Skip to main content
eLife logoLink to eLife
. 2020 May 19;9:e57190. doi: 10.7554/eLife.57190

Gain of channel function and modified gating properties in TRPM3 mutants causing intellectual disability and epilepsy

Evelien Van Hoeymissen 1,2,, Katharina Held 1,2,, Ana Cristina Nogueira Freitas 2,, Annelies Janssens 2, Thomas Voets 2,‡,, Joris Vriens 1,‡,
Editors: Leon D Islas3, Kenton J Swartz4
PMCID: PMC7253177  PMID: 32427099

Abstract

Developmental and epileptic encephalopathies (DEE) are a heterogeneous group of disorders characterized by epilepsy with comorbid intellectual disability. Recently, two de novo heterozygous mutations in the gene encoding TRPM3, a calcium permeable ion channel, were identified as the cause of DEE in eight probands, but the functional consequences of the mutations remained elusive. Here we demonstrate that both mutations (V990M and P1090Q) have distinct effects on TRPM3 gating, including increased basal activity, higher sensitivity to stimulation by the endogenous neurosteroid pregnenolone sulfate (PS) and heat, and altered response to ligand modulation. Most strikingly, the V990M mutation affected the gating of the non-canonical pore of TRPM3, resulting in large inward cation currents via the voltage sensor domain in response to PS stimulation. Taken together, these data indicate that the two DEE mutations in TRPM3 result in a profound gain of channel function, which may lie at the basis of epileptic activity and neurodevelopmental symptoms in the patients.

Research organism: Human

Introduction

Transient Receptor Potential (TRP) channel TRPM3 is a calcium-permeable cation channel that can be activated by heat (Vriens et al., 2011) and by a variety of chemical ligands, including the endogenous neurosteroid pregnenolone sulfate (PS) (Wagner et al., 2008). TRPM3 is expressed in a large subset of mouse and human somatosensory neurons, where it is involved in the detection of noxious heat and the development of inflammatory pain (Vriens et al., 2011; Vangeel et al., 2020). Moreover, TRPM3 is expressed in several brain areas, including the choroid plexus, cerebellum, cortex and the hippocampal formation (Grimm et al., 2003; Oberwinkler et al., 2005; Zamudio-Bulcock et al., 2011), but its functional role in these areas is unknown. Recently, two de novo substitutions in TRPM3 (V990M and P1090Q) were identified as the cause of intellectual disability and epilepsy in eight probands with developmental and epileptic encephalopathy (DEE) (Dyment et al., 2019). Interestingly, clinical findings in these eight individuals also included one individual with an altered pain sensitivity and a second individual showing a modified heat sensitivity, even if pain sensitivity was not systematically tested (Dyment et al., 2019). However, the consequences of these mutations on TRPM3 function remained elusive. We here demonstrate that both mutations lead to significant gain-of-channel function, including increased basal activity and higher sensitivity to PS and heat. V990M exhibits further pronounced functional alterations, including anomalous activation of the alternative current through the voltage-sensor domain, reduced sensitivity to receptor-mediated inhibition and calcium-dependent inactivation, and lower sensitivity to block by the anticonvulsant primidone.

Results and discussion

When performing Fura-2-based calcium imaging on transiently transfected HEK293T cells, we observed significantly higher intracellular Ca2+ concentrations ([Ca2+]i) in cells expressing the two DEE mutants compared to wild type human TRPM3 (WT; GenBank: AJ505026.1), an effect that was much more pronounced in the V990M mutant (Figure 1A,B). Application of primidone or isosakuranetin, both potent TRPM3 antagonists (Krügel et al., 2017; Straub et al., 2013), reduced [Ca2+]i in cells expressing WT or mutant TRPM3. In absolute terms, the antagonist-induced reduction in [Ca2+]i was the largest for the V990M mutant, yet [Ca2+]i did not fully return to the level of cells expressing WT (Figure 1A,B and Figure 1—figure supplement 1). Importantly, both mutants were expressed at similar levels as WT, as assessed based on the fluorescence signal of the C-terminally attached YFP (Figure 1—figure supplement 1). These results suggest that the DEE mutations lead to increased basal channel activity. In line herewith, whole-cell currents in response to voltage steps revealed increased current densities in cells expressing the DEE mutants compared to WT (Figure 1—figure supplement 2).

Figure 1. Elevated basal activity in HEK293T cells expressing TRPM3 DEE mutants.

(A) Time course of intracellular calcium concentrations ([Ca2+]i) (± SEM) upon application of the TRPM3 inhibitors primidone (100 µM) and isosakuranetin (50 µM) for WT (n = 230), P1090Q (n = 163) and V990M (n = 79) transfected HEK293T cells, and non-transfected (NT) cells (n = 93) (N = 3 independent experiments). (B) Basal intracellular calcium concentrations in the absence (full bars) and presence of primidone (open bars). Data are represented as mean ± SEM, using a Kruskal-Wallis ANOVA with Dunn’s posthoc test, where ***=versus NT; ###=versus basal WT; †††=versus basal of the same mutant/WT. For WT: ***p=7.5×10−5, ††† p=9.4×10−6; for V990M: ***p=1.6×10−60, ###: p=1.4×10−42, ††† p=7.3×10−11; for P1090Q: ***p=1.5×10−19, ###: p=4.9×10−7, ††† p=1.6×10−19.(C, E and G) Amplitude of currents at a holding potential of +80 mV and –80 mV (measured with voltage ramps) upon application of PS (40 µM), Clt (10 µM) and co-application of PS and Clt for WT (n = 10) (C), V990M (n = 7) (E) and P1090Q (n = 9) (G). (D, F and H) Current-voltage relationships at the time points indicated in (C), (E) and (G).

Figure 1.

Figure 1—figure supplement 1. Increased basal intracellular calcium concentrations in DEE mutants that are not linked to increased expression levels of DEE mutants.

Figure 1—figure supplement 1.

(A) Intracellular calcium concentrations of individual HEK293 cells before and after stimulation by primidone (100 µM). Non-transfected cells (grey), TRPM3 WT (black), V990M (blue) and P1090Q (red) transfected cells. (B) YFP fluorescence intensity signal for non-transfected, TRPM3 WT (black), V990M (blue) and P1090Q (red) transfected HEK293 cells. Individual data points are displayed, along with box plots showing the median, first and third quartiles, and outliers as whiskers.

Figure 1—figure supplement 2. Biophysical characterization of the V990M and P1090Q substitution in hTRPM3 indicate the substitutions as a gain of function mutation.

Figure 1—figure supplement 2.

(A) Time course of calcium concentrations (± SEM) upon application of PS (40 µM), Clt (10 µM) and co-application of PS and Clt for WT (n = 294), V990M (n = 196) and P1090Q (n = 624) transfected cells. (B) Basal [Ca2+]i (WT versus V990M: p<10−110; WT versus P1090Q: p=7.4×10−63 and V990M versus P1090Q; p=2.7×10−107) (left) and calcium amplitudes when applying PS (WT versus V990M: p=0.08; WT versus P1090Q: p=1 and V990M versus P1090Q: p=0.21), Clt (WT versus V990M: p=4.5×10−33; WT versus P1090Q: p=1.4×10−22 and V990M versus P1090Q; p=1.3×10−6) and co-application of PS and Clt (WT versus V990M: p=4.0×10−33; WT versus P1090Q: p=1.4×10−52 and V990M versus P1090Q; p=1) (right) for WT, V990M and P1090Q transfected cells. (C–E) Current densities at a holding potential of +80 mV and –80 mV (measured with voltage ramps) upon application of PS (40 µM) (For +80 mV, WT versus V990M: p=0.004, WT versus P1090Q: p=0.038 and V990M versus P1090Q: p=0.95. For −80 mV, WT versus V990M: p=3.3×10−4, WT versus P1090Q: p=0.028 and V990M versus P1090Q: p=0.39) (C), Clt (10 µM) (For +80 mV, WT versus V990M: p=7.6×10−4, WT versus P1090Q: p=0.038 and V990M versus P1090Q: p=0.95. For −80 mV, WT versus V990M: p=3.3×10−4, WT versus P1090Q: p=0.69 and V990M versus P1090Q: p=0.02) (D) and co-application of PS and Clt (For +80 mV, WT versus V990M: p=1, WT versus P1090Q: p=0.011 and V990M versus P1090Q: p=0.004. For −80 mV, WT versus V990M: p=0.32, WT versus P1090Q: p=0.22 and V990M versus P1090Q: p=0.005) (E). (F) Representative whole-cell TRPM3 currents recorded during voltage steps ranging from −200 mV to +200 mV, separated by steps of +50 mV for WT (black), V990M (blue) and P1090Q (red) transfected cells. (G) Current density-voltage relationship for WT (n = 5), V990M (n = 6) and P1090Q (n = 7) transfected cells (+50 mV: WT versus V990M (p=0.012), WT versus P1090Q (p=0.22) and V990M versus P1090Q (p=0.21); +100 mV: WT versus V990M (p=0.003), WT versus P1090Q (p=0.32) and V990M versus P1090Q (p=0.034); +150 mV: WT versus V990M (p=0.002), WT versus P1090Q (p=0.35) and V990M versus P1090Q (p=0.019); +200 mV: WT versus V990M (p=0.004), WT versus P1090Q (p=0.33) and V990M versus P1090Q (p=0.039). Kruskal-Wallis ANOVA with Dunn’s posthoc test for panel B-E. One-way ANOVA with Tukey’s posthoc test for panel G. Data are represented as mean ± SEM with scatter plot of the individual cells for panel C-E.

Next, we compared the responses of WT and DEE mutants to stimulation with agonist PS and with clotrimazole (Clt), an antifungal drug and known TRPM3 modulator (Vriens et al., 2014). In line with earlier studies (Wagner et al., 2008), we found that PS (40 µM) reversibly activated outwardly rectifying whole-cell currents in cells expressing WT, whereas application of Clt (10 µM) did not activate currents by itself but potentiated responses to PS (Figure 1C,D and Figure 1—figure supplement 2). In particular, application of PS in the presence of Clt provoked activation of a large inwardly rectifying current component, which has been attributed to activation of an alternative ion permeation pathway located in the voltage-sensing domain, distinct from the central pore (Vriens et al., 2014). The response pattern was strikingly altered in cells expressing the DEE mutants. In the case of V990M, whole-cell current densities in response to PS were significantly larger compared to WT, and notably, exhibited a prominent inwardly rectifying current component. In addition, application of Clt induced robust currents in the absence of PS, whereas currents in the combined presence of Clt and PS were similar in amplitude and shape as WT (Figure 1E,F and Figure 1—figure supplement 2). In the case of P1090Q, whole-cell current densities in response to PS were also significantly larger compared to WT, but lacked the inwardly rectifying component observed in the V990M mutant. Clt did not activate currents in cells expressing P1090Q, and in contrast to WT, inhibited the response to PS (Figure 1G,H and Figure 1—figure supplement 2). Taken together, these results indicate that both DEE mutants lead to significant changes in channel gating, including increased basal activity and pronounced alterations in ligand responses.

To further assess the enhanced response to PS stimulation of the DEE mutants, we compared their apparent affinity to PS by measuring [Ca2+]i responses to stepwise increases in PS concentrations. We found that the concentration-response curve for both mutants was shifted to significantly lower concentrations compared to WT. Notably, whereas a PS concentration of 10 µM was required to induce a detectable response in cells expressing WT TRPM3, we observed robust calcium responses at concentrations as low as 100 nM for V990M and 1 µM for P1090Q. Moreover, the maximal increase in [Ca2+]i to saturating PS concentrations was significantly higher in P1090Q expressing cells compared to WT (Figure 2A,B). Thus, both DEE mutants show increased responses to the neurosteroid PS.

Figure 2. Altered sensitivity of DEE mutants for thermal stimulation and pharmacological modulation.

(A) Time course of [Ca2+]i (± SEM) upon application of the TRPM3 agonist PS in stepwise increasing dose (0.01–100 µM) for WT (n = 615), V990M (n = 130) and P1090Q (n = 196) (N = 3 independent experiments). (B) PS concentration-response curves for WT (EC50 = 14.3 ± 5.8 µM), V990M (EC50 = 2.1 ± 0.4 µM), and P1090Q (EC50 = 7.5 ± 1.4 µM). (C) Time course of [Ca2+]i for NT (gray, n = 46), WT (black, n = 148), V990M (blue, n = 259) and P1090Q (red, n = 271) when applying a heat ramp (magenta). Analysis of 3 independent experiments, where the data are represented as mean ± SEM. (D) Corresponding amplitudes of the temperature response, represented as mean ± SEM, using a Kruskal-Wallis ANOVA with Dunn’s posthoc test (***). WT, V990M and P1090Q transfected cells had a significant larger amplitude compared to NT cells (p=4.6×10−5, p=2.5×10−22 and p=1.2×10−22, respectively). V990M and P1090Q transfected cells had a significant larger amplitude compared to WT cells (p=8.3×10−14 and p=2.8×10−14). The amplitudes of P1090Q and V990M were not significantly different (p=1). (E–G) Amplitude of currents at +80 mV and –80 mV (measured during voltage ramps) upon application of PS (40 µM) with co-application of the µ-opioid receptor agonist DAMGO (1 µM) or the TRPM3 inhibitor primidone (25 µM) for WT (n = 6) (E), V990M (n = 8) (F) and P1090Q (n = 6) (G), in cells co-expressing the µ-opioid receptor. (H–I) Percentage inhibition of PS-induced currents upon application of DAMGO (+80 mV: WT versus V990M (p=3.4×10−5), WT versus P1090Q (p=0.98) and V990M versus P1090Q (p=2.3×10−5); −80 mV: WT versus V990M (p=0.01), WT versus P1090Q (p=0.54) and V990M versus P1090Q (p=8.7×10−4). (H) And primidone (+80 mV: WT versus V990M (p=0), WT versus P1090Q (p=0.88) and V990M versus P1090Q (p=0); −80 mV: WT versus V990M (p=0), WT versus P1090Q (p=0.52) and V990M versus P1090Q (p=6.1×10−8. (I) For WT (black), V990M (blue) and P1090Q (red). The filled and shaded bars represent the current inhibition at −80 mV and +80 mV, respectively. A Kruskal-Wallis ANOVA with Dunn’s posthoc test was used. Data are represented as mean ± SEM and scatter plots for each individual cell. (J–L) Amplitude of currents at +80 mV and –80 mV (measured during voltage ramps) upon application of PS (40 µM) in the presence of 1 mM extracellular calcium for WT (n = 8) (J), V990M (n = 6) (K) and P1090Q (n = 6) (L). (M) Percentage inhibition upon calcium application for WT, V990M (VM) and P1090Q (PQ) (mean ± SEM and scatter plots for each individual cell). **: A Kruskal-Wallis ANOVA with Dunn’s posthoc test was used, where the amplitude of V990M transfected cells compared to WT and P1090Q transfected cells were significantly different (p=0.009 and p=0.005, respectively). The amplitudes of P1090Q and WT transfected cells were not significantly different (p=1).

Figure 2.

Figure 2—figure supplement 1. Characterization of DAMGO and primidone block on PS-induced currents.

Figure 2—figure supplement 1.

(A) Amplitude of currents at a holding potential of +80 mV and –80 mV (measured with voltage ramps) upon application of PS (40 µM) with co-application of the µ-opioid receptor agonist DAMGO (1 µM) and the TRPM3 inhibitor primidone (25 µM) for WT hTRPM3 transfected cells (n = 5). (B) Percentage inhibition of PS-induced currents at holding potential of +80 mV and –80 mV upon application of DAMGO and primidone for WT hTRPM3 cells. (C) DAMGO concentration-response curve for WT (IC50 = 4.0 ± 0.6 nM) and V990M (IC50 = 40 ± 10 nM) hTRPM3 co-transfected cells with µ-opioid receptors (n = 5). (D) Primidone concentration-response curve for WT (IC50 = 940 ± 250 nM; n = 526), V990M (IC50 = 12.5 ± 3.7 µM; n = 498) and P1090Q (IC50 = 2.3 ± 0.3 µM; n = 538) hTRPM3 transfected cells (N = 3 independent calcium imaging experiments).

TRPM3 is a temperature-sensitive channel, activated upon heating (Vriens et al., 2011). To address whether the DEE mutations affect the channel’s response to heat, we compared changes in [Ca2+]i in cells expressing WT or mutant TRPM3 upon exposure to a heat ramp from 23°C to 40°C. Compared to non-transfected cells, we measured a significantly larger increase in [Ca2+]i in cells expressing WT or mutant TRPM3. Notably, the amplitude of the heat-induced response was significantly larger in cells expressing the DEE mutants compared to WT (Figure 2C,D).

TRPM3 activity is inhibited upon activation of G protein-coupled receptors, via a mechanism that involves direct binding of the Gβγ of trimeric G-proteins to the channel (Badheka et al., 2017; Dembla et al., 2017; Quallo et al., 2017). To evaluate whether Gβγ-dependent modulation is altered in the DEE mutations, we co-transfected HEK293T cells with the µ-opioid receptor and WT or mutant TRPM3, and evaluated the effect of the selective agonist DAMGO on PS-activated whole-cell currents. In cells expressing WT or P1090Q, application of 1 µM DAMGO induced a complete and rapidly reversible inhibition of inward and outward currents, whereas V990M was only partly inhibited (Figure 2E–I). The DAMGO concentration for half-maximal inhibition of the PS-activated currents shifted from 4.0 ± 0.6 nM for WT to 40 ± 10 nM for V990M (Figure 2—figure supplement 1). Note that DAMGO was without effect on TRPM3 currents in cells that were not co-transfected with the µ-opioid receptor (Figure 2—figure supplement 1). A difference in sensitivity was also found for the anticonvulsant drug primidone, which at a concentration of 25 µM caused a full inhibition of PS-activated inward and outward currents mediated by WT or P1090Q, but blocked currents mediated by V990M by only ~50% (Figure 2E–G,I). A similar difference in primidone sensitivity was observed using Fura-2-based calcium imaging (Figure 2—figure supplement 1).

When switching from the standard, Ca2+-free extracellular solution to a solution containing 1 mM Ca2+, PS-activated currents mediated by WT or by P1090Q undergo time-dependent desensitization (Vriens et al., 2014; Held et al., 2015). In contrast, PS-activated currents mediated by V990M remained stable in the presence of extracellular Ca2+, indicating reduced sensitivity to Ca2+-dependent desensitization in this mutant (Figure 2J–M).

The PS-induced whole-cell currents mediated by V990M showed a prominent inwardly rectifying current component. A similar inwardly rectifying current component can also be activated in WT TRPM3 when PS is applied in the presence of Clt. In earlier work, we have demonstrated that this inwardly rectifying current component represents ion flux through an alternative ion permeation pathway located in the voltage sensor domain of TRPM3, which can be distinguished from the central pore based on its voltage dependence, insensitivity to pore block by La3+ and ion selectivity (including a lower permeability for monomethylammonium (MMA+) compared to Na+) (Vriens et al., 2014; Held et al., 2015; Held et al., 2018). Notably, the V990M mutation is located in close vicinity of Asp988 and Gly991, which we recently identified as critical determinants of the alternative ion permeation pathway (Figure 3—figure supplement 1; Held et al., 2018). We therefore hypothesized that gating of the alternative ion permeation pathway is facilitated in V990M, such that it can be activated by PS even when Clt is not co-applied. We found that the PS-activated current in the V990M mutant showed a bimodal voltage dependence (Figure 3B), its inward current component was resistant to block by the central pore blocker La3+ (Figure 3F,G), and inward currents were reduced when extracellular Na+ was replaced by MMA+ (Figure 3H). Taken together, these data indicate that the V990M mutation leads to a gain of function at the level of the alternative ion permeation pathway.

Figure 3. Altered gating of the alternative pore in V990M (A–C) G-V plots of PS-activated currents for (A) WT (black), (B) V990M (blue) and (C) P1090Q (red).

Currents measured during voltage-steps ranging from −200 mV to +200 mV, separated by steps of +50 mV. Representative currents are shown as insets in each graph; n = 6 for each experiment. (D) Rectification pattern of PS (40 µM) (full circle and line) and PS + Clt (10 µM)-induced (open circle and dashed line) currents for WT, V990M and P1090Q. Data points are derived by plotting the current increase at +150 mV versus the current increases at −150 mV; n ≥ 4 for each dataset. (E) Time course of WT TRPM3 whole-cell currents at ± 150 mV upon application of PS (40 µM) and Lanthanum (La3+; 10 µM) or PS + Clt and La3+. (F) Time course of V990M mutant whole-cell currents at ± 150 mV upon application of PS and La3+. (G) Relative La3+ block calculated from experiments as in E) and F) for WT (black) in presence of PS + Clt (n = 4) and for V990M (blue, n = 8) in presence of PS alone (mean ± SEM and scatter plot for each individual cell). (H) Relative PS-induced currents at −150 mV carried by monomethylammonium (MMA+) in WT (black), V990M (blue) and P1090Q (red). MMA+ currents were normalized to the currents carried by Na+; PS (40 µM) and n = 5 for all experiments (mean ± SEM and scatter plot for each individual cell). ** One-way ANOVA with Tukey’s posthoc test (WT versus V990M: p=0.005; WT versus P1090Q: p=0.09 and V990M versus P1090Q: p=0.28).

Figure 3.

Figure 3—figure supplement 1. Homology model illustrating the different positions of the DEE mutations Homology model of TRPM3 based on the published cryo-EM structure of TRPM4 (pdb code: 6bcj).

Figure 3—figure supplement 1.

(A) Side view illustrating transmembrane segment (S) S1, S3 (orange) and S4 (green). The yellow colored residues indicate the critical residues for the alternative pore (R1–R4) in S4 and in close proximity the Val at position 990 is indicated in red color. Pro 1090 in the pore domain is indicated in red. (B) Top view illustrating the positions of the different residues V990 and P1090 in red with S1-S3 represented in orange and S4 represented in green.

Considering that all reported DEE patients were heterozygous for the TRPM3 substitutions (Dyment et al., 2019), and that TRPM3 is functional as a tetramer, it can be expected that patient cells express a mixture of WT and mutant channel subunits, potentially leading to the formation of heteromultimeric channels with variable stoichiometry. To mimic the heterozygous condition in vitro, we performed a limited number of experiments in cells co-transfected with a mixture of cDNA encoding WT and mutant TRPM3 in a 1:1 ratio. The current densities of PS-induced inward currents in cells expressing a WT:V990M mixture was intermediate between cells expressing only WT or only V990M (Figure 4A,B). Moreover, the PS-activated currents exhibited the typical inwardly rectifying current component (Figure 4C,D). Finally, in contrast to WT but like V990M, Clt (10 µM) activated robust currents in cells expressing a WT:V990M mixture (Figure 4A,B). Next, the WT:P1090Q co-transfected cells showed PS-induced current densities that were intermediate between WT and P1090Q transfected cells (Figure 4E,F) and showed a shift in the rectification pattern of the PS-induced currents that was different from the homozygote situation (Figure 4G). Moreover, the effect of Clt pre-incubation was different in co-transfected cells. WT:P1090Q cells showed first a potentiation of the PS responses by pre-incubation of Clt, followed by a time-dependent current inhibition. This was in contrast to the block of PS-induced currents by pre-incubation with Clt for the P1090Q mutant in isolation (Figure 4H). Taken together, these findings indicate that also in the heterozygous condition both DEE mutations lead to a gain of channel function. However, since at this point we do not know whether the mutations affect the formation of channel tetramers, further experiments are required to determine the precise stoichiometry of WT and mutant subunits in the TRPM3 channels of DEE patients.

Figure 4. Heterozygous effects of DEE mutants.

Figure 4.

(A) Time course of whole-cell currents at ± 80 mV recorded in HEK293T cells transiently co-transfected with WT and V990M mutant DNA (1:1) upon application of PS (40 µM), Clt (10 µM) or PS + Clt. (B) Current densities at a holding potential of −80 mV (measured with voltage ramps) upon application of PS (40 µM) for WT (n = 10) (black), VM (n = 7) (blue) or WT + VM (1:1) (n = 7) (orange). The current densities for WT versus V990M (p=0.002) and for WT versus V990M + WT (p=0.008) were significantly different. The current densities for V990M versus V990M + WT were not significantly different (p=1). (C) Same as in (B) but for current amplitude ratios of +80 mV /-80 mV. The ratios for WT versus V990M (p=2.3×10−6) and for WT versus V990M + WT (p=1×10−5) were significantly different. The ratios for V990M versus V990M + WT were not significantly different (p=0.81) (D) G-V plots for PS-activated WT TRPM3 (black), V990M (blue) and WT + V990M (1:1) (orange). Data points were obtained with a step protocol ranging from −200 mV to +200 mV with +50 mV steps; n ≥ 6 for each experiment. (E) Time course of whole-cell currents at ±80 mV recorded in HEK293T cells transiently co-transfected with WT and P1090Q (1:1) upon application of PS (40 µM), Clt (10 µM) or PS + Clt. (F) Similar as in (B) but for WT (n = 10) (black), P1090Q (n = 9) (red) or co-transfected WT + P1090Q (1:1) (n = 5) (orange). The current densities for WT versus P1090Q (p=0.004) were significantly different. The current densities for WT versus P1090Q + WT (p=0.07) and P1090Q versus P1090Q + WT were not significantly different (p=0.55) (G) Similar as in (C) but for WT (n = 10) (black), P1090Q (n = 9) (red) or co-transfected WT + P1090Q (1:1) (n = 5) (orange). The ratios for WT versus P1090Q (p=4.2×10−5) and for WT versus P1090Q + WT (p=0.001) were significantly different. The ratios for P1090Q versus P1090Q + WT were not significantly different (p=0.86). (H) X-fold potentiation at peak (+80 mV: for WT versus P1090Q (p=3.5×10−5), WT versus P1090Q + WT (p=1) and P1090Q versus P1090Q + WT (p=0.031); −80 mV: for WT versus P1090Q (p=1.4×10−5), WT versus P1090Q + WT (p=0.37) and P1090Q versus P1090Q + WT (p=0.13)) and steady-state (+80 mV: for WT versus P1090Q (p=6×10−4), WT versus P1090Q + WT (p=0.13) and P1090Q versus P1090Q + WT (p=0.35); −80 mV: for WT versus P1090Q (p=0.002), WT versus P1090Q + WT (p=0.064) and P1090Q versus P1090Q + WT (p=0.86)) conditions of Clt-potentiated PS-currents in WT (black), P1090Q (red) or co-transfected with WT + P1090Q (1:1) (orange); n ≥ 4. All bar plots are represented as mean ± SEM and scatter plot for each individual cell. Kruskal-Wallis ANOVA with Dunn’s posthoc test for panel B, F and H. One-way ANOVA with Tukey’s posthoc test for panel C and G. Mann-Whitney test was used for comparison of V990M versus V990M + WT in panel D.

In conclusion, our results indicate that two human mutations in the TRPM3 gene associated with DEE give rise to channels with substantially altered functional properties. Whereas the V990M and P1090Q mutations have various differential effects on several aspects of TRPM3 gating, both can be considered as strong gain-of-function mutants, with increased inward cation currents and Ca2+ influx under basal condition or when stimulated with heat or the endogenous neurosteroid PS. We hypothesize that the increased calcium influx and depolarizing channel activity may lie at the basis of seizure development and neurodevelopmental symptoms in DEE patients.

Materials and methods

Key resources table.

Reagent type
(species) or
resource
Designation Source or
reference
Identifiers Additional
information
Cell line (human) HEK293T Dr. S Roper, University of Miami school of medicine Depart. of physiology and biophysics, 4044 Miami FL 33136 ATCCCRL-3216
Recombinant DNA reagent hOPMR1 (plasmid) Received from Missouri university Catalogue # OPM10FN00 In pCDNA3 plasmid.
 Recombinant DNA reagent TRPM3 (plasmid) Received from C Harteneck -Berlin GenBank: AJ505026.1 In pCDNA3/V5/his/plasmid tagged with YFP.
Recombinant DNA reagent TRPM3 with V990M mutation (plasmid) This paper GenBank: AJ505026.1 modified by V990M mutation In pCDNA3/V5/his/plasmid tagged with YFP
Recombinant DNA reagent TRPM3 with P1090Q mutation (plasmid) This paper GenBank: AJ505026.1 modified by P1090Q mutation In pCDNA3/V5/his/plasmid tagged with YFP
Commercial assay or kit TransIT-293 Transfection Reagent Mirus Catalogue # MIR 2700
Chemical compound, drug Pregnenolone Sulfate Sigma-Aldrich Catalogue # P162 TRPM3 agonist
Chemical compound, drug DAMGO Sigma-Aldrich Catalogue #
E7384
µ-opioid receptor agonist
Chemical compound, drug Isosakuranetin Carl Roth Catalogue #
7498.1
TRPM3 inhibitor
Chemical compound, drug Clotrimazole Sigma-Aldrich Catalogue # C6019 TRPM3 modulator
Chemical compound, drug Primidone Sigma-Aldrich Catalogue # P7295 TRPM3 inhibitor
Chemical compound, drug Fura-2-acetoxymethyl ester Alexis Biochemicals Catalogue # ENZ-52006 Calcium indicator
Software, algorithm OriginPro 8.6 OriginLab Corporation, USA RRID:SCR_014212 Data analysis and statistical analysis
Software, algorithm IgorPro 6.2 WaveMetrics, USA RRID:SCR_000325 Data analysis
Software, algorithm ImageJ https://imagej.net/ RRID:SCR_003070 Data analysis
Software, algorithm NIS-Elements Nikon RRID:SCR_014329 Acquisition Ca2+-imaging data
Software, algorithm PatchMasterPro HEKA Elektronik, Lambrecht, Germany Acquisition patch clamp data

Cell culture

HEK293T cells (Graham et al., 1977) were cultured as described previously (Vriens et al., 2007) and used up in passage number 14. HEK293T cells were tested for the lack of mycoplasma and transiently transfected with 2 µg of DNA using TransIT transfection reagent (Mirus) 36–48 hr before the measurements. In case of co-cultures a ratio of 1:1 between hTRPM3-YFP WT and mutants-YFP DNA was used.

Site-directed mutagenesis

All mutants were obtained by the standard PCR overlap extension method using hTRPM3 directly linked to YFP from pCAGGS/IRES-GFP vector (Vriens et al., 2007). Accuracy of all mutant sequences was verified by sequencing of the entire DNA constructs.

Fluorescence imaging

Changes in intracellular calcium concentration were monitored using ratiometric Fura-2-based fluorimetry. Cells were loaded with 2 µM Fura-2-acetoxymethyl ester (Alexis Biochemicals) for 30 min at 37°C. Fluorescence was measured during alternating illumination at 340 and 380 nm using Eclipse Ti (Nikon) fluorescence microscopy system, and absolute calcium concentration was calculated from the ratio of the fluorescence signals at these two wavelengths (R = F340/F380) as [Ca2+]=Km × (R-Rmin)/(Rmax-R), where Km, Rmin and Rmax were estimated from in vitro calibration experiments with known calcium concentrations. The bath solution contained (in mM) 138 NaCl, 5.4 KCl, 2 CaCl2, 2 MgCl2, 10 glucose, and 10 HEPES, pH 7.4. Pregnenolone sulfate, clotrimazole and primidone were obtained from Sigma-Aldrich, isosakuranetin was obtained from Carl Roth. The chemical ligands were dissolved in bath solution from a stock diluted in DMSO.

Whole cell patch clamp recordings

Standard whole-cell patch-clamp recordings were performed with an EPC-10 amplifier and the PatchMasterPro Software (HEKA Elektronik, Lambrecht, Germany). Current measurements were performed at a sampling rate of 20 kHz and currents were digitally filtered at 2.9 kHz. In all measurements, 70% of the series resistance was compensated. The standard internal solution contained (in mM): 100 CsAsp, 45 CsCl, 10 EGTA, 10 HEPES, 1 MgCl2 (pH 7.2 with CsOH) or 140 potassium gluconate, 5 EGTA, 1 MgCl2, 10 HEPES and 2 NaATP (pH 7.3 with CsOH) for the measurements of Gβγ mediated inhibition and the standard extracellular solution contained (in mM): 150 NaCl, 1 MgCl2, 10 HEPES (pH 7.4 with NaOH). The standard patch pipette resistance was between 2 MΩ and 4 MΩ when filled with pipette solution. In experiments allowing Ca2+-dependent desensitization of TRPM3, Mg2+ was replaced by Ca2+ in the extracellular solution, and Cs+ was replaced by Na+ in the pipette solution. Pregnenolone sulfate, clotrimazole primidone and [D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin acetate salt (DAMGO) were obtained from Sigma-Aldrich and isosakuranetin was obtained from Carl Roth. The chemical ligands were dissolved in bath solution from a stock diluted in DMSO.

Statistics

Sample sizes were defined as minimum n = 5 for patch clamp experiments on HEK293T cells. One-way ANOVA power analysis was used for calculations of sample sizes. Parameters were taken as follows: statistical significance was tested for a 20% difference between groups with an α of 0.05 and a power of 0.9. For Calcium-fluorimetry measurements, no power analysis was performed, as each recording allowed to test more than 100 individual HEK293T cells.

Electrophysiological data were analyzed using IgorPro 6.2 (WaveMetrics, USA), WinASCD (Guy Droogmans, Leuven) and OriginPro 8.6 (OriginLab Corporation, USA). OriginPro 8.6 was further used for statistical analysis and data display. All data sets were tested for normality and the Student’s paired, two-tailed t-test or the Mann-Whitney U test were used for statistical comparison between two different data sets. For comparison between multiple data sets One-way ANOVA with Tukey’s posthoc test or Kruskal-Wallis ANOVA with Dunn’s posthoc test were performed. P values below 0.05 were considered as significantly different. Data points represent means ± SEM of the given number (n) of identical experiments. No exclusion of statistical outliers was performed in this study.

Conductance-voltage (G-V) curves were fitted with a Boltzmann function of the form:

G(V)=Gmax1+expzF(V1/2V)RT,

where z is the apparent gating charge, V1/2 the potential for half-maximal activation, Gmax the maximal conductance, F the Faraday constant, R the gas constant and T the absolute temperature. Experiments were performed at room temperature.

Acknowledgements

We thank all the members of the Laboratory of Ion Channel Research and the Laboratory of Endometrium, Endometriosis and Reproductive Medicine at the KU Leuven, for their helpful discussions and comments.

Funding Statement

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Contributor Information

Thomas Voets, Email: thomas.voets@kuleuven.vib.be.

Joris Vriens, Email: Joris.Vriens@kuleuven.be.

Leon D Islas, Universidad Nacional Autónoma de México, Mexico.

Kenton J Swartz, National Institute of Neurological Disorders and Stroke, National Institutes of Health, United States.

Funding Information

This paper was supported by the following grants:

  • Fonds Wetenschappelijk Onderzoek G.084515N to Joris Vriens.

  • Fonds Wetenschappelijk Onderzoek G.0B1819N to Joris Vriens.

  • Fonds Wetenschappelijk Onderzoek G.0565.07 to Thomas Voets, Joris Vriens.

  • Fonds Wetenschappelijk Onderzoek G.0825.11 to Thomas Voets, Joris Vriens.

  • KU Leuven C1-TRPLe to Thomas Voets.

  • Fonds Wetenschappelijk Onderzoek 12U7918N to Katharina Held.

Additional information

Competing interests

No competing interests declared.

Author contributions

Data curation, Visualization, Methodology, Writing - original draft, Writing - review and editing.

Data curation, Supervision, Validation, Visualization, Methodology, Writing - original draft, Writing - review and editing.

Data curation, Validation, Visualization, Writing - original draft, Writing - review and editing.

Data curation.

Conceptualization, Formal analysis, Supervision, Funding acquisition, Investigation, Methodology, Writing - original draft, Writing - review and editing.

Conceptualization, Resources, Supervision, Funding acquisition, Validation, Investigation, Visualization, Methodology, Writing - original draft, Project administration, Writing - review and editing.

Additional files

Transparent reporting form

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

References

  1. Badheka D, Yudin Y, Borbiro I, Hartle CM, Yazici A, Mirshahi T, Rohacs T. Inhibition of transient receptor potential melastatin 3 ion channels by G-protein βγ subunits. eLife. 2017;6:e26147. doi: 10.7554/eLife.26147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Dembla S, Behrendt M, Mohr F, Goecke C, Sondermann J, Schneider FM, Schmidt M, Stab J, Enzeroth R, Leitner MG, Nuñez-Badinez P, Schwenk J, Nürnberg B, Cohen A, Philipp SE, Greffrath W, Bünemann M, Oliver D, Zakharian E, Schmidt M, Oberwinkler J. Anti-nociceptive action of peripheral mu-opioid receptors by G-beta-gamma protein-mediated inhibition of TRPM3 channels. eLife. 2017;6:e26280. doi: 10.7554/eLife.26280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dyment DA, Terhal PA, Rustad CF, Tveten K, Griffith C, Jayakar P, Shinawi M, Ellingwood S, Smith R, van Gassen K, McWalter K, Innes AM, Lines MA. De novo substitutions of TRPM3 cause intellectual disability and epilepsy. European Journal of Human Genetics. 2019;27:1611–1618. doi: 10.1038/s41431-019-0462-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Graham FL, Smiley J, Russell WC, Nairn R. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. Journal of General Virology. 1977;36:59–72. doi: 10.1099/0022-1317-36-1-59. [DOI] [PubMed] [Google Scholar]
  5. Grimm C, Kraft R, Sauerbruch S, Schultz G, Harteneck C. Molecular and functional characterization of the melastatin-related cation channel TRPM3. Journal of Biological Chemistry. 2003;278:21493–21501. doi: 10.1074/jbc.M300945200. [DOI] [PubMed] [Google Scholar]
  6. Held K, Kichko T, De Clercq K, Klaassen H, Van Bree R, Vanherck JC, Marchand A, Reeh PW, Chaltin P, Voets T, Vriens J. Activation of TRPM3 by a potent synthetic ligand reveals a role in peptide release. PNAS. 2015;112:E1363–E1372. doi: 10.1073/pnas.1419845112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Held K, Gruss F, Aloi VD, Janssens A, Ulens C, Voets T, Vriens J. Mutations in the voltage-sensing domain affect the alternative ion permeation pathway in the TRPM3 channel. The Journal of Physiology. 2018;596:2413–2432. doi: 10.1113/JP274124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Krügel U, Straub I, Beckmann H, Schaefer M. Primidone inhibits TRPM3 and attenuates thermal nociception in vivo. Pain. 2017;158:856–867. doi: 10.1097/j.pain.0000000000000846. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Oberwinkler J, Lis A, Giehl KM, Flockerzi V, Philipp SE. Alternative splicing switches the divalent cation selectivity of TRPM3 channels. Journal of Biological Chemistry. 2005;280:22540–22548. doi: 10.1074/jbc.M503092200. [DOI] [PubMed] [Google Scholar]
  10. Quallo T, Alkhatib O, Gentry C, Andersson DA, Bevan S. G protein βγ subunits inhibit TRPM3 ion channels in sensory neurons. eLife. 2017;6:e26138. doi: 10.7554/eLife.26138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Straub I, Krügel U, Mohr F, Teichert J, Rizun O, Konrad M, Oberwinkler J, Schaefer M. Flavanones that selectively inhibit TRPM3 attenuate thermal nociception in vivo. Molecular Pharmacology. 2013;84:736–750. doi: 10.1124/mol.113.086843. [DOI] [PubMed] [Google Scholar]
  12. Vangeel L, Benoit M, Miron Y, Miller PE, De Clercq K, Chaltin P, Verfaillie C, Vriens J, Voets T. Functional expression and pharmacological modulation of TRPM3 in human sensory neurons. British Journal of Pharmacology. 2020;176:14994. doi: 10.1111/bph.14994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Vriens J, Owsianik G, Janssens A, Voets T, Nilius B. Determinants of 4 alpha-phorbol sensitivity in transmembrane domains 3 and 4 of the cation channel TRPV4. Journal of Biological Chemistry. 2007;282:12796–12803. doi: 10.1074/jbc.M610485200. [DOI] [PubMed] [Google Scholar]
  14. Vriens J, Owsianik G, Hofmann T, Philipp SE, Stab J, Chen X, Benoit M, Xue F, Janssens A, Kerselaers S, Oberwinkler J, Vennekens R, Gudermann T, Nilius B, Voets T. TRPM3 is a nociceptor channel involved in the detection of noxious heat. Neuron. 2011;70:482–494. doi: 10.1016/j.neuron.2011.02.051. [DOI] [PubMed] [Google Scholar]
  15. Vriens J, Held K, Janssens A, Tóth BI, Kerselaers S, Nilius B, Vennekens R, Voets T. Opening of an alternative ion permeation pathway in a nociceptor TRP channel. Nature Chemical Biology. 2014;10:188–195. doi: 10.1038/nchembio.1428. [DOI] [PubMed] [Google Scholar]
  16. Wagner TF, Loch S, Lambert S, Straub I, Mannebach S, Mathar I, Düfer M, Lis A, Flockerzi V, Philipp SE, Oberwinkler J. Transient receptor potential M3 channels are ionotropic steroid receptors in pancreatic β cells. Nature Cell Biology. 2008;10:1421–1430. doi: 10.1038/ncb1801. [DOI] [PubMed] [Google Scholar]
  17. Zamudio-Bulcock PA, Everett J, Harteneck C, Valenzuela CF. Activation of steroid-sensitive TRPM3 channels potentiates glutamatergic transmission at cerebellar purkinje neurons from developing rats. Journal of Neurochemistry. 2011;119:474–485. doi: 10.1111/j.1471-4159.2011.07441.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Decision letter

Editor: Leon D Islas1
Reviewed by: Leon D Islas2, Haoxing Xu3

In the interests of transparency, eLife publishes the most substantive revision requests and the accompanying author responses.

Acceptance summary:

The physiological function of TRPM3 ion channels remains poorly understood. In this manuscript, Evelien Van Hoeymissen and colleagues functionally characterize recently reported single-point mutants of the TRPM3 channel and demonstrate that they produce gain-of-function phenotypes. Since these mutants are involved in producing epileptogenic activity, the results point towards a physiological explanation of the pathology and indicate an involvement of TRPM3 in neuronal excitability.

Decision letter after peer review:

Thank you for submitting your article "Gain of channel function and modified gating properties in TRPM3 mutants causing intellectual disability and epilepsy" for consideration by eLife. Your article has been reviewed by three peer reviewers, including Leon D Islas as the Reviewing Editor and Reviewer #1, and the evaluation has been overseen by Kenton Swartz as the Senior Editor The following individual involved in review of your submission has agreed to reveal their identity: Haoxing Xu (Reviewer #3).

The reviewers have discussed the reviews with one another and the Reviewing Editor has drafted this decision to help you prepare a revised submission.

We would like to draw your attention to changes in our revision policy that we have made in response to COVID-19 (https://elifesciences.org/articles/57162). Specifically, we are asking editors to accept without delay manuscripts, like yours, that they judge can stand as eLife papers without additional data, even if they feel that they would make the manuscript stronger. Thus the revisions requested below only address clarity and presentation.

Summary:

This manuscript provides a functional characterization of recently described mutations in TRPM3 channels that were proposed to explain a pathological neuronal phenotype. The experiments shown here demonstrate that these mutations produce a gain of function, which the authors suggest could be responsible for the increased excitability associated with the described pathology. These findings are of general relevance since they demonstrate, if indirectly, that TRPM3 channels serve important functions in the central nervous system. The characterization of the mutations' effects is thorough and the experiments are well conducted.

Essential revisions:

1) Overall, it is convincing that both V990M and P1090Q mutations confer some gain-of-function channel properties. However, it is well known that in the heterologous overexpression systems, the expression levels of the wild-type (WT) and mutant TRP channels may sometimes affect their ligand sensitivities and basal activities. What is the evidence that the expression levels of the V990M and P1090Q mutants are comparable to that of the WT channel? When comparing current magnitude between WT and mutants (Figure 1—figure supplement 1), data should be presented as averages of current density, not absolute current, since expression levels surely vary between cells and between mutants. Are the current densities of the maximal currents (i.e., PS+clt-induced currents) comparable for WT and mutant channels? Whereas representative traces were shown, the average current densities under various agonist conditions should be provided.

2) In Figure 1C, it would be more informative to present the fraction of calcium signal inhibited by primidone instead of -delta Ca.

3) Regarding the WT:mutant mixing experiments, it’s not clear how these data can be interpreted. The channel composition in humans is unknown; thus assuming that a heterozygous condition implies heteromeric channels is unsupported. The data presented in Figure 4 only indicate that the effects of the mutations can be conferred by a limited number of subunits, if the mutant can form tetramers with WT subunits (in 1:1 ratio), which is also not demonstrated and cannot be assumed a priori. If these data remain in the paper, these possibilities and limitations of the interpretation put forward should be clearly stated and discussed.

eLife. 2020 May 19;9:e57190. doi: 10.7554/eLife.57190.sa2

Author response


Essential revisions:

1) Overall, it is convincing that both V990M and P1090Q mutations confer some gain-of-function channel properties. However, it is well known that in the heterologous overexpression systems, the expression levels of the wild-type (WT) and mutant TRP channels may sometimes affect their ligand sensitivities and basal activities. What is the evidence that the expression levels of the V990M and P1090Q mutants are comparable to that of the WT channel?

The potential difference in expression level is indeed a strong concern that is raised by the reviewers and could be an alternative plausible explanation for the elevated intracellular calcium concentrations in the two DEE mutants. Therefore, we have performed additional analysis of the microfluorimetric experiments and have checked the expression levels of the different transfected cells by analyzing the YFP fluorescent intensity of all transfected cells. All cDNA constructs were designed with an YFP tag that is directly coupled to the C-terminal tail of TRPM3 WT, V990M or P1090Q, implying that YFP fluorescence can be used to evaluate total cellular expression levels. Although there was some variation in fluorescence levels between individual cells, no significant differences were observed between WT and the DEE mutants. Altogether, the results suggest that the protein expression level of WT and DEE mutants are within the same range. These data are included in the revised version of the manuscript (Figure 1—figure supplement 1).

When comparing current magnitude between WT and mutants (Figure 1—figure supplement 1), data should be presented as averages of current density, not absolute current, since expression levels surely vary between cells and between mutants. Are the current densities of the maximal currents (i.e., PS+clt-induced currents) comparable for WT and mutant channels? Whereas representative traces were shown, the average current densities under various agonist conditions should be provided.

We thank the reviewers for this comment and have adjusted the figures accordingly. The statistics were performed on current densities, and included in the revised Figure 1—figure supplement 2C-E and G and Figure 4B and F.

2) In Figure 1C, it would be more informative to present the fraction of calcium signal inhibited by primidone instead of -delta Ca.

We appreciated this comment of the reviewers and have tried to re-analyze the results as % inhibition as was suggested. However, the main problem of this type of analysis is the definition of 100% inhibition, since for individual cells it is unknown what their basal calcium concentration would be in the absence of TRPM3 activity. We tentatively defined 100% inhibition of basal activity when primidone reduced the calcium concentration to the mean basal calcium level in non-transfected cells (~30nM), according to:

Inh%=100%×[Ca2+]basal[Ca2+]primidone[Ca2+]basalmean [Ca2+]basal,NT

However, especially for WT and the P1090Q mutant, this approach often yielded spurious values. In particular, when the basal level before primidone was close to or below the 30 nM level, this approach yielded either negative values or values up to 4000% block (see Author response image 1, top plot). On average, the levels of inhibition calculated in this way were similar for the three channels, at around 70-80 % block (see Author response image 1, bottom). However, considering the limitations described above, we prefer not to include these data in the manuscript.

Author response image 1.

Author response image 1.

Instead, we have adapted the graph in Figure 1B, now showing the absolute calcium values under basal conditions and in the presence of the TRPM3 inhibitor primidone (100 µM). In addition, the individual data points of the basal calcium levels before and after primidone are now included in the new Figure 1—figure supplement 1.

3) Regarding the WT:mutant mixing experiments, it’s not clear how these data can be interpreted. The channel composition in humans is unknown; thus assuming that a heterozygous condition implies heteromeric channels is unsupported. The data presented in Figure 4 only indicate that the effects of the mutations can be conferred by a limited number of subunits, if the mutant can form tetramers with WT subunits (in 1:1 ratio), which is also not demonstrated and cannot be assumed a priori. If these data remain in the paper, these possibilities and limitations of the interpretation put forward should be clearly stated and discussed.

We agree that our results neither prove nor disprove the formation of heteromultimers between wild type and mutant subunits. Nevertheless, there are numerous examples in the literature of TRP (e.g. Hoenderop et al. EMBO J 2003) and other tetrameric channels (e.g. MacKinnon Nature, 1991) showing that mixing WT subunits with subunits carrying single point mutations generally leads to the random formation of heteromultimers, following a binomial distribution. Considering that the DEE mutations are point mutations, and not located in domains that are likely to be involved in tetramerisation, we believe it is fair to assume that also here there will be formation of heterotetramers. Currently, there is no knowledge available regarding the exact subunit composition of TRPM3 channels in the cells of human patients. Nevertheless, most dominantly inherited channelopathies caused by point mutations in TRP or other tetrameric channels are attributed to the random formation of heteromultimeric channels with variable subunit composition and altered functionality. In the revised manuscript, we have briefly discussed these possibilities and the limitations of the interpretation.

Associated Data

    This section collects any data citations, data availability statements, or supplementary materials included in this article.

    Supplementary Materials

    Transparent reporting form

    Data Availability Statement

    All data generated or analysed during this study are included in the manuscript and supporting files.


    Articles from eLife are provided here courtesy of eLife Sciences Publications, Ltd

    RESOURCES