Skip to main content
NASA Author Manuscripts logoLink to NASA Author Manuscripts
. Author manuscript; available in PMC: 2020 May 22.
Published in final edited form as: Minor Planet Bull. 2019 Jan-Mar;46(1):100–105.

LIGHTCURVE PHOTOMETRY OPPORTUNITIES: 2019 JANUARY-MARCH

Brian D Warner 1, Alan W Harris 2, Josef Ďurech 3, Lance AM Benner 4
PMCID: PMC7243872  NIHMSID: NIHMS1570177  PMID: 32455414

Abstract

We present lists of asteroid photometry opportunities for objects reaching a favorable apparition and have no or poorly-defined lightcurve parameters. Additional data on these objects will help with shape and spin axis modeling via lightcurve inversion. We also include lists of objects that will or might be radar targets. Lightcurves for these objects can help constrain pole solutions and/or remove rotation period ambiguities that might not come from using radar data alone.


We present several lists of asteroids that are prime targets for photometry during the period 2019 January-March.

In the first three sets of tables, “Dec” is the declination and “U” is the quality code of the lightcurve. See the asteroid lightcurve data base (LCDB; Warner et al., 2009) documentation for an explanation of the U code:

http://www.minorplanet.info/lightcurvedatabase.html

The ephemeris generator on the CALL web site allows you to create custom lists for objects reaching V ≤ 18.0 during any month in the current year, e.g., limiting the results by magnitude and declination.

http://www.minorplanet.info/PHP/call_OppLCDBQuery.php

We refer you to past articles, e.g., Minor Planet Bulletin 36, 188, for more detailed discussions about the individual lists and points of advice regarding observations for objects in each list.

Once you’ve obtained and analyzed your data, it’s important to publish your results. Papers appearing in the Minor Planet Bulletin are indexed in the Astrophysical Data System (ADS) and so can be referenced by others in subsequent papers. It’s also important to make the data available at least on a personal website or upon request. We urge you to consider submitting your raw data to the ALCDEF database. This can be accessed for uploading and downloading data at

http://www.alcdef.org

Containing almost 3.2 million observations for more than 13380 objects, we believe this to be the largest publicly available database of raw asteroid time-series lightcurve data.

Now that many backyard astronomers and small colleges have access to larger telescopes, we have expanded the photometry opportunities and spin axis lists to include asteroids reaching V = 15.5 and brighter (sometimes 15.0 when the list has more than 100 objects.

Lightcurve/Photometry Opportunities

Objects with U = 3− or 3 are excluded from this list since they will likely appear in the list for shape and spin axis modeling. Those asteroids rated U = 1 should be given higher priority over those rated U = 2 or 2+, but not necessarily over those with no period. On the other hand, do not overlook asteroids with U = 2/2+ on the assumption that the period is sufficiently established. Regardless, do not let the existing period influence your analysis since even high quality ratings have been proven wrong at times. Note that the lightcurve amplitude in the tables could be more or less than what’s given. Use the listing only as a guide.

An entry in italics is a near-Earth asteroid (NEA).

Brightest LCDB Data
Number Name Date Mag Dec Period Amp U
6941 Dalgarno 01 02.4 15.5 +5
7520 1990 BV 01 03.9 15.0 +24
7865 Francoisgros 01 05.3 15.5 +24
7261 Yokootakeo 01 07.0 15.5 +0
2745 San Martin 01 07.9 15.3 −3 0.04
11151 Oodaigahara 01 08.2 15.1 +16
2670 Chuvashia 01 08.4 14.8 +22 0.14
22106 Tomokoarai 01 10.0 15.3 −16
2595 Gudiachvili 01 10.4 15.5 +12 4.72 0.5 1
5131 1990 BG 01 16.1 15.0 +29 37.2 0.34 2−
18348 1990 BM1 01 17.1 14.6 +17
1212 Francette 01 17.6 14.1 +15 22.433 0.13 2
69971 Tanzi 01 19.0 15.0 +21
4970 Druyan 01 19.3 15.5 +19 0.30
449 Hamburga 01 20.2 11.6 +23 18.263 0.08-0.17 2+
3658 Feldman 01 20.7 15.3 +23
4056 Timwarner 01 22.8 15.3 +12
4156 Okadanoboru 01 23.4 15.0 +22 12.015 0.47 2
1435 Garlena 01 25.7 15.0 +12
394130 2006 HY51 01 25.7 13.8 −20
100006 1987 DA7 01 27.0 15.1 +19
4163 Saaremaa 01 27.9 15.1 +18
10111 Fresnel 01 28.8 15.5 +14
27027 1998 QA98 01 29.1 15.4 +19
5924 Teruo 01 31.3 15.5 +20
1269 Rollandia 02 01.9 13.6 +17 19.98 0.02-0.13 2
6258 Rodin 02 02.0 15.3 +17 6.1 0.03 1
3549 Hapke 02 07.6 15.1 +8 7.071 0.24-0.31 2
4148 McCartney 02 08.5 14.6 +16
16058 1999 JP75 02 10.6 15.4 +6
1802 Zhang Heng 02 10.9 15.1 +14 3.162 0.27-0.37 2+
69270 1989 BB 02 13.1 15.1 +13 0.71
4215 Kamo 02 19.4 15.2 +2 12.6 0.11-0.21 2
5297 Schinkel 02 24.0 15.2 +11
488 Kreusa 02 27.1 11.6 +25 32.666 0.08-0.2 2+
2602 Moore 02 27.3 14.9 +8 0.30
2727 Paton 02 28.5 15.0 +4
1614 Goldschmidt 03 02.4 14.3 +7 8.873 0.14-0.14 2−
6918 Manaslu 03 05.4 15.4 +5 8.97 0.21 2
16578 Essjayess 03 07.0 15.5 +5
2761 Eddington 03 07.2 15.4 +9
6843 Heremon 03 10.1 15.2 +14 0.5
37652 1994 JS1 03 11.9 14.9 +5
12265 1990 FG 03 14.8 15.4 +6 56.6 0.65 2
2640 Hallstrom 03 17.5 15.1 +3 22.9 0.15 1
4533 Orth 03 20.1 14.5 +1 >24. 0.1-0.68 2
4171 Carrasco 03 24.9 15.4 −2 33.53 0.17-0.22 2

Low Phase Angle Opportunities

The Low Phase Angle list includes asteroids that reach very low phase angles. The “α” column is the minimum solar phase angle for the asteroid. Getting accurate, calibrated measurements (usually V band) at or very near the day of opposition can provide important information for those studying the “opposition effect.” Use the on-line query form for the LCDB to get more details about a specific asteroid.

http://www.minorplanet.info/PHP/call_OppLCDBQuery.php

You will have the best chance of success working objects with low amplitude and periods that allow covering at least half a cycle every night. Objects with large amplitudes and/or long periods are much more difficult for phase angle studies since, for proper analysis, the data must be reduced to the average magnitude of the asteroid for each night. This reduction requires that you determine the period and the amplitude of the lightcurve; for long period objects that can be difficult. Refer to Harris et al. (1989; Icarus 81, 365-374) for the details of the analysis procedure.

As an aside, some use the maximum light to find the phase slope parameter (G). However, this can produce a significantly different value for both H and G versus when using average light, which is the method used for values listed by the Minor Planet Center.

The International Astronomical Union (IAU) has adopted a new system, H-G12, introduced by Muinonen et al. (2010; Icarus 209, 542-555). It will be some years before H-G12 becomes the standard. Furthermore, it still needs refinement. That can be done mostly by having data for more asteroids, but only if at very low and moderate phase angles. We strongly encourage obtaining data every degree between 0° to 7°, the non-linear part of the curve that is due to the opposition effect. At angles α > 7°, well-calibrated data every 2° or so out to about 25-30°, if possible, should be sufficient. Coverage beyond about 50° is not generally helpful since the H-G system is best defined with data from 0-30°.

Num Name Date α V Dec Period Amp U
277 Elvira 01 05.2 0.48 13.6 +21 29.69 0.34-0.59 3
638 Moira 01 05.3 0.16 13.9 +23 9.875 0.10-0.31 3
1107 Lictoria 01 06.6 0.37 13.1 +22 8.562 0.16-0.30 3
607 Jenny 01 06.9 0.09 13.8 +22 8.521 0.16-0.26 3
370 Modestia 01 07.8 0.40 13.3 +23 22.530 0.24-1.39 3
24 Themis 01 14.0 0.40 10.7 +23 8.374 0.09-0.14 3
738 Alagasta 01 25.6 0.25 14.0 +18 18.86 0.11-0.20 2
89 Julia 01 31.0 0.16 10.2 +18 11.387 0.10-0.25 3
159 Aemilia 01 31.3 0.22 11.7 +17 24.476 0.16-0.24 3
1269 Rollandia 02 01.8 0.09 13.6 +17 19.98 0.02-0.13 2
65 Cybele 02 04.8 0.47 11.6 +15 6.081 0.02-0.12 3
558 Carmen 02 08.3 0.39 12.7 +14 11.387 0.2 –0.31 3
335 Roberta 02 15.0 0.14 12.5 +13 12.054 0.05-0.78 3
334 Chicago 02 15.1 0.42 13.1 +14 7.361 0.20-0.67 3
208 Lacrimosa 02 19.4 0.52 12.7 +13 14.085 0.15-0.33 3
435 Ella 02 20.4 0.79 13.9 +13 4.623 0.30-0.38 3
108 Hecuba 02 25.5 0.48 12.3 +11 14.256 0.09-0.12 3
64 Angelina 03 02.8 0.50 10.4 +06 8.752 0.04-0.42 3
167 Urda 03 09.1 0.08 13.0 +05 13.07 0.24-0.39 3
50 Virginia 03 16.6 0.14 13.8 +02 14.315 0.07-0.20 3
175 Andromache 03 17.1 0.47 13.7 +03 8.324 0.28-0.30 3
337 Devosa 03 17.1 0.09 11.1 +01 4.653 0.08-0.75 3
59 Elpis 03 18.6 0.56 11.9 +03 13.671 0.07-0.42 3
126 Velleda 03 22.5 0.65 12.7 +01 5.367 0.07-0.22 3
302 Clarissa 03 24.1 0.20 13.9 −01 14.381    0.6 3
291 Alice 03 25.4 0.67 13.3 +00 4.313 0.15-0.55 3
1453 Fennia 03 28.0 0.23 13.7 −02 4.412 0.10-0.20 3
670 Ottegebe 03 29.5 0.76 14.0 −01 10.045 0.34-0.35 3
737 Arequipa 03 30.6 0.55 12.6 −02 7.026 0.10-0.27 3
161 Athor 03 31.3 0.90 12.2 −02 7.280 0.08-0.27 3

Shape/Spin Modeling Opportunities

Those doing work for modeling should contact Josef Ďurech at the email address above. If looking to add lightcurves for objects with existing models, visit the Database of Asteroid Models from Inversion Techniques (DAMIT) web site

http://astro.troja.mff.cuni.cz/projects/asteroids3D

An additional dense lightcurve, along with sparse data, could lead to the asteroid being added to or improving one in DAMIT, thus increasing the total number of asteroids with spin axis and shape models.

Included in the list below are objects that:

  1. Are rated U = 3− or 3 in the LCDB

  2. Do not have reported pole in the LCDB Summary table

  3. Have at least three entries in the Details table of the LCDB where the lightcurve is rated U ≥ 2.

The caveat for condition #3 is that no check was made to see if the lightcurves are from the same apparition or if the phase angle bisector longitudes differ significantly from the upcoming apparition. The last check is often not possible because the LCDB does not list the approximate date of observations for all details records. Including that information is an on-going project.

Favorable apparitions are in bold text. NEAs are in italics.

Brightest LCDB Data
Num Name Date Mag Dec Period Amp U
651 Antikleia 01 01.8 14.2 +37 20.299 0.13-0.41 3
1562 Gondolatsch 01 05.0 14.4 +19 8.78 0.30- 0.4 3−
1123 Shapleya 01 06.1 13.6 +28 52.92 0.25-0.38 3−
1107 Lictoria 01 06.6 13.1 +22 8.562 0.16-0.30 3
663 Gerlinde 01 07.5 13.5 +1 10.251 0.19-0.35 3
850 Altona 01 11.6 14.2 +18 11.191 0.09-0.17 3
3873 Roddy 01 12.8 14.5 −16 2.478 0.05-0.11 3
9068 1993 OD 01 12.8 14.4 +31 3.407 0.19-0.20 3
418 Alemannia 01 13.6 13.2 +14 4.671 0.14-0.33 3
1309 Hyperborea 01 15.6 14.2 +5 13.88 0.34-0.54 3
1717 Arlon* 01 17.9 13.9 +29 5.148 0.07-0.12 3
420 Bertholda 01 20.1 13.0 +12 11.04 0.24-0.29 3
5806 Archieroy 01 20.8 14.4 +21 12.163 0.34-0.47 3
300 Geraldina 01 23.2 14.2 +21 6.842 0.04-0.32 3
2167 Erin 01 23.8 14.5 +11 5.719 0.3-0.53 3
658 Asteria 01 24.9 14.2 +21 21.034 0.22-0.28 3
224 Oceana 01 25.1 12.3 +26 9.401 0.09-0.14 3
895 Helio 01 26.4 12.7 −10 9.347 0.10-0.23 3
219 Thusnelda 01 27.2 13.2 +3 59.74 0.19-0.24 3
1028 Lydina 01 31.2 13.9 +30 11.68 0.22- 0.7 3
2460 Mitlincoln 02 04.0 14.4 +12 3.01 0.03-0.20 3
909 Ulla 02 07.8 14.1 +12 8.73 0.08-0.24 3
558 Carmen 02 08.3 12.7 +14 11.387 0.2-0.31 3
972 Cohnia 02 12.1 14.3 +6 18.472 0.19-0.21 3
781 Kartvelia 02 16.1 14.4 +17 19.04 0.16-0.28 3−
790 Pretoria 02 21.4 13.7 −14 10.37 0.05-0.18 3
388 Charybdis 02 24.0 13.0 +13 9.516 0.14-0.25 3
454 Mathesis 02 25.0 12.3 +18 8.378 0.20-0.37 3
712 Boliviana 02 25.0 12.1 −10 11.743 0.10-0.12 3
359 Georgia 02 26.3 13.2 +13 5.537 0.16-0.54 3
653 Berenike 02 28.5 13.3 +15 12.489 0.03-0.11 3
779 Nina 03 05.8 12.7 −11 11.186 0.06-0.32 3
1304 Arosa 03 05.9 13.7 +32 7.748 0.13-0.38 3
1590 Tsiolkovskaja 03 09.1 14.3 −1 6.731 0.10- 0.4 3
1084 Tamariwa 03 11.2 14.5 +2 6.196 0.25-0.42 3
100 Hekate 03 17.2 12.5 +8 27.066 0.11-0.23 3
175 Andromache 03 17.2 13.7 +3 8.324 0.28-0.30 3
59 Elpis 03 18.5 11.9 +3 13.671 0.07-0.42 3
696 Leonora 03 20.7 14.7 −15 26.896 0.04-0.31 3
151 Abundantia 03 21.3 12.3 +6 9.864 0.15-0.20 3
111 Ate 03 21.5 11.1 −7 22.072 0.08-0.18 3
851 Zeissia 03 21.8 13.5 +2 9.34 0.38-0.53 3
1146 Biarmia 03 22.3 14.1 −13 5.47 0.20-0.32 3
126 Velleda 03 22.5 12.7 +1 5.367 0.07-0.22 3
1113 Katja 03 22.8 13.8 −12 18.465 0.08-0.17 3
868 Lova 03 23.3 14.4 +6 41.118 0.10-0.40 3
1817 Katanga 03 26.9 14.0 +43 8.481 0.22-0.42 3
1453 Fennia 03 28.0 13.7 −2 4.412 0.10-0.20 3
197 Arete 03 28.8 13.6 +9 6.608 0.10-0.16 3
535 Montague 03 30.3 12.6 +6 10.248 0.18-0.25 3
737 Arequipa 03 30.7 12.6 −2 7.026 0.10-0.27 3
191 Kolga 03 30.8 13.5 +4 17.604 0.21- 0.5 3

Radar-Optical Opportunities

Future radar targets:

http://echo.jpl.nasa.gov/~lance/future.radar.nea.periods.html

Past radar targets:

http://echo.jpl.nasa.gov/~lance/radar.nea.periods.html

Arecibo targets:

http://www.naic.edu/~pradar/sched.shtml

http://www.naic.edu/~pradar

Goldstone targets:

http://echo.jpl.nasa.gov/asteroids/goldstone_asteroid_schedule.html

These are based on known targets at the time the list was prepared. It is very common for newly discovered objects to move up the list and become radar targets on short notice. We recommend that you keep up with the latest discoveries the Minor Planet Center observing tools

In particular, monitor NEAs and be flexible with your observing program. In some cases, you may have only 1-3 days when the asteroid is within reach of your equipment. Be sure to keep in touch with the radar team (through Dr. Benner’s email or their Facebook or Twitter accounts) if you get data. The team may not always be observing the target but your initial results may change their plans. In all cases, your efforts are greatly appreciated.

Use the ephemerides below as a guide to your best chances for observing, but remember that photometry may be possible before and/or after the ephemerides given below. Note that geocentric positions are given. Use these web sites to generate updated and topocentric positions:

MPC: http://www.minorplanetcenter.net/iau/MPEph/MPEph.html

JPL: http://ssd.jpl.nasa.gov/?horizons

In the ephemerides below, ED and SD are, respectively, the Earth and Sun distances (AU), V is the estimated Johnson V magnitude, and α is the phase angle. SE and ME are the great circles distances (in degrees) of the Sun and Moon from the asteroid. MP is the lunar phase and GB is the galactic latitude. “PHA” indicates that the object is a “potentially hazardous asteroid”, meaning that at some (long distant) time, its orbit might take it very close to Earth.

About YORP Acceleration

Many, if not all, of the targets in this section are near-Earth asteroids. These objects are particularly sensitive to YORP acceleration. YORP (Yarkovsky–O'Keefe–Radzievskii–Paddack) is the asymmetric thermal re-radiation of sunlight that can cause an asteroid’s rotation period to increase or decrease. High precision lightcurves at multiple apparitions can be used to model the asteroid’s sidereal rotation period and see if it’s changing.

It usually takes four apparitions to have sufficient data to determine if the asteroid rotation rate is changing under the influence of YORP. This is why observing asteroids that already have well-known periods is still a valuable use of telescope time. It is even more so when considering the BYORP (binary-YORP) effect among binary asteroids that has stabilized the spin so that acceleration of the primary body is not the same as if it would be if there were no satellite.

To help focus efforts in YORP detection, Table I gives a quick summary of this quarter’s radar-optical targets. The family or group for the asteroid is given under the number name. Also under the name will be additional flags such as “PHA” for Potentially Hazardous Asteroid, NPAR for a tumbler, and/or “Bin” to indicate the asteroid is a binary (or multiple) system. If “Bin” is followed by “?” it means that the asteroid is a suspected but not confirmed binary. The period is in hours and, in the case of binary, for the primary. The Amp column gives the known range of lightcurve amplitudes. The App columns gives the number of different apparitions at which a lightcurve period was reported while the Last column gives the year for the last reported period. The R SNR column indicates the estimated radar SNR using the tool at

http://www.naic.edu/~eriverav/scripts/index.php

The “A” is for Arecibo and “G” is for Goldstone. Note that this calculator assumes full power at Arecibo.

The estimated SNR uses the current MPCORB absolute magnitude (H), a period of 4 hours (2 hours if D ≤ 170 m) if it’s not known, and the approximate minimum Earth distance during the current quarter.

If the SNR value is in bold text, the object was found on the radar planning pages listed above. Otherwise, the planning tool at

http://www.minorplanet.info/PHP/call_OppLCDBQuery.php

was used to find known NEAs that were V < 18.0 during the quarter. An object is usually placed on the list only if the estimated Arecibo SNR > 10. This would produce a marginal signal, not enough for imaging, but might allow improving orbital parameters.

(141053) 2001 XT1 (Jan, H = 18.7)

There’s no reported period in the LCDB for this 500-meter NEA. This ephemeris covers the first few days of 2019. If you can, observe it during the last week of 2018 December as well.

DATE RA Dec ED SD V α SE ME MP GB
01/01 07 08.9 +28 36 0.34 1.32 17.5 5.9 172 116 −0.23 +16
01/02 07 05.1 +28 30 0.35 1.33 17.5 5.0 173 130 −0.15 +15
01/03 07 01.5 +28 24 0.36 1.34 17.5 4.3 174 143 −0.09 +15
01/04 06 58.1 +28 18 0.37 1.35 17.6 4.0 174 15 6 −0.04 +14
01/05 06 54.8 +28 12 0.38 1.36 17.6 4.1 174 168 −0.01 +13
01/06 06 51.7 +28 05 0.39 1.37 17.7 4.5 174 173 +0.00 +12
01/07 06 48.8 +27 59 0.40 1.38 17.8 5.2 173 163 +0.01 +12
01/08 06 46.0 +27 52 0.41 1.39 17.9 6.0 172 151 +0.03 +11
01/09 06 43.4 +27 46 0.42 1.39 18.0 6.8 170 139 +0.08 +11
01/10 06 40.9 +27 39 0.43 1.40 18.1 7.7 169 127 +0.14 +10

(418849) 2008 WM64 (Dec-Jan, H = 20.6)

Both Rowe (2018) and Warner (2018) found a period of 2.4 h based on observations in mid- to late-December of 2017. This makes it a potential binary candidate, so careful observations are in order. Note the ephemeris starts in late December 2018. Make it a New Year’s Resolution.

DATE RA Dec ED SD V α SE ME MP GB
12/25 03 25.3 +15 24 0.05 1.02 15.5 38.4 140 72 −0.93 −33
12/26 03 07.1 +25 42 0.05 1.02 15.7 41.1 137 87 −0.85 −28
12/27 02 49.9 +33 57 0.06 1.02 16.1 44.8 133 102 −0.76 −23
12/28 02 33.9 +40 21 0.06 1.02 16.4 48.4 129 114 −0.65 −18
12/29 02 19.2 +45 17 0.07 1.03 16.8 51.5 125 124 −0.54 −15
12/30 02 05.8 +49 05 0.08 1.03 17.1 54.2 122 131 −0.43 −12
12/31 01 53.5 +52 04 0.09 1.03 17.4 56.4 119 134 −0.33 −10
01/01 01 42.4 +54 27 0.10 1.03 17.7 58.2 117 134 −0.23 −8
01/02 01 32.3 +56 21 0.11 1.03 17.9 59.6 115 132 −0.15 −6
01/03 01 23.2 +57 55 0.12 1.03 18.2 60.8 113 128 −0.09 −5

2004 XP14 (Jan, H = 19.3, PHA)

The radar observers are hoping for hi-res imaging of this 300 meter NEA. Some astrometry and photometry before, during, and after their runs on Jan 2-5 will be a great help. The bad news is that the period is possibly more than 100 hours. Given that and the short observing window for photometry, a collaboration of several observers at widely separated longitudes is in order.

DATE RA Dec ED SD V α SE ME MP GB
01/01 04 10.3 +48 00 0.08 1.05 15.4 36.5 141 139 −0.23 −3
01/02 04 01.7 +41 19 0.08 1.04 15.3 36.5 141 153 −0.15 −9
01/03 03 54.4 +34 04 0.07 1.04 15.3 37.7 140 162 −0.09 −15
01/04 03 48.1 +26 29 0.07 1.04 15.3 40.0 137 158 −0.04 −22
01/05 03 42.6 +18 50 0.07 1.04 15.4 43.4 134 145 −0.01 −28
01/06 03 37.9 +11 25 0.08 1.03 15.5 47.4 129 130 +0.00 −34
01/07 03 33.8 +04 27 0.08 1.03 15.7 51.6 125 115 +0.01 −40
01/08 03 30.2 −01 53 0.08 1.03 16.0 55.7 120 100 +0.03 −44
01/09 03 27.0 −07 34 0.09 1.02 16.2 59.6 116 86 +0.08 −48
01/10 03 24.2 −12 34 0.09 1.02 16.4 63.1 112 74 +0.14 −51

433 Eros (Jan-Mar, H = 11.2)

Yes, there’s still reason to observe this NEA even after it was studied in depth by the NEAR-Shoemaker space craft. The main purpose is to extend the time span of observations and so get a good handle on how much the YORP (Yarkovsky–O'Keefe–Radzievskii–Paddack) thermal effect is decreasing or increasing Eros’ period.

DATE RA Dec ED SD V α SE ME MP GB
01/01 04 13.0 +50 59 0.22 1.16 9.1 33.3 140 136 −0.23 +0
01/11 04 25.0 +43 06 0.21 1.15 9.1 36.0 137 89 +0.21 −4
01/21 04 44.3 +34 15 0.21 1.14 9.2 39.6 133 45 +1.00 −8
01/31 05 08.2 +25 29 0.22 1.13 9.3 43.4 128 174 −0.20 −9
02/10 05 34.7 +17 37 0.24 1.14 9.6 46.7 123 67 +0.22 −8
02/20 06 02.6 +11 07 0.27 1.14 9.9 49.1 119 67 −1.00 −6
03/02 06 31.0 +05 59 0.30 1.15 10.2 50.6 116 159 −0.18 −2
03/12 06 59.7 +02 01 0.34 1.17 10.5 51.2 113 55 +0.26 +3
03/22 07 28.5 −01 02 0.38 1.19 10.8 51.2 111 83 −0.99 +8
04/01 07 57.2 −03 25 0.43 1.21 11.1 50.9 110 147 −0.17 +13

2016 AZ8 (Jan, H = 21.0, PHA)

This is another target for hi-res imaging. It’s also an NHATS target, i.e., a potential target for human missions. The rotation period is not known for the 190 meter NEA.

DATE RA Dec ED SD V α SE ME MP GB
01/08 17 42.6 +48 09 0.03 0.98 17.2 104.8 74 79 +0.03 +31
01/09 17 03.9 +55 48 0.03 0.98 16.8 95.0 83 92 +0.08 +37
01/10 16 14.1 +61 49 0.03 0.99 16.6 86.1 92 103 +0.14 +42
01/11 15 14.2 +65 47 0.04 0.99 16.5 78.1 100 110 +0.21 +45
01/12 14 10.4 +67 41 0.04 1.00 16.4 71.3 107 114 +0.29 +48
01/13 13 11.8 +67 56 0.04 1.00 16.4 65.5 112 113 +0.38 +49
01/14 12 23.6 +67 08 0.05 1.01 16.5 60.5 117 109 +0.47 +50
01/15 11 46.3 +65 49 0.05 1.01 16.6 56.2 121 102 +0.58 +50
01/16 11 18.0 +64 17 0.05 1.02 16.7 52.6 125 93 +0.68 +50
01/17 10 56.3 +62 44 0.06 1.02 16.7 49.4 128 83 +0.77 +50

(90403) 2003 YE45 (Jan-Mar, H = 17.6)

This is one of two targets this quarter where the date of brightest magnitude is several months removed from the date of closest approach. For 2003 YE45, closest approach is June 29 (0.135 AU). The rotation period for the 900-meter NEA is not known.

DATE RA Dec ED SD V α SE ME MP GB
01/01 07 56.6 +22 24 0.41 1.38 17.1 12.0 163 105 −0.23 +24
01/11 07 25.3 +16 47 0.36 1.34 16.4 3.8 175 126 +0.21 +15
01/21 06 49.8 +09 53 0.33 1.30 16.7 16.4 158 20 +1.00 +4
01/31 06 17.4 +02 52 0.34 1.26 17.1 30.6 139 156 −0.20 −6
02/10 05 53.3 −03 07 0.35 1.22 17.4 42.9 123 71 +0.22 −14
02/20 05 38.6 −07 47 0.38 1.17 17.8 52.7 110 76 −1.00 −20
03/02 05 31.8 −11 26 0.40 1.13 18.1 60.4 99 136 −0.18 −23
03/12 05 30.7 −14 28 0.42 1.08 18.3 66.7 90 43 +0.26 −24
03/22 05 33.4 −17 13 0.44 1.04 18.4 72.3 83 110 −0.99 −25
04/01 05 38.0 −19 54 0.44 1.00 18.5 77.6 77 110 −0.17 −25

(454177) 2013 GJ35 (Jan-Mar, H = 15.8)

This is one of the larger asteroids in the list: 2.1 km. The rotation period is not known. The first 2-3 weeks of January favor northern observers. Southern observers get the rest of the observing window.

DATE RA Dec ED SD V α SE ME MP GB
01/01 09 30.5 +32 18 0.27 1.21 14.7 29.9 142 87 −0.23 +46
01/11 08 43.5 +04 40 0.20 1.17 13.7 21.1 155 144 +0.21 +27
01/21 07 40.5 −30 17 0.21 1.13 14.4 42.4 129 51 +1.00 −4
01/31 06 37.6 −49 31 0.30 1.11 15.5 58.4 107 108 −0.20 −22
02/10 05 49.1 −57 19 0.40 1.10 16.3 63.9 95 81 +0.22 −31
02/20 05 17.2 −60 45 0.50 1.09 16.8 64.6 88 96 −1.00 −35
03/02 04 58.3 −62 32 0.60 1.11 17.1 63.2 84 91 −0.18 −37
03/12 04 49.3 −63 43 0.68 1.13 17.4 60.9 83 79 +0.26 −38
03/22 04 48.2 −64 45 0.74 1.16 17.6 58.3 82 102 −0.99 −37
04/01 04 54.5 −65 51 0.79 1.20 17.7 55.7 84 82 −0.17 −36

(18736) 1998 NU (Jan-Mar, H = 15.8)

This NEA also has a diameter of about 2.1 km. There is no rotation period given in the LCDB. Its size virtually assures that the period will be > ≈2.2 hours. The large range of phase angles make this a good subject for finding the H-G parameters.

DATE RA Dec ED SD V α SE ME MP GB
01/01 07 47.2 +23 15 0.44 1.41 15.4 10.2 165 108 −0.23 +22
01/11 07 45.5 +22 21 0.38 1.36 14.7 3.0 176 130 +0.21 +21
01/21 07 42.3 +21 08 0.33 1.31 14.4 5.0 173 4 +1.00 +20
01/31 07 40.0 +19 34 0.30 1.28 14.5 13.2 163 144 −0.20 +19
02/10 07 41.4 +17 39 0.28 1.25 14.6 20.9 153 97 +0.22 +19
02/20 07 48.9 +15 28 0.27 1.22 14.6 27.5 145 40 −1.00 +20
03/02 08 03.5 +13 05 0.27 1.21 14.8 32.6 139 168 −0.18 +22
03/12 08 24.9 +10 34 0.28 1.21 14.9 36.0 134 74 +0.26 +26
03/22 08 51.8 +07 57 0.29 1.21 15.1 37.9 132 62 −0.99 +30
04/01 09 22.2 +05 19 0.32 1.23 15.3 38.7 130 168 −0.17 +36

(180186) 2003 QZ30 (Jan-Mar, H = 17.4)

The rotation period for the 1-km 2003 QZ30 is not known. The lightcurve shape could be affected by shadowing effects at the large phase angles during the apparition. Expect the unexpected.

DATE RA Dec ED SD V α SE ME MP GB
01/01 00 12.4 −36 39 0.25 0.93 17.6 95.1 71 120 −0.23 −77
01/08 01 23.1 −36 40 0.21 0.96 17.1 88.9 79 63 +0.03 −78
01/15 02 47.3 −33 15 0.20 1.01 16.6 78.1 91 42 +0.58 −64
01/22 04 10.1 −25 45 0.20 1.05 16.3 64.4 105 84 −0.99 −46
01/29 05 17.2 −16 22 0.22 1.11 16.2 51.5 119 139 −0.38 −28
02/05 06 06.6 −07 53 0.26 1.16 16.4 41.9 128 126 +0.00 −14
02/12 06 42.9 −01 18 0.31 1.22 16.8 35.9 134 61 +0.41 −2
02/19 07 10.5 +03 30 0.37 1.28 17.2 32.7 135 38 +0.99 +6
02/26 07 32.5 +06 56 0.45 1.34 17.6 31.4 135 128 −0.55 +12
03/05 07 51.0 +09 24 0.53 1.41 18.1 31.0 133 149 −0.02 +17

(419880) 2011 AH37 (Jan-Feb, H = 19.5)

There’s no rotation period given in the LCDB for 2011 AH37, which has an estimated diameter of 370 meters. This makes it unlikely to have a super-fast period. However, rules are made to be broken.

DATE RA Dec ED SD V α SE ME MP GB
01/20 00 35.8 +23 11 0.11 0.97 18.0 95.0 79 86 +0.98 −40
01/23 01 24.8 +36 09 0.10 0.99 17.4 82.8 91 110 −0.95 −26
01/26 02 32.1 +47 25 0.11 1.02 17.1 70.2 104 128 −0.70 −12
01/29 03 53.3 +54 17 0.12 1.04 17.1 59.3 115 139 −0.38 +0
02/01 05 11.9 +56 35 0.14 1.07 17.2 50.9 123 143 −0.13 +10
02/04 06 13.9 +56 03 0.16 1.09 17.4 44.9 129 135 −0.01 +17
02/07 06 58.1 +54 21 0.19 1.12 17.7 40.5 132 117 +0.04 +23
02/10 07 29.3 +52 19 0.21 1.15 17.9 37.4 135 92 +0.22 +27
02/13 07 51.8 +50 20 0.24 1.18 18.2 35.1 137 63 +0.51 +30

(137805) 1999 YK5 (Jan-Feb, H = 16.6)

This is one of the few asteroids with a reported rotation period (Warner, 2016; 3.390 h) and (Aznar et al. 2018, 3.468 h). These differ by more than several times the formal errors. Maybe new observations will lead to a more secure result.

DATE RA Dec ED SD V α SE ME MP GB
01/01 11 44.2 +46 34 0.47 1.27 17.2 44.0 117 70 −0.23 +66
01/08 11 47.1 +50 44 0.42 1.25 16.8 42.6 121 132 +0.03 +63
01/15 11 44.3 +56 06 0.36 1.23 16.5 41.6 124 110 +0.58 +59
01/22 11 30.0 +62 52 0.32 1.20 16.1 41.8 126 51 −0.99 +52
01/29 10 46.1 +70 51 0.28 1.16 15.8 44.4 124 97 −0.38 +43
02/05 08 26.8 +77 31 0.25 1.12 15.7 50.5 118 120 +0.00 +32
02/12 04 48.1 +74 04 0.23 1.08 15.7 60.4 108 66 +0.41 +18
02/19 03 15.5 +62 17 0.22 1.03 15.9 73.4 94 77 +0.99 +4
02/26 02 39.7 +48 52 0.22 0.97 16.4 88.0 79 143 −0.55 −10
03/05 02 19.8 +36 02 0.24 0.91 17.1 103.4 63 81 −0.02 −23

2013 CW32 (Jan-Feb, H = 16.6)

Despite its diminutive size of 120 meters, this NEA will pass close enough to Earth to provide large SNR values at Arecibo and Goldstone. The rotation period is not known but there’s a good chance that it is shorter than 2 hours. With that in mind, keep exposures as short as possible for the initial observations and until there is a better idea of the period. The rapid sky motion will make short exposures necessary regardless.

DATE RA Dec ED SD V α SE ME MP GB
01/25 10 46.9 −68 42 0.06 0.98 18.8 88.0 89 75 −0.80 −9
01/27 09 43.5 −55 16 0.04 1.00 17.7 72.8 105 69 −0.59 −2
01/29 09 00.9 −31 45 0.04 1.01 16.5 48.4 130 88 −0.38 +10
01/31 08 32.0 −02 43 0.04 1.02 15.8 20.1 159 125 −0.20 +21
02/02 08 11.9 +19 26 0.05 1.03 16.0 11.2 168 161 −0.07 +26
02/04 07 57.5 +32 39 0.06 1.04 17.0 21.4 157 165 −0.01 +27
02/06 07 47.0 +40 30 0.08 1.05 17.7 29.1 149 140 +0.01 +27
02/08 07 39.1 +45 27 0.10 1.06 18.4 34.3 143 116 +0.09 +27

(455176) 1999 VF22 (Feb, H = 20.6)

The estimated size is 225 meters, large enough that super-fast rotation is not likely but, again, not impossible.

DATE RA Dec ED SD V α SE ME MP GB
02/12 12 41.0 +15 24 0.14 1.09 18.1 38.5 136 140 +0.41 +78
02/13 12 50.9 +16 01 0.13 1.08 17.9 40.3 135 130 +0.51 +79
02/14 13 03.3 +16 46 0.11 1.07 17.7 42.7 133 119 +0.62 +79
02/15 13 19.1 +17 40 0.10 1.05 17.4 45.9 130 109 +0.72 +79
02/16 13 39.9 +18 43 0.09 1.04 17.2 50.2 126 99 +0.82 +76
02/17 14 08.1 +19 53 0.07 1.03 17.1 56.2 120 92 +0.90 +71
02/18 14 46.7 +21 01 0.06 1.01 16.9 64.6 112 86 +0.96 +63
02/19 15 39.5 +21 41 0.06 1.00 17.0 76.2 101 85 +0.99 +52
02/20 16 46.9 +21 01 0.05 0.99 17.3 91.2 86 88 −1.00 +36
02/21 18 01.0 +18 21 0.05 0.97 18.1 108.1 69 94 −0.97 +19

(381677) 2009 BJ81 (Jan-Mar, H = 20.6)

The rotation period is unknown. Mainzer et al. (2016) give a diameter of 470 meters and an albedo of 0.346.

DATE RA Dec ED SD V α SE ME MP GB
01/15 09 45.0 +18 31 0.38 1.33 17.8 20.6 152 110 +0.58 +46
01/25 09 58.6 +21 31 0.30 1.27 17.1 16.6 158 33 −0.80 +50
02/04 10 15.5 +26 15 0.23 1.21 16.4 14.9 162 155 −0.01 +55
02/14 10 40.8 +33 16 0.18 1.15 15.9 19.8 157 83 +0.62 +61
02/24 11 27.1 +42 45 0.14 1.11 15.6 31.3 144 64 −0.75 +67
03/06 13 02.0 +52 29 0.11 1.07 15.5 47.5 128 131 +0.00 +65
03/16 15 35.8 +53 51 0.10 1.03 15.8 65.0 110 92 +0.67 +50
03/26 17 37.2 +43 37 0.11 1.01 16.3 77.8 96 64 −0.71 +31

(162361) 2000 AF6 (Feb-Mar, H = 20.1)

The estimated diameter is 280 meters, making this an unlikely super-fast rotation candidate.

DATE RA Dec ED SD V α SE ME MP GB
02/20 11 58.8 +12 16 0.20 1.17 18.0 22.0 154 20 −1.00 +71
02/23 11 50.6 +14 39 0.18 1.16 17.7 18.5 158 29 −0.84 +71
02/26 11 39.9 +17 28 0.16 1.15 17.3 15.5 162 73 −0.55 +71
03/01 11 26.2 +20 46 0.15 1.14 17.1 14.1 164 113 −0.26 +70
03/04 11 08.7 +24 31 0.14 1.12 16.9 15.8 162 151 −0.06 +67
03/07 10 46.5 +28 40 0.13 1.11 16.9 21.0 156 157 +0.00 +62
03/10 10 18.8 +33 00 0.12 1.10 16.9 28.6 148 118 +0.10 +57
03/13 09 45.1 +37 13 0.11 1.08 17.1 37.6 138 74 +0.35 +50
03/16 09 05.4 +40 53 0.11 1.07 17.2 47.6 128 32 +0.67 +42
03/19 08 21.2 +43 35 0.11 1.05 17.5 57.9 117 37 +0.94 +34

(86667) 2000 FO10 (Mar-Apr, H = 17.6)

Polishook and Brosch (2008) reported a period of 26 hours, but it was very uncertain (U = 1 in the LCDB). They also gave an amplitude of > 0.5 mag. The diameter is about 900 meters.

DATE RA Dec ED SD V α SE ME MP GB
03/02 04 33.3 −56 28 0.19 0.98 17.1 87.2 82 94 −0.18 −41
03/07 05 58.9 −46 58 0.20 1.03 16.7 74.5 95 89 +0.00 −28
03/12 06 52.0 −35 57 0.21 1.07 16.7 63.9 105 70 +0.26 −15
03/17 07 26.1 −26 05 0.24 1.11 16.8 56.5 112 48 +0.78 −5
03/22 07 50.0 −18 07 0.28 1.14 17.0 51.9 115 78 −0.99 +4
03/27 08 08.2 −11 55 0.32 1.18 17.3 49.3 117 129 −0.61 +11
04/01 08 23.0 −07 10 0.37 1.21 17.6 48.0 116 149 −0.17 +17
04/06 08 35.7 −03 29 0.42 1.23 17.9 47.4 115 106 +0.01 +21

(163081) 2002 AG29 (Feb-Mar, H = 18.4)

The estimated diameter is 620 meters. Skiff (2011) found a secure period of 19.70 h and 0.25 mag lightcurve amplitude. This one’s exclusively for southern observers.

DATE RA Dec ED SD V α SE ME MP GB
02/01 10 41.2 −42 44 0.30 1.15 18.0 50.9 115 89 −0.13 +14
02/08 10 43.8 −47 45 0.27 1.13 17.8 52.8 115 124 +0.09 +10
02/15 10 45.3 −53 05 0.24 1.10 17.5 55.5 113 100 +0.72 +5
02/22 10 46.0 −58 57 0.21 1.08 17.3 59.1 110 64 −0.92 +0
03/01 10 45.8 −65 43 0.18 1.06 17.1 64.1 106 81 −0.26 −6
03/08 10 45.1 −74 00 0.15 1.03 16.9 70.8 101 101 +0.02 −13
03/15 10 44.2 −84 50 0.13 1.01 16.8 80.0 93 110 +0.56 −23
03/22 22 44.0 −80 11 0.11 0.99 16.9 92.5 81 97 −0.99 −35
03/29 22 45.1 −60 06 0.10 0.96 17.4 108.2 66 53 −0.42 −51
04/05 22 47.6 −37 30 0.10 0.94 18.4 122.7 52 46 +0.00 −62

(88254) 2001 FM129 (Mar-Apr, H = 17.6)

Mainzer et al. (2014) reported a diameter of 800 meters and albedo of 0.252. Thomas et al. (2014) found 2001 FM129 to be a type Q asteroid, which is relatively uncommon among the inner main-belt asteroids.

DATE RA Dec ED SD V α SE ME MP GB
03/10 02 42.9 +01 05 0.10 0.93 17.6 124.1 51 15 +0.10 −51
03/13 04 16.4 +04 28 0.09 0.97 16.0 103.1 72 13 +0.35 −31
03/16 05 54.6 +07 13 0.09 1.00 15.3 81.0 94 22 +0.67 −9
03/19 07 10.2 +08 28 0.11 1.04 15.2 64.6 109 44 +0.94 +8
03/22 08 00.5 +08 47 0.14 1.07 15.5 54.4 119 75 −0.99 +19
03/25 08 33.8 +08 44 0.17 1.10 15.8 48.3 124 108 −0.80 +27
03/28 08 56.9 +08 35 0.21 1.14 16.2 44.6 127 141 −0.52 +32
03/31 09 13.9 +08 24 0.24 1.17 16.5 42.3 128 169 −0.24 +35
04/03 09 27.1 +08 12 0.28 1.20 16.8 40.9 129 153 −0.05 +38
04/06 09 37.7 +08 00 0.32 1.22 17.2 39.9 128 120 +0.01 +40

(5189) 1990 UQ (Mar-Apr, H = 17.8)

This is second object in the list where dates of brightest and closest are separated by several months. Closest approach for 1990 UQ is July 19 (0.207 AU). It will be only a few degrees from the Sun at that time.

Warner (2018) found a period of 6.676 h and 1.02 mag lightcurve amplitude. Here’s another good opportunity to get an H-G phase curve. Being so faint, it may require very large scopes or careful transformation from clear/no filter to the V standard band.

DATE RA Dec ED SD V α SE ME MP GB
03/15 12 02.1 +06 37 0.58 1.57 18.0 4.7 173 87 +0.56 +66
03/18 11 57.0 +07 32 0.56 1.55 17.9 4.3 173 42 +0.87 +67
03/21 11 51.4 +08 30 0.54 1.53 17.8 5.6 171 5 −1.00 +67
03/24 11 45.4 +09 30 0.52 1.51 17.8 8.1 168 50 −0.88 +66
03/27 11 39.1 +10 31 0.50 1.49 17.9 11.0 163 91 −0.61 +66
03/30 11 32.5 +11 32 0.49 1.47 17.9 14.2 159 130 −0.33 +66
04/02 11 25.7 +12 33 0.48 1.45 17.9 17.5 154 167 −0.10 +65
04/05 11 18.9 +13 32 0.47 1.42 18.0 20.9 150 154 +0.00 +64
04/08 11 12.1 +14 28 0.46 1.40 18.0 24.3 145 115 +0.07 +64
04/11 11 05.5 +15 21 0.45 1.38 18.0 27.7 140 74 +0.31 +63

Table I.

Summary of radar-optical opportunities in 2018 July-October. Data from the asteroid lightcurve database (Warner et al., 2009; Icarus 202, 134-146). *The SNRs for 2003 SD220 will be enormous: A: 1.76E+6, G: 96800.

Asteroid Period Amp App Last R SNR
(141053) 2001 XT1 - - - - A 14
NEA G -
(418884) 2008 WM64 - - - - A 1590
NEA G 90
2004 XP14 >100 - 1 2007 A 1850
NEA G 210
433 Eros 5.27 0.08 13+ 2016 A 900
NEA 1.40 G 100
2016 AZ8 - - - - A 1850
NEA G 210
(90403) 2003 YE45 - - - - A *52
NEA June
(454177) 2013 GJ35 - - - - A 43
NEA
(18736) 1998 NU - - - - A 11
NEA
(180186) 2003 QZ30 - - - - A 14
NEA
(419880) 2011 AH37 - - - - A 40
NEA
(137805) 1999 YK5 3.930 0.09 2 2016 A 55
NEA 0.38
2013 CW32 - - - - A 510
NEA G 55
(455176) 1999 VF22 - - - - A 370
NEA G 41
(381677) 2009 BJ81 - - - - A 10
NEA
(162361) 2000 AF6 - - - - A 20
NEA
(86667) 2000 FO10 26 0.7 1 2004 A 32
NEA 1.0
(163081) 2002 AG29 19.70 0.25 1 2011 A 299
NEA G 26
(88254) 2001 FM129 - - - - A 300
NEA G 33
(5189) 1990 UQ 6.676 1.02 1 2017 A *11
NEA July

graphic file with name nihms-1570177-f0001.jpg

Acknowledgements

The authors want to thank here Chiara Firenzani, Enrico Monti, Giulio Senesi who are high school students from Liceo Scientifico “Federigo Enriques” (Castelfiorentino) involved in an interesting vocational guidance project about astronomy at the Astronomical Observatory of the University of Siena. They attended some observing sessions and participated in data analysis.

Contributor Information

Brian D. Warner, Center for Solar System Studies / MoreData! 446 Sycamore Ave., Eaton, CO 80615 USA

Alan W. Harris, MoreData! La Cañada, CA 91011-3364 USA

Josef Ďurech, Astronomical Institute, Charles University, 18000 Prague, CZECH REPUBLIC.

Lance A.M. Benner, Jet Propulsion Laboratory, Pasadena, CA 91109-8099 USA

References

  1. Aznar AM; Predatu M; Vaduvescu O; Oey J (2018). "EURONEAR - First Light Curves and Physical Properties of Near Earth Asteroids." arXiv:1801.09420.
  2. Harris AW, Young JW, Scaltriti F, Zappala V (1984). “Lightcurves and phase relations of the asteroids 82 Alkmene and 444 Gyptis.” Icarus 57, 251–258. [Google Scholar]
  3. Harris AW, Young JW, Bowell E, Martin LJ, Millis RL, Poutanen M, Scaltriti F, Zappala V, Schober HJ, Debehogne H, Zeigler K (1989). “Photoelectric observations of asteroids 3, 24, 60, 261, and 863.” Icarus 77, 171–186. [Google Scholar]
  4. JPL (2018). Small-Body Database Browser. http://ssd.jpl.nasa.gov/sbdb.cgi#top
  5. Mainzer A, Bauer J, Grav T, Masiero J, Cutri RM, Wright E, Nugent CR, Stevenson R, Clyne E, Cukrov G, Masci F (2014). “The Population of Tiny Near-Earth Objects Observed by NEOWISE.” Astrophys. J 784, A110. [Google Scholar]
  6. Mainzer AK; Bauer JM; Cutri RM; Grav T; Kramer EA; Masiero JR; Nugent CR; Sonnett SM; Stevenson RA; Wright EL (2016). "NEOWISE Diameters and Albedos V1.0." NASA Planetary Data System, id. EAR-A-COMPIL-5-NEOWISEDIAM-V1.0.
  7. Muinonen K; Belskaya IN; Cellino A; Delbò M; Levasseur-Regourd A-C; Penttilä A; Tedesco EF (2010). “A three-parameter magnitude phase function for asteroids.” Icarus 209, 542–555. [Google Scholar]
  8. Munos JL (2017). Carlsberg Meridian Catalog web site. http://svo2.cab.inta-csic.es/vocats/cmc15/ [Google Scholar]
  9. Polishook D; Brosch N (2008). "Photometry of Aten asteroids—More than a handful of binaries." Icarus 194, 111–124. [Google Scholar]
  10. Rowe B (2018). "Lightcurve Analysis of 6 Asteroids from RMS Observatory." Minor Planet Bull. 45, 292–294. [Google Scholar]
  11. Skiff BA (2011) Posting on CALL web site. http://www.minorplanet.info/call.html
  12. Thomas CA; Emery JP; Trilling DE; Delbò M; Hora JL; Mueller M (2014). “Physical characterization of Warm Spitzer-observed near-Earth objects.” Icarus 228, 217–246. [Google Scholar]
  13. Warner BD, Harris AW, Pravec P (2009). “The asteroid lightcurve database.” Icarus 202, 134–146. Updated 2016 Sept. http://www.minorplanet.info/lightcurvedatabase.html [Google Scholar]
  14. Warner BD (2016). "Near-Earth Asteorid Lightcurve Analysis at CS3-Palmer Divide Station: 2016 January-April." Minor Planet Bull. 43, 240–250. [PMC free article] [PubMed] [Google Scholar]
  15. Warner BD (2018). MPO Software, Canopus version 10.7.12.1 Bdw Publishing, http://minorplanetobserver.com [Google Scholar]

RESOURCES