.21 1.15 17.9 47.8 123 57 −1.00 +0

(494999) 2010 JU39 (H = 19.6)

There is no reported period for this 360-m NEA. Note that most of the positions are actually in the previous quarter (June) since the asteroid makes a very brief appearance at acceptable phase angles and solar elongations. The radar team will need photometry and astrometry.

DATE RA Dec ED SD V α SE ME MP GB
06/20 18 11.5 +24 24 0.12 1.10 17.0 43.2 132 53 −0.93 +19
06/21 17 58.0 +24 27 0.11 1.10 16.8 43.5 132 62 −0.87 +22
06/22 17 41.6 +24 24 0.10 1.09 16.5 44.0 132 72 −0.80 +26
06/23 17 21.7 +24 10 0.09 1.08 16.3 45.0 131 85 −0.72 +30
06/24 16 57.4 +23 38 0.08 1.07 16.1 46.7 130 99 −0.63 +35
06/25 16 27.9 +22 39 0.08 1.06 16.0 49.4 127 114 −0.54 +41
06/26 15 52.5 +20 57 0.07 1.06 15.9 53.4 123 130 −0.44 +48
06/27 15 11.5 +18 21 0.06 1.05 15.8 59.2 118 147 −0.35 +57
06/28 14 26.8 +14 45 0.06 1.04 15.9 66.4 110 157 −0.25 +65
06/29 13 41.3 +10 23 0.06 1.03 16.2 74.7 102 148 −0.17 +70
06/30 12 58.4 +05 46 0.06 1.02 16.5 83.1 93 130 −0.10 +69

(441987) 2010 NY65 (H = 21.5)

This 150-meter NEA is going to “light up” both Arecibo and Goldstone, assuming – as always – that they are operational and at full power. This is a potentially hazardous asteroid (PHA) and also a good candidate for measuring the Yarkovsky effect on the asteroid. This is a thermal force that leads to the size of the orbit decreasing (retrograde rotation) or increasing (prograde rotation).

DATE RA Dec ED SD V α SE ME MP GB
06/27 15 21.1 +45 19 0.03 1.02 16.3 78.4 100 125 −0.35 +55
06/28 15 55.9 +37 17 0.03 1.03 16.4 68.4 110 129 −0.25 +50
06/29 16 15.9 +31 21 0.04 1.03 16.6 61.4 117 133 −0.17 +46
06/30 16 28.7 +26 59 0.04 1.04 16.8 56.5 121 136 −0.10 +42
07/01 16 37.6 +23 42 0.05 1.05 17.0 52.9 125 136 −0.04 +39
07/02 16 44.2 +21 09 0.06 1.05 17.2 50.2 127 134 −0.01 +37
07/03 16 49.2 +19 07 0.06 1.06 17.4 48.2 129 128 +0.00 +35
07/04 16 53.2 +17 28 0.07 1.06 17.6 46.6 131 120 +0.02 +34
07/05 16 56.4 +16 05 0.08 1.07 17.8 45.3 132 110 +0.07 +33
07/06 16 59.2 +14 55 0.08 1.08 18.0 44.3 132 99 +0.14 +31

(11500) Tomaiyowit (H = 12.6)

This asteroid will barley be within reach of the Arecibo radar, but it is still worth photometric efforts. Note that the period is almost three Earth days. This calls for a coordinated campaign involving observers at well-separated longitudes.

DATE RA Dec ED SD V α SE ME MP GB
06/30 13 17.7 +25 09 0.20 1.04 17.7 79.1 90 122 −0.10 +84
07/03 13 46.7 +23 06 0.21 1.05 17.7 74.4 94 92 +0.00 +77
07/06 14 12.0 +20 58 0.23 1.07 17.7 70.1 98 59 +0.14 +71
07/09 14 33.9 +18 52 0.24 1.09 17.8 66.5 101 32 +0.45 +65
07/12 14 52.9 +16 51 0.26 1.11 17.9 63.4 103 32 +0.77 +60
07/15 15 09.6 +14 57 0.28 1.12 18.0 60.8 105 56 +0.96 +56
07/18 15 24.3 +13 11 0.30 1.14 18.1 58.5 107 85 −0.99 +52
07/21 15 37.5 +11 32 0.32 1.16 18.2 56.6 108 113 −0.85 +48
07/24 15 49.3 +10 00 0.34 1.17 18.3 55.0 109 140 −0.60 +45
07/27 16 00.1 +08 34 0.36 1.19 18.4 53.7 110 156 −0.31 +42

(90403) 2003 YE45 (H = 17.6)

By the smallest of margins, this asteroid was actually brighter back in January. However, NEAs can have more than one opposition and close approach in a given year. On this second time around, it offers a prolonged period where it is within reach of many backyard telescopes, if they are well north of the equator.

The period is believed to be on the order of 500 hours (almost three Earth weeks). That’s hardly the record, but it this does call for another prolonged, coordinated observing campaign involving several, well-separated observers. It will also require careful calibration of the data so that all observing runs have essentially the same zero point.

The long period also makes this a very likely candidate for tumbling and so makes the needed for tightly-calibrated data even more essential.

DATE RA Dec ED SD V α SE ME MP GB
07/15 00 29.8 +36 39 0.17 1.03 16.6 81.3 89 108 +0.96 −26
07/22 23 48.2 +44 10 0.19 1.06 16.7 72.2 97 51 −0.78 −17
07/29 23 08.1 +48 47 0.22 1.09 16.8 64.9 104 78 −0.13 −11
08/05 22 30.8 +51 06 0.25 1.12 17.0 59.0 109 121 +0.21 −6
08/12 21 58.1 +51 41 0.28 1.15 17.1 54.2 113 85 +0.89 −3
08/19 21 31.6 +50 59 0.31 1.18 17.3 50.3 116 65 −0.89 +0
08/26 21 11.5 +49 24 0.35 1.21 17.5 47.2 118 98 −0.26 +1
09/02 20 57.7 +47 11 0.38 1.25 17.7 44.6 120 110 +0.10 +1
09/09 20 49.5 +44 36 0.42 1.27 17.9 42.6 121 70 +0.78 +0
09/16 20 46.0 +41 51 0.46 1.30 18.1 41.2 121 69 −0.97 −1

(293054) 2006 WP127 (H = 18.3)

Mid-July provides the best observing opportunities, if considering only the galactic latitude. The estimated diameter is 650 meters. The period is known to be about 5.3 hours, but that needs confirmation and/or refinement.

DATE RA Dec ED SD V α SE ME MP GB
07/10 13 44.6 +80 49 0.11 0.98 17.3 105.1 69 85 +0.57 +36
07/13 17 53.7 +65 34 0.10 1.02 16.3 83.6 91 85 +0.85 +30
07/16 18 38.6 +45 42 0.11 1.06 15.9 63.0 111 68 +0.99 +21
07/19 18 55.2 +30 03 0.13 1.10 15.9 47.3 127 61 −0.96 +12
07/22 19 03.9 +19 05 0.16 1.14 16.1 36.7 138 75 −0.78 +6
07/25 19 09.3 +11 27 0.19 1.18 16.4 29.8 145 102 −0.51 +1
07/28 19 13.1 +06 00 0.23 1.22 16.7 25.5 149 134 −0.21 −2
07/31 19 16.1 +01 57 0.26 1.25 17.0 23.0 151 156 −0.02 −5
08/03 19 18.7 −01 08 0.30 1.29 17.3 21.6 152 129 +0.05 −7
08/06 19 21.0 −03 35 0.35 1.33 17.6 21.1 152 89 +0.31 −8
08/09 19 23.1 −05 32 0.39 1.37 18.0 21.1 151 50 +0.64 −10
08/12 19 25.2 −07 09 0.43 1.40 18.3 21.4 150 18 +0.89 −11
08/15 19 27.3 −08 29 0.48 1.44 18.5 21.9 148 29 +1.00 −12
08/18 19 29.5 −09 37 0.52 1.47 18.8 22.5 146 61 −0.94 −13

(455432) 2003 RP8 (H = 18.2)

There’s no rotation period in the asteroid lightcurve database (LCDB) for this 680-meter NEA. The size virtually assures that the rotation period is going to be P > 2 hours. Southern Hemisphere observers are decidedly favored this time around.

DATE RA Dec ED SD V α SE ME MP GB
07/01 22 41.5 −70 29 0.29 1.19 17.6 46.8 121 110 −0.04 −43
07/06 22 13.5 −68 07 0.24 1.17 17.2 44.6 126 127 +0.14 −43
07/11 21 37.8 −63 50 0.20 1.16 16.6 40.4 132 89 +0.67 −42
07/16 20 57.8 −55 59 0.16 1.14 15.8 32.7 143 40 +0.99 −40
07/21 20 18.4 −41 47 0.12 1.13 14.9 19.3 158 48 −0.85 −33
07/26 19 43.8 −19 22 0.11 1.12 14.1 7.5 172 109 −0.41 −20
07/31 19 15.9 +05 42 0.11 1.11 14.9 28.6 148 152 −0.02 −3
08/05 18 54.6 +24 25 0.14 1.11 15.9 45.8 129 94 +0.21 +10
08/10 18 39.1 +35 56 0.17 1.10 16.6 55.7 116 61 +0.74 +18
08/15 18 28.2 +42 58 0.21 1.10 17.2 61.0 108 73 +1.00 +22

(66146) 1998 TU3 (H = 14.5)

If looking at Table I, it may seem strange that the estimated SNR is the same for Arecibo and Goldstone. The reason is that the asteroid is significantly farther away during the time it can be observed by Arecibo, which has a more restricted declination range of about −1° to +38°.

Closest approach is actually in late August, but the viewing geometry doesn’t allow visual observations until a few days later. Note that the ephemeris goes into the fourth quarter (October) and that the interval is four days.

DATE RA Dec ED SD V α SE ME MP GB
09/01 20 27.8 −85 21 0.09 1.03 11.9 72.7 102 97 +0.04 −29
09/05 20 29.2 −71 38 0.11 1.05 12.0 62.8 112 69 +0.38 −33
09/09 20 30.7 −62 13 0.13 1.07 12.3 57.2 116 41 +0.78 −35
09/13 20 32.6 −55 34 0.16 1.09 12.6 54.3 118 50 +0.99 −36
09/17 20 34.9 −50 39 0.18 1.11 13.0 52.9 119 85 −0.93 −37
09/21 20 37.6 −46 52 0.21 1.12 13.3 52.5 118 127 −0.62 −37
09/25 20 40.6 −43 49 0.24 1.13 13.6 52.5 117 156 −0.20 −38
09/29 20 44.1 −41 16 0.27 1.14 13.9 52.8 115 114 +0.00 −38
10/03 20 47.9 −39 06 0.30 1.15 14.1 53.3 113 60 +0.23 −39
10/07 20 52.0 −37 12 0.33 1.16 14.4 53.9 111 19 +0.63 −39

(237805) 2002 CF26 (H = 17.4)

The ephemeris interval is 7 days for this 980-meter NEA and so it covers just more than two months. The period is P ~ 3.77 h. The phase angle is always relatively large, which could make for some interesting lightcurve shapes due to shadowing; a bimodal lightcurve cannot always be guaranteed under such circumstances.

The phase angle bisector longitude swings from 335° to 0° and then up to 35° during the ephemeris interval. The latitude changes by more than 90° over the same time.

DATE RA Dec ED SD V α SE ME MP GB
08/01 02 03.3 −45 47 0.42 1.22 17.8 51.5 110 110 +0.00 −67
08/08 02 02.4 −42 59 0.34 1.19 17.4 51.4 113 122 +0.53 −69
08/15 01 55.7 −38 37 0.27 1.16 16.7 50.0 118 63 +1.00 −72
08/22 01 40.1 −30 45 0.20 1.14 15.9 45.6 127 43 −0.66 −79
08/29 01 08.7 −14 14 0.13 1.12 14.7 35.2 140 123 −0.03 −76
09/05 00 08.0 +19 21 0.10 1.10 13.9 29.4 148 128 +0.38 −42
09/12 22 23.8 +51 41 0.13 1.08 15.0 51.6 123 68 +0.96 −5
09/19 20 24.1 +62 58 0.18 1.07 16.2 65.0 105 83 −0.80 +14
09/26 19 01.7 +64 48 0.25 1.06 17.0 69.9 96 93 −0.11 +23
10/03 18 15.7 +64 27 0.32 1.06 17.5 71.1 91 86 +0.23 +28

(141593) 2002 HK12 (H = 18.1)

The rotation period for 2002 HK12 is P ~ 12.7 hours. A single station can eventually cover the entire lightcurve but two observers at well-separated longitudes could make much quicker work of completing the lightcurve. The estimated diameter is 710 meters. The combination of a closest approach of 0.062 AU, the diameter, and period should make this a bright radar target.

DATE RA Dec ED SD V α SE ME MP GB
09/05 04 17.1 +35 45 0.11 1.02 16.2 80.6 93 159 +0.38 −11
09/12 03 41.0 +33 31 0.14 1.06 16.2 65.3 107 96 +0.96 −17
09/19 03 15.3 +31 27 0.17 1.10 16.3 52.6 120 18 −0.80 −22
09/26 02 54.3 +29 26 0.20 1.14 16.5 41.2 131 93 −0.11 −26
10/03 02 36.0 +27 23 0.23 1.19 16.6 30.9 142 154 +0.23 −30
10/10 02 20.0 +25 19 0.26 1.24 16.7 21.5 153 68 +0.87 −33
10/17 02 06.6 +23 18 0.30 1.29 16.8 13.4 163 25 −0.91 −36
10/24 01 55.8 +21 26 0.35 1.34 17.0 7.4 170 117 −0.23 −39
10/31 01 47.9 +19 48 0.41 1.39 17.4 6.7 171 136 +0.11 −41
11/07 01 42.7 +18 26 0.47 1.45 17.9 10.4 165 49 +0.74 −43

(1620) Geographos (H = 15.6)

Based on diameter, rotation period, and minimum distance, this NEA would normally be a good target for Arecibo. However, it will move too far away before it gets into the behemoth radar’s field of view. The period is well known (P ~ 5.22204 h), but data from each new apparition helps refine the amount that YORP is increasing the asteroid’s rotation rate (decreasing the period), which has been given as (1.5±0.2)^10−3 rad yr−2 (Durech et al., 2008; AA 489, L25-L28).

DATE RA Dec ED SD V α SE ME MP GB
09/10 18 29.0 −20 46 0.16 1.07 14.0 62.0 110 25 +0.85 −5
09/13 18 57.1 −16 34 0.17 1.09 14.1 57.7 114 54 +0.99 −9
09/16 19 20.2 −12 53 0.19 1.10 14.2 54.3 117 84 −0.97 −12
09/19 19 39.4 −09 45 0.21 1.12 14.4 51.7 119 114 −0.80 −15
09/22 19 55.5 −07 06 0.23 1.14 14.6 49.7 120 146 −0.51 −17
09/25 20 09.4 −04 52 0.25 1.15 14.7 48.2 121 162 −0.20 −20
09/28 20 21.5 −02 59 0.28 1.17 14.9 47.1 121 129 −0.01 −21
10/01 20 32.3 −01 23 0.30 1.19 15.1 46.2 121 90 +0.08 −23
10/04 20 42.1 −00 01 0.33 1.20 15.3 45.5 121 54 +0.33 −24
10/07 20 51.1 +01 10 0.35 1.22 15.5 44.9 121 26 +0.63 −26

(504800) 2010 CO1 (H = 21.8)

The estimated diameter of this NEA is 130 meters. That makes it a good candidate for being a super-fast rotator (P < 2 h). If for no other reason that this, use the minimum exposure time that allows a useful SNR, at least until a good estimate of the rotation period has been made. Keep in mind that exposures must be less than 0.187P to avoid “rotational smearing” (Pravec et al., 2000; Icarus 147, 477-486).

DATE RA Dec ED SD V α SE ME MP GB
09/10 10 39.5 −81 41 0.05 1.01 18.5 90.1 87 76 +0.85 −20
09/12 18 40.3 −78 18 0.04 1.01 17.6 79.3 99 66 +0.96 −26
09/14 19 50.0 −54 29 0.04 1.02 16.9 64.9 113 63 −1.00 −30
09/16 20 06.7 −29 19 0.04 1.03 16.8 53.6 125 74 −0.97 −28
09/18 20 14.3 −10 46 0.05 1.04 17.1 49.6 128 94 −0.87 −23
09/20 20 18.9 +01 05 0.06 1.04 17.6 49.5 128 114 −0.71 −19
09/22 20 22.0 +08 39 0.07 1.05 18.1 50.4 126 131 −0.51 −16
09/24 20 24.6 +13 45 0.09 1.06 18.6 51.3 125 143 −0.30 −14
09/26 20 26.7 +17 20 0.10 1.06 19.0 52.2 123 141 −0.11 −12
09/28 20 28.7 +19 59 0.12 1.07 19.3 52.8 122 125 −0.01 −11

(467317) 2000 QW7 (H = 19.8)

Here’s another NEA with a known period that is long and, to make things more difficult, is nearly commensurate with an Earth day. This calls for another well-coordinated observing campaign.

On the plus side, the estimated size of 330 meters and minimum distance of about 0.036 AU mean that the SNR for Arecibo could be near 3000 and 1000 for Goldstone.

DATE RA Dec ED SD V α SE ME MP GB
07/01 18 28.2 −07 46 0.31 1.32 18.6 11.9 164 155 −0.04 +2
07/16 18 15.1 −06 29 0.23 1.23 18.1 20.6 155 19 +0.99 +5
07/31 18 03.5 −06 36 0.17 1.15 17.7 34.1 140 153 −0.02 +8
08/15 18 03.7 −09 05 0.12 1.09 17.1 47.2 128 48 +1.00 +6
08/30 18 37.8 −16 49 0.07 1.05 16.1 54.0 123 128 +0.00 −5
09/14 22 15.7 −36 34 0.04 1.04 14.1 35.4 143 32 −1.00 −56
09/29 02 46.6 −19 56 0.06 1.05 15.5 39.9 138 144 +0.00 −63
10/14 03 29.5 −10 05 0.12 1.09 16.7 34.4 142 33 −1.00 −49
10/29 03 33.1 −05 04 0.18 1.16 17.5 23.3 153 160 +0.01 −46
11/13 03 27.5 −01 05 0.26 1.23 18.1 15.4 161 17 −1.00 −44

(2100) Ra-Shalom (H = 16.1)

Because of orbital geometries, Ra-Shalom (1.8 km) has reported rotation periods (not counting sidereal periods from modeling) from only four apparitions between 1978 and 2016. The period is about 19.8 h, which makes it a difficult target but it’s going to be available for almost three months starting in August. That should be enough time to get a good data set.

The large range of phase angles will likely lead to large changes in lightcurve amplitude and shape. In such circumstances, it’s better to do analysis on subsets of data where the synodic period and amplitude are nearly the same. Doing this can be highly instructive for showing the effect of the phase angle on lightcurve amplitude and shape.

DATE RA Dec ED SD V α SE ME MP GB
08/01 01 26.1 +27 39 0.41 1.15 16.7 61.5 98 96 +0.00 −35
08/11 01 28.0 +25 38 0.36 1.17 16.3 55.8 107 121 +0.82 −37
08/21 01 23.5 +22 00 0.30 1.19 15.7 48.1 119 17 −0.75 −40
08/31 01 09.2 +15 33 0.25 1.19 14.9 36.9 135 142 +0.01 −47
09/10 00 41.3 +04 32 0.20 1.19 14.0 20.5 155 70 +0.85 −58
09/20 23 58.1 −11 16 0.18 1.18 13.3 8.7 170 66 −0.71 −70
09/30 23 06.0 −26 57 0.19 1.16 14.1 29.5 145 132 +0.03 −67
10/10 22 18.4 −37 21 0.22 1.13 14.9 48.1 122 24 +0.87 −56
10/20 21 44.0 −42 55 0.26 1.09 15.6 61.4 105 136 −0.66 −49
10/30 21 21.9 −45 56 0.31 1.05 16.1 71.5 92 71 +0.05 −45

(354030) 2001 RB18 (H = 18.5)

There’s no reported period in the LCDB for this 600 meter NEA. The ephemeris stretches into the fourth quarter (October) with a 10-day interval, or nearly three months. It’s unusual to have such a prolonged observing opportunity for an NEA. Take advantage if you can.

DATE RA Dec ED SD V α SE ME MP GB
07/25 21 28.5 +00 07 0.38 1.37 18.1 19.6 153 69 −0.51 −34
08/04 21 37.0 +02 45 0.31 1.30 17.4 17.5 157 148 +0.12 −34
08/14 21 47.6 +05 38 0.24 1.25 16.8 16.6 159 33 +0.98 −35
08/24 22 03.9 +08 52 0.19 1.19 16.2 17.1 160 90 −0.46 −36
09/03 22 31.5 +12 35 0.15 1.15 15.6 18.1 159 129 +0.18 −38
09/13 23 20.4 +16 41 0.12 1.12 15.0 18.7 159 31 +0.99 −41
09/23 00 39.8 +19 56 0.10 1.09 14.6 20.7 157 84 −0.40 −43
10/03 02 16.1 +19 33 0.09 1.08 14.8 27.1 150 150 +0.23 −39
10/13 03 32.4 +16 00 0.11 1.09 15.2 32.4 144 45 +0.99 −32
10/23 04 16.7 +12 22 0.13 1.11 15.7 32.3 144 75 −0.34 −26

(297418) 2000 SP43 (H = 18.5)

Another 600-meter NEA, 2000 SP43 has no reported rotation period. It’s in the Sun’s glare until the end of September, so the ephemeris carries into mid-October as an incentive to observe early and observe often (weather and moon allowing). Here again, the phase angles are large: look out for unusual lightcurve shapes.

DATE RA Dec ED SD V α SE ME MP GB
09/25 18 00.2 −08 37 0.08 1.00 16.1 86.7 89 138 −0.20 +7
09/27 18 38.9 −06 40 0.09 1.02 16.1 78.5 96 119 −0.05 +0
09/29 19 08.8 −05 02 0.10 1.03 16.1 72.3 102 97 +0.00 −6
10/01 19 32.1 −03 42 0.12 1.04 16.3 67.7 106 75 +0.08 −11
10/03 19 50.4 −02 37 0.13 1.05 16.5 64.3 109 53 +0.23 −14
10/05 20 05.3 −01 45 0.15 1.06 16.7 61.8 111 34 +0.43 −17
10/07 20 17.5 −01 01 0.16 1.07 16.8 59.9 112 21 +0.63 −20
10/09 20 27.8 −00 25 0.18 1.08 17.0 58.4 113 25 +0.80 −22
10/11 20 36.7 +00 05 0.19 1.09 17.2 57.3 113 40 +0.93 −23
10/13 20 44.4 +00 32 0.21 1.10 17.4 56.5 113 60 +0.99 −25

1996 TC1 (H = 23.9)

1996 TC1 is a PHA and virtual impactor with a diameter of only 50 meters. That makes it very likely that its period is P < 2 h and, maybe less so, that it is tumbling. The observing window for backyard telescopes is only 4-6 days.

According to the Minor Planet Center ephemeris, the sky motion (arcsec/min) at 0 h UT will be: Sep 25, 81; Sep 26, 194; Sep 27, 54; Sep 28, 19; Sep 29, 9. To paraphrase a famous movie line, “You’re going to need a bigger telescope.”

DATE RA Dec ED SD V α SE ME MP GB
09/25 08 40.2 −24 54 0.02 0.99 20.0 124.1 55 45 −0.20 +10
09/26 04 08.9 −18 40 0.01 1.01 16.1 61.4 118 91 −0.11 −44
09/27 01 13.0 +00 31 0.02 1.02 16.1 14.9 165 141 −0.05 −62
09/28 00 25.1 +06 23 0.03 1.03 16.9 5.0 175 163 −0.01 −56
09/29 00 05.1 +08 43 0.04 1.05 17.8 7.2 172 167 +0.00 −52
09/30 23 54.3 +09 57 0.06 1.06 18.5 9.8 170 154 +0.03 −50
10/01 23 47.6 +10 41 0.07 1.07 19.0 11.6 168 140 +0.08 −49
10/02 23 43.0 +11 11 0.09 1.08 19.5 13.0 166 125 +0.15 −48
10/03 23 39.8 +11 32 0.10 1.10 19.9 14.1 164 112 +0.23 −48
10/04 23 37.4 +11 47 0.11 1.11 20.2 15.1 163 98 +0.33 −47

Contributor Information

Brian D. Warner, Center for Solar System Studies / MoreData!, 446 Sycamore Ave., Eaton, CO 80615 USA

Alan W. Harris, MoreData!, La Cañada, CA 91011-3364 USA

Josef Ďurech, Astronomical Institute, Charles University, 18000 Prague, CZECH REPUBLIC.

Lance A.M. Benner, Jet Propulsion Laboratory, Pasadena, CA 91109-8099 USA

References

  1. Durech J; Vokrouhlický D; Kaasalainen M; Higgins D; Krugly Yu.N.; Gaftonyuk NM; Shevchenko VG; Chiorny VG; Hamanowa H; Hamanowa H; Reddy V; Dyvig RR (2008). “Detection of the YORP effect in asteroid (1620) Geographos.” Astron. Astrophys 489, L25–L28. [Google Scholar]
  2. Harris AW; Young JW; Contreiras L; Dockweiler T; Belkora L; Salo H; Harris WD; Bowell E; Poutanen M; Binzel RP; Tholen DJ; Wang S (1989). “Phase relations of high albedo asteroids: The unusual opposition brightening of 44 Nysa and 64 Angelina.” Icarus 81, 365–374. [Google Scholar]
  3. Muinonen K; Belskaya IN; Cellino A; Delbò M; Levasseur-Regourd A-C; Penttilä A; Tedesco EF (2010). “A three-parameter magnitude phase function for asteroids.” Icarus 209, 542–555. [Google Scholar]
  4. Pravec P, Hergenrother C, Whiteley R, Sarounova L, Kusnirak P (2000). “Fast Rotating Asteroids 1999 TY2, 1999 SF10, and 1998 WB2.” Icarus 147, 477–486. [Google Scholar]
  5. Warner BD, Harris AW, Pravec P (2009). “The Asteroid Lightcurve Database.” Icarus 202, 134–146. Updated 2019 February. http://www.minorplanet.info/lightcurvedatabase.html [Google Scholar]

RESOURCES