Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2020 May 26;286:198025. doi: 10.1016/j.virusres.2020.198025

Porcine sapoviruses: Pathogenesis, epidemiology, genetic diversity, and diagnosis

Makoto Nagai a, Qiuhong Wang b,*, Tomoichiro Oka c, Linda J Saif b
PMCID: PMC7255249  PMID: 32470356

Highlights

  • The pathogenesis of porcine genogroup (G) III Sapovirus (SaV) in neonatal gnotobiotic pigs.

  • Epidemiology of different genogroups of porcine SaVs.

  • Genetic classification of porcine SaVs.

  • Diagnosis of porcine SaVs.

Keywords: Porcine, Sapovirus, Pathogenesis, Epidemiology, Genetic diversity, Diagnosis

Abstract

The first porcine Sapovirus (SaV) Cowden strain was discovered in 1980. To date, eight genogroups (GIII, V-IX) and three genogroups (GIII, GV, and GVI) of porcine SaVs have been detected from domestic pigs worldwide and wild boars in Japan, respectively based on the capsid sequences. Although GIII Cowden strain replicated in the villous epithelial cells and caused intestinal lesions in the proximal small intestines (mainly in duodenal and less in jejunum), leading to mild to severe diarrhea, in the orally inoculated neonatal gnotobiotic pigs, the significance of porcine SaVs in different ages of pigs with diarrhea in the field is still undetermined. This is due to two reasons: 1) similar prevalence of porcine SaVs was detected in diarrheic and non-diarrheic pigs; and 2) co-infection of porcine SaVs with other enteric pathogens is common in pigs. Diagnosis of porcine SaV infection is mainly based on the detection of viral nucleic acids using reverse transcription (RT)-PCR and sequencing. Much is unknown about these genetically diverse viruses to understand their role in pig health and to evaluate whether vaccines are needed to prevent SaV infection.

1. Introduction

The first porcine sapovirus (SaV), the Cowden strain was discovered by electron microscopy in the intestinal contents of a 27-day-old diarrheic nursing pig in the United State in 1980 (Saif et al., 1980). Later it was classified as a genogroup III (GIII) SaV based on the complete genomic sequence analysis (Guo et al., 1999). Sapoviruses belong to the Sapovirus genus within the family Caliciviridae. They are non-enveloped viruses that possess a single-stranded, positive-sense RNA genome. Sapovirus particles are small and round with a diameter of 30-40 nm, exhibiting a typical star-of-David structure and cup-shaped surface depressions by electron microscopy (EM) or immune EM (IEM) (Alhatlani et al., 2015; Oka et al., 2015; Saif et al., 1980). The genome length is 7-8,000 nucleotides (nt) excluding a 3'-end polyadenylated [poly(A)] tail. The 5'-end of the genome covalently links to a small virus-encoded protein (VPg). Sapovirus genomes have two overlapping open reading frames (ORFs): ORF1 and ORF2 (Oka et al., 2015). ORF1 encodes the nonstructural proteins NS1-NS2-NS3 (putative NTPase)-NS4-NS5 (VPg)-NS6 (protease)-NS7 (RNA-dependent RNA polymerase: RdRp) and the capsid protein, VP1. ORF2 encodes the minor structural protein, VP2. Sapoviruses are genetically highly diverse and have been classified into 19 genogroups based on the VP1 sequences (Farkas et al., 2004; Oka et al., 2016; Scheuer et al., 2013; Yinda et al., 2017). Among them, eight genogroups (GIII, GV, GVI, GVII, GVIII, GIX, GX, and GXI) and 3 genogroups (GIII, GV, and GVI) of SaVs have been detected from pigs and wild boars, respectively. In this review, we will summarize current knowledge on the pathogenesis of GIII Cowden strain, the epidemiology and genetic diversity of porcine SaVs, and the diagnosis of SaV infection in pigs.

2. Pathogenesis

The pathogenesis of most genogroups of porcine SaVs is unknown, except for GIII Cowden strain. The original field sample for the discovery of Cowden strain contained not only SaV particles (33 nm in diameter), but also rotavirus (55 nm and 70 nm in diameter for single- and double-capsid particles, respectively) and 23-nm virus-like particles (Saif et al., 1980). Saif et al. successfully removed rotavirus from the sample using selective membrane ultrafiltration before serial passage in gnotobiotic pigs. The 23-nm virus-like particles failed to replicate in the experimentally inoculated gnotobiotic pigs. At the 12th and above passages, the intestinal contents of the inoculated pigs contained only SaV particles by immune electron microscopy (IEM). Flynn et al. (Flynn et al., 1988) studied the pathogenesis of porcine SaV Cowden strain in 4-day-old gnotobiotic pigs. They inoculated orally (PO) 18 pigs with the 12th passage of the virus, monitored clinical signs for 14 days, and euthanized pigs at different days post-inoculation (dpi) to examine histopathological changes compared to mock-inoculated pigs at similar ages. They found that SaV Cowden strain caused diarrhea in all the pigs by 3 dpi and persisted for 3-7 days. Most pigs had mild diarrhea during the infection and two pigs (2/18) had severe diarrhea at 4-5 dpi. Porcine SaV replicated in the villous epithelial cells, but not crypt cells, mainly in duodenum, less in jejunum and the least in ileum, but not in the large intestines as determined by immunofluorescent assays (IFA) using pig hyperimmune antisera against porcine SaV Cowden strain. Histologically, porcine SaV-inoculated pigs showed mild to severe villous atrophy in the duodenum with short and flat villi with areas of denudation. Typical SaV particles were detected from the feces and large intestinal contents (LIC) of SaV-inoculated pigs at 1-7 dpi using IEM. Later Guo et al. (Guo et al., 2001) found that infectious porcine SaV entered the blood stream during the acute phase of infection of orally inoculated gnotobiotic pigs. Using more sensitive Taqman real-time RT-PCR assay for the detection of porcine SaV RNA, fecal viral RNA shedding in virus-inoculated pigs started at 1-3 dpi, reached the highest titers [10.8 ± 0.4 log10 genomic copy equivalent (GE)/mL] at 6-10 dpi and lasted for 30 ± 4 days (Lu et al., 2016). These observations are similar to the pathogenesis of bovine nebovirus, an enteric calicivirus belonging to the Nebovirus genus, that replicated in the proximal portion of the small intestine of calves (Hall et al., 1984; Smiley et al., 2002).

The 13th passage of porcine SaV Cowden strain from the LIC of a gnotobiotic pig was successfully isolated in primary porcine kidney cells (Flynn and Saif, 1988). For decades, PoSaV had been the only culturable enteric calicivirus until the successful cultivation of human noroviruses in B cells in 2014 and in intestinal stem cell-derived human enteroids in 2016 (Ettayebi et al., 2016; Jones et al., 2014). Interestingly, initial adaptation of PoSaV in primary porcine kidney cells and the subsequent adaptation in LLC-PK, a continuous swine kidney epithelial cell line, required the supplementation of intestinal contents collected from mock-infected gnotobiotic pigs (Flynn and Saif, 1988; Parwani et al., 1991). Later, the essential components in the intestinal contents for PoSaV replication were identified as bile acids (Chang et al., 2004). Several human NoVs were grown in enteroids, which occurred exclusively when the culture medium was supplemented with bile or bile acids (Ettayebi et al., 2016). Bile acids are synthesized in the liver, released with bile into the duodenal lumen, and most of them are recycled back into the liver in the ileum. So, the concentration of bile acids is much higher in the proximal intestine than in other organs and this may be one of the restriction factors for PoSaV replication mainly in duodenum.

Using the LLC-PK cell culture system, α2,3- and α2,6-linked terminal sialic acids on O-linked glycoproteins have been identified as the binding receptor for porcine SaV Cowden strain (Kim et al., 2014). In the same study, it was also confirmed that these sialic acids are the binding receptor on piglet small intestinal tissues. Recently, the same group found that the tight junction (TJ) protein occludin is a functional receptor for porcine SaV in LLC-PK cells (Alfajaro et al., 2019). The binding of porcine SaV or virus-like particles or bile acids alone to LLC-PK cells caused the dissociation of TJs and exposed occludin for PoSaV binding. Then SaV and occludin form a complex and move to late endosomes via Rab5- and Rab7-dependent trafficking to start replication. The fact that more than one receptor is involved in SaV binding and entry is similar to findings for some other caliciviruses. Feline calicivirus (FCV) F9 strain uses a2,6-linked sialic acids on an N-linked glycoprotein as binding factors (Stuart and Brown, 2007) and junctional adhesion molecule 1 (JAM-1) for virus entry into cells (Makino et al., 2006). Some murine noroviruses use sialic acid linked to ganglioside (CW3 like strains) or protein (CR3 strain) (Taube et al., 2009) for binding and protein receptors CD300lf and/or CD300ld for entry (Haga et al., 2016; Orchard et al., 2016).

Taken together, cellular receptors (α2,3- and α2,6-linked sialic acids on O-linked glycoproteins and occludin) and bile acids are some of the restriction factors of porcine SaV replication in the proximal small intestine. It may also explain why porcine SaV Cowden strain did not replicate in other organs when piglets were inoculated intravenously (IV) with the virus (Guo et al., 2001).

3. Epidemiology

To date, porcine SaVs have been detected in the fecal samples of domestic pigs with and without diarrhea worldwide and of wild boars without diarrhea in Japan (Table 1 ). Pigs in all growing stages can be infected with porcine SaVs; however, pigs are infected with SaVs early in life and post weaning pigs have higher SaV infection rates than other age groups (Barry et al., 2008; Jeong et al., 2007; Reuter et al., 2010; Valente et al., 2016; Wang, Q.H. et al., 2006a). This can be explained by lactogenic immunity in nursing pigs and environmental factors (Valente et al., 2016). Suckling piglets are protected passively by maternal antibodies against SaVs until weaning and post weaning pigs become susceptible to SaV infections when maternal antibodies decline (Alcalá et al., 2010; Barry et al., 2008; Martínez et al., 2006). On the other hand, nutritional, environmental and social changes during the post-weaning period add significant stress on these animals (Valente et al., 2016). Although porcine SaVs induced diarrhea and intestinal lesions in experimentally inoculated gnotobiotic piglets (Guo et al., 2001; Flynn et al., 1988; Lu et al., 2016), there were no significant differences in the prevalence of SaVs between the same age groups of pigs with diarrhea and without diarrhea in the field (Table 1). Currently, GIII is the predominant genogroup of porcine SaVs (Table 1). As GVI-GXI genogroups have been proposed relatively recently, the prevalence of these genogroups have not yet been determined.

Table 1.

Sapovirus detection from pigs and wild boars.

Country Animals (growing stage) Detection method (region) Diarrhea (Yes/No) Detection rate (positive/total samples) Genogroup Co-detected viruses References
Belgium pig (young - adult) RT-PCR (RdRp) NA 11.6% (5/43) GIII, GVII, G? (GVII) NA Mauroy et al., 2008.
Brazil pig (≤ 28 days old) RT-PCR (RdRp) Yes 20.8% (17/82) GIII, GVIII? NA Barry et al., 2008.
No 35.5% (11/31)
Brazil pis (nursing - breeding) RT-PCR (RdRp, ORF2) Yes 6.9% (2/29) GIII, GVII, G? (GXI) NA Cunha et al., 2010.
No 10.3% (24/232)
Brazil pig (≤ 56 days old) RT-PCR (RdRp) Yes 14.7% (11/75) GIII, GVII, GVIII NA das Merces Hernandez et al., 2014.
No 10.6% (10/94)
Brazil pig (farrow to finish) RT-PCR (RdRp) No 23.7% (40/169) GIII, GIX (?) NA Valente et al., 2016.
Canada pig (<4 - over 12 weeks) RT-PCR (RdRp) NA NA GIII, GVI, GVII, G? (GVII), GVIII NA L’Homme et al., 2009.
Canada pig (NA) RT-PCR (RdRp, ORF2) NA NA GIII, G? (GVII) NA L’Homme et al., 2010.
China pig (<1 to >3 months) RT-PCR (RdRp) NA 0.9% (8/904) GIII NA Shen et al., 2009.
China pig (piglet - sow) RT-PCR (RdRp) No 1.0% (2/209) GIII NA Shen et al., 2011.
China pig (weaning) RT-PCR (RdRp-VP1) Yes 14.4% (22/153) GIII NA Liu et al., 2012a.
China pig (suckling) RT-PCR (RdRp) Yes 6.9% (7/101) GIII NA Liu et al., 2014b.
China pig (NA) RT-PCR (complete genome) Yes NA GIII NA Liu et al., 2014a.
China pig (20-30 days old) RT-PCR (RdRp-VP1), NGS Yes 33.3 % (9/27) NA porcine bocavirus, porcine stool-associated single-stranded DNA virus, picobirnavirus, coronavirus, porcine astrovirus, porcine kobuvirus, enterovirus G, posavirus, sapelovirus, porcine torovirus, porcine epidemic diarrhea virus Zhang et al., 2014.
No 17.2 % (5/29) porcine astrovirus, porcine kobuvirus, enterovirus G, posavirus, sapelovirus, porcine torovirus, porcine epidemic diarrhea virus
China pig (1 month old) RT-PCR (RdRp) Yes 3.4% (5/146) GIII, GVI NA Jun et al., 2016.
China pig (15 days old) RT-PCR (complete genome) Yes NA GIII NA Li et al., 2017.
China pig (42 and 75 days old) NGS Yes NA GIII, GVII NA Li et al., 2018.
Czech Republic pig (nursing - sow) RT-PCR (ORF2) No 10.2% (20/196) GIII NA Dufkova et al., 2013.
Denmark, Finland, Hungary, Italy, Slovenia, Spain pig (< 1 year) RT-PCR (RdRp) Yes and No (Denmark, Spain), No (Finland, Hungary, Italy, Slovenia) 11.1% (117/1050) GIII, GVI, GVII, GVIII, GIX?, GX? NA Reuter et al., 2010.
Ethiopia pig (nursing - sow) RT-PCR (RdRp) nursing (Yes) NA GIII NA Sisay et al., 2016.
Hungary pig (1 - 12 days old) RT-PCR (RdRp) Yes 33.3% (2/6) G? (GIII) NA Reuter et al., 2007.
pig (4 days - 6 months old) No 9.1% (1/11) G? (GIII)
Ireland pig (4–5 to 8–9 weeks old) RT-PCR (RdRp) No 2.4% (7/292) GIII, GVII NA Collins et al., 2009.
Italy pig (1 - 3 months old) RT-PCR (RdRp) Yes 32.5% (68/209) GIII, G? (GVII?, GVIII) NA Martella et al., 2008.
Italy* pig (12 days & 1-3 months old) RT-PCR (RdRp) Yes 20.2% (18/89) GIII, GVII, GVIII, GIX(?), GX (?) NA Di Bartolo et al., 2014.
pig (3-4 & 11-12 months old) No 7.0% (14/201)
Japan pig (suckling - weaning) RT-PCR (RdRp) Yes 12.3% (33/269) NA Rotavirus, Escherichia coli, coccidia, Cryptosporidium parvum Katsuda et al., 2006.
Japan pig (less than 5 months) RT-PCR (RdRp) Yes 37.5% (6/16) K7, K10 (GVII); K8, K11, K13 (G?); NA Yin et al., 2006.
No 50% (4/8) K16, K15, K19, K24 (G?)
Japan pig (finisher) RT-PCR (RdRp, ORF2) No 23.3% (56/240) GIII, GV, GVII, GVIII?, (GVII), G? (GVIII) NA Nakamura et al., 2010.
Japan pig (2-120 days old) NGS No NA GIII, GV, GVI, GVII, GVIII, GX, GXI rotavirus A, B, C, porcine astrovirus, porcine kobuvirus, enterovirus G, picobirnavirus, posavirus, sapelovirus, porcine picornavirus Japan, teschovirus Kuroda et al., 2017.
Japan wild boar (4-7 months) NGS No 12.5% (6/48) GIII, GV, GVI porcine kobuvirus, porcine astrovirus 2, 4 Katsuta et al., 2019.
Korea Pig (sucking - weaned) RT-PCR (ORF2) Yes 8.8% (9/102) NA NA Kim et al., 2006.
Korea pig (3 - 70 days old) RT-PCR (RdRp, ORF2) Yes 29.1% (69/237) GIII NA Jeong et al., 2007.
Korea pig (2-3 months old) RT-PCR (RdRp) NA 22.6% (12/53) GIII NA Yu et al., 2008.
Korea pig (nursing - finisher) RT-PCR (ORF2) Yes 10.9% (19/175) GIII NA Keum et al., 2009.
No 11.3% (41/362)
Korea pig (NA) RT-PCR (RdRp) NA 6.5% (37/567) GIII, GVII? NA Song et al., 2011.
Slovakia pig (suckling - fattening) RT-PCR (ORF2) Yes 10% (16/160) GIII NA Salamunova et al., 2018.
No 8.4% (21/251)
Slovenia pig (suckling - fattening) RT-PCR (RdRp) No 7.1% (29/406) GIII, GVII, GVIII, GIX? NA Mijovski et al., 2010.
Spain pig (neonatal) NGS Yes 21.3% (10/47) GIII rotavirus A, B, C, porcine kobuvirus, porcine astrovirus 3, 4, 5, porcine epidemic diarrhea virus Cortey et al., 2019.
No 25% (1/4) porcine kobuvirus
Taiwan pig (suckling - fattening) RT-PCR (RdRp) No 0.57% (5/863) GIII NA Chao et al., 2012.
United States pig (suckling - sow) RT-PCR (RdRp) No or Yes 62.6% (389/621) GIII NA Wang et al., 2006a.
RT-PCR and microwell hybridization 0.64% (4/621) GVI/JJ681-like
0.81% (5/621) GVIII?/QW19-like
5.2% (32/621) GVII/LL26-like
United State pig (finisher) RT-PCR (RdRp, ORF2) No 5.1% (17/335) GIII, GVII, GVIII, GIX? NA Scheuer et al., 2013.
United States pig (NA) NGS Yes 13% (28/217) GIII porcine epidemic diarrhea virus Chen et al., 2018.
United States pig (10 days old - finishing) NGS Yes NA GIII, GVI rotavirus A, C, porcine kobuvirus, porcine astrovirus, porcine epidemic diarrhea virus, enterovirus G, porcine deltacoronavirus Wang et al., 2019.
Venezuela pig (0-9 weeks of age) RT-PCR (RdRp) ** Yes 14.3% (9/63) NA NA Martínez et al., 2006.
No 19.1% (27/141)

RdRp: RNA-dependent RNA polymerase.

NA: not available.

*Although the prevalence between diarrheic and clinically healthy pigs differed significantly in this study, pig ages were also different.

**The calicivirus universal primers (primers 289/290) were used for RT-PCR. Because this primer pair is not specific for porcine SaV and the PCR products of the 36 positive samples were not sequenced, these positive samples may include other porcine caliciviruses than porcine SaVs.

Another significant finding is that SaVs often co-infect pigs with other enteric pathogens. Groups A, B, and C rotaviruses, porcine kobuvirus, porcine astrovirus, porcine epidemic diarrhea virus, enterovirus G, porcine deltacoronavirus, picobirnavirus, posavirus, sapelovirus, porcine picornavirus Japan, teschovirus, porcine bocavirus, porcine stool-associated single-stranded DNA virus, porcine torovirus, Escherichia coli, coccidia, and Cryptosporidium parvum have been simultaneously detected from SaV-infected pigs or wild boars (Chen et al., 2018; Cortey et al., 2019; Katsuda et al., 2006; Katsuta et al., 2019; Kuroda et al., 2017; Wang et al., 2019; Zhang et al., 2014) (Table 1).

4. Classification

Sapoviruses have been identified from many species of mammals, including humans, pigs, mink, dogs, sea lions, bats, chimpanzees, and rats (Oka et al., 2016) (Table 2 ). They are not classified based on the host species but genetic heterogeneity. Previously, partial RdRp or partial VP1 regions were used for virus characterization and epidemiological surveillance of field isolates (Oka et al., 2015). However, several studies reported inconsistent genetic grouping between RdRp and VP1 region sequences due to the consequence of recombination events (Hansman et al., 2005; Kuroda et al., 2017; Wang et al., 2005). Therefore, a standard SaV classification scheme was desired. The VP1 region is more diverse than the RdRp region and different genetic groups based on VP1 sequences correlate with virus antigenicity (Hansman et al., 2007; Lauritsen et al., 2015). Similar to noroviruses, it is recommended to classify SaVs based on at least the VP1 region if the entire genomes are not available (Oka et al., 2012; Zheng et al., 2006). The International Calicivirus Conference Committee proposed that at least the entire VP1 sequence is required to designate novel genogroups or genotypes. At present, SaVs are classified into 19 genogroups (G) and at least 52 genotypes based on complete VP1 sequences using a pairwise distance cut-off value of ≤ 0.488 to distinguish different genogroups and ≤ 0.169 to distinguish different genotypes (Oka et al., 2015). Porcine and wild boar SaVs are classified into eight genogroups and 21 genotypes (GIII, GV.3, GV.5, GVI.1-3, GVII.1-6, GVIII.1-2, GIX.1-2, GX.1-2, GXI.1-3) (Li et al. 2018). By December 2019, 26 complete porcine SaV genomes (11 GIII, 4 GV, 3 GVI, 3 VII, 1 GVIII, 2 GX, and 2 GXI) were available in DDBJ/EMBL/GenBank databases. The complete genome of a GIX SaV has not been reported.

Table 2.

Complete genome characterisation of sapoviruses.

graphic file with name fx1_lrg.gif

Genogroup and genotype analyses are important for epidemiological studies and an understanding of the evolution of porcine SaVs. Porcine GV SaVs are genetically closely related to human GV SaVs; however, porcine GV strains branch into GV.3 and GV.5 genotypes apart from human GV.1-2. Zoonotic transmission of the same genotype of SaV between pigs and humans has not been reported. Porcine SaVs GVI, GVII, GX, and GXI share more common genomic features than other genogroups of SaVs: 1) Their genome lengths (7124-7201 nt) are shorter than those of the other genogroups of human and animal SaVs (7320-7695 nt), including GIII, GV, and GVIII porcine SaVs (7320-7498 nt); 2) Their ORF1 amino acid (aa) lengths (2198-2218 aa) are shorter than those of other SaVs (2254-2301 aa); and 3) They share a common amino acid motif at the beginning of ORF1 protein, MxAxCxHxxC. Furthermore, phylogenetic analyses using nucleotide sequences of complete genomes and VP1 sequences show that GVI, GVII, GIX, GX, and GXI strains form a unique clade consisting of only porcine and wild boar SaVs and they are distantly related to other porcine SaVs (GIII, GV, and GVIII) in both trees, suggesting that these porcine SaVs possess a common ancestor and are distantly related to other SaVs in the porcine population (Fig. 1 ). Although the end of VP2 of porcine SaVs as well as other SaVs is highly variable (Table 2), neither deletion nor insertion in the region, like that of the S INDEL strains of porcine epidemic diarrhea virus, is reported.

Fig. 1.

Fig. 1

Phylogenetic trees of sapoviruses (SaVs). The trees were constructed based on the nucleotide (nt) sequences of the complete genome (A) or the complete VP1 amino acid sequences (B) of porcine/wild boar SaVs and SaVs from humans and the other animals from the DDBJ/EMBL/GenBank database. The phylogenetic tree was constructed using the maximum likelihood method of MEGA 7 (Kumar et al., 2016), and bootstrap values (1000 replicates) above 70% are shown. The bar represents a corrected genetic distance. The red circles indicate porcine/wild boar SaV clade consisting of five genogroups of SaVs (GVI, GVII, GIX, GX, and GXI).

5. Diagnosis

The diagnosis of SaV infection depends on the laboratory detection of viral antigens, virus-specific antibodies and viral nucleic acids because no typical clinical signs are SaV-specific. Electron microscopy and IEM can be used to detect porcine SaV particles in the feces of pigs. IFA and antigen-ELISA with virus-specific hyperimmune antisera has been developed to detect GIII Cowden capsid proteins in experimentally infected pigs (Guo et al., 2001). Only GIII SaVs have been adapted to cell culture, so the attempts to isolate other SaVs in cell culture for diagnostic purposes are not practical. Antibodies against porcine SaVs could be detected in the SaV-infected pig serum samples using GIII SaV-specific VP1-ELISA (Jun et al., 2016; Liu et al., 2012b; Liu et al., 2014a) or recombinant porcine SaV viral-like particle ELISA (Alcalá et al., 2010; Lu et al., 2016). However, the sensitivity of the above assays is lower than the detection methods targeting viral nucleic acids (Oka et al., 2015).

Currently, conventional or real-time RT-PCR are the most widely used routine laboratory diagnostic assays for the detection of porcine SaVs from fecal samples, with the advantages of specificity, high sensitivity, broad reactivity, and convenience. Many primers used for the screening of porcine SaVs have been designed (Table 3 ). Almost all primers are designed targeting the partial RdRp region, which presents conserved motifs that are useful for molecular diagnosis of genetically highly diverse SaVs (Ding et al., 2019; Farkas et al., 2004; Guo et al., 2001; Jiang et al., 1999; Kim et al., 2006; Le Guyader et al., 1996; Shen et al., 2009; Sisay et al., 2013; Song et al., 2011; Vinjé et al., 2000; Wang et al., 2006b, Wang et al., 2012). RdRp-capsid junction region (Liu et al., 2012a; Sisay et al., 2013) and partial capsid region (Jiang et al., 2019; Kim et al., 2006) are also employed for porcine SaV detection.

Table 3.

Primer combinations used for screening of porcine sapoviruses.

Primer Name Sequence (5' to 3') Function* Location in genome Strain Accession number Reference
p290** GAT TAC TCC AAG TGG GAC TCC AC Forward 4327–4349 GIII/Cowden AF182760 Jiang et al., 1999.
p110** DAC DAT YTC ATC ATC ACC ATA Reverse 4674-4654 Le Guyader et al., 1996.
p290** GAT TAC TCC AAG TGG GAC TCC AC Forward 4327-4349 GIII/Cowden AF182760 Jiang et al., 1999
p289** TGA CAA TGT AAT CAT CAC CAT A Reverse 4657-4636
p290h** GAT TAC TCC AGG TGG GAC TCC AC Forward 4327-4349 GIII/Cowden AF182760 Farkas et al., 2004.
p290i** GAT TAC TCC AGG TGG GAC TCA AC Forward 4327-4349
p290j** GAT TAC TCC AGG TGG GAT TCA AC Forward 4327-4349
p290k** GAT TAC TCC AGG TGG GAT TCC AC Forward 4327-4349
p289h** TGA CGA TTT CAT CAT CAC CAT A Reverse 4657-4636
p289i** TGA CGA TTT CAT CAT CCC CGT A Reverse 4657-4636
SR80 TGG GAT TCT ACA CAA AAC CC Forward 4339-4358 GIII/Cowden AF182760 Vinjé et al., 2000.
JV33 GTG TAN ATG CAR TCA TCA CC Reverse 4658-4639
PEC46 GTG CTC TAT TGC CTG GAC TA Forward 4312–4331 GIII/Cowden AF182760 Guo et al., 2001
PEC45 TCT GTG GTG CGG TTA GCC TT Reverse 4883–4864
PEC66 GAC TAC AGC AAG TGG GAT TCC Forward 4327–4347 GIII/Cowden AF182760 Guo et al., 2001
PEC65 ATA CAC ACA ATC ATC CCC GTA Reverse 4656–4636
nF CTC GTA TGC TGA GGA CAC AC Forward 4392–4411 GIII/Cowden AF182760 Kim et al., 2006.
nR GAG TGT CTG TTG GCT CAA TG Reverse 4771 − 4752
CapsidF GTG ATC AAC CCT TTT GAA AC first, forward 5698–5717 GIII/Cowden AF182760 Kim et al., 2006
PECVcapsidF CTC GTC ATA GTA GGT GTG GC second, forward 5890–5909
CapsidR/PECV
capsidR
AAA GCA TGA TGT TGT TAG GC first and second reverse 6454-6435
SaV1 GAT TAC TCC AGG TGG GAY TCM AC Forward 4327-4349 GIII/Cowden AF182760 Shen et al., 2009
SaV2 TGA CGA TTT CAT CAT CMC CRT A Reverse 4657-4636
SaVR1 TGA CAA TGT AAT CAT CAC CAT A Reverse 4657-4636
SaVR2 TGA CGA TTT CAT CAT CAC CAT A Reverse 4657-4636
SaVR3 TGA CGA TTT CAT CAT CCC CGT A Reverse 4657-4636
No name GAT TAC TCC AGT GGA YTC MAC Forward 4327-4349 GIII/Cowden AF182760 Song et al., 2011
No name TGA CGA TTT CAT CAT CMC CRT A Reverse 4657-4636
SaVFp ACA CCT ACT GGG TGA TGA TTG TGT G Forward 4629-4653 GIII/Cowden AF182760 Liu et al., 2012a; Liu et al., 2012b.
SaVRp TGA GTG CCC TCT GGG TTG CTC G Reverse 5192-5171
No name GAA GAT GAA GAG CCA GAA GT Forward 5113-5132 GIII/Cowden AF182760 Zhang et al. 2014
No name CCA TCG AGT TTC TCC ACC Reverse 5641-5624
PSaV-F TAC AGC AAG TGG GAC Forward 4330–4344 GIII/Cowden AF182760 Ding et al., 2019
PSaV-R ATG ACA CTG GTG AAC GGC AT Reverse 4526-4507
SaV-F TAC GGG GGA ATA GGT TT Forward 5855-5871 GIII/Cowden AF182760 Jiang et al., 2019
SaV-R CAG CCA CAT CTG GGT AGT Reverse 6100-6083
PEC68 CCG CTA TAA ATT TAT TGG GTG Forward 4260-4280 GVI/OH-JJ674 KJ508818 Wang et al., 2006
PEC67 ACG GGA CCC CAT ATT TTT GG Reverse 4484-4465
SaV XF*** ATA TGA TGA GGG CTT TTG GCA T Forward 4587-4608 GVI/OH-JJ674 KJ508818 Sisay et al., 2013
SaV XR*** CCC CTC CAT GAC ATA CAC TAC TG Reverse 5011-4989
PSV11 CAC CCA GAG GTG ATT TCA ACA GCA Forward 4207-4230 GVII/RV0042 KX000384 Wang et al., 2006
PSV14 TTC TGC GTA ACA CTG GAG CAC ACA Reverse 4437–4414
PSV11M CAC CCR GAG GGG ATC WCA Forward 4207-4224 GVII/RV0042 KX000384 Sisay et al., 2013
PSV14M TAA CAV TSV AGC ACA CAA CAT G Reverse 4430-4409

*Primers used for semi-nested RT-PCR are indicated as first and second.

**These primers are universal primers for calicivirus, but not PoSaV-specific. So, their RT-PCR products should be sequenced for confirmation.

***These primers Also detected porcine kobuvirus.

The advances in the metagenomic field have permitted the detection of porcine SaV sequences in the fecal samples by deep sequencing or next generation sequencing (NGS) (Chen et al., 2018; Cortey et al., 2019; Katsuta et al., 2019; Li et al., 2018; Wang et al., 2019; Zhang et al., 2014). These technologies have facilitated the classification based on entire genomes and the discovery of new genotypes of SaVs (Katsuta et al., 2019; Kuroda et al., 2017). These approaches may be adopted for routine laboratory diagnosis when the cost of those assays is comparable to those of conventional or real-time RT-PCR assays. However, deep sequencing cannot discover complete novel viral sequences because it needs a template to assemble the short sequence fragments. On the other hand, Sanger-sequencing of RT-PCR products amplified using calicivirus universal primers targeting the most conserved regions, such as RdRp, has the advantage of identifying new calicivirus sequences (Wang et a., 2005; Yin et al., 2006; Martella et al., 2008; L’Homme et al., 2009; Song et al., 2011; Scheuer et al., 2013; Oka et al., 2016; Kuroda et al., 2017).

6. Conclusions

Porcine SaVs are a group of genetically diverse viruses detected from pigs and wild boars worldwide. Although the first porcine SaV was detected four decades ago, their role in causing pig diarrhea in the field remains undetermined. To date, only the pathogenesis of GIII porcine SaV Cowden strain was studied in gnotobiotic pigs. The clinical outcome of co-infection with porcine SaV and other common enteric viruses and the pathogenesis studies of other genogroups of porcine SaVs need to be performed to evaluate whether vaccine development is necessary. There are still no cell culture systems for most porcine SaVs, except for GIII Cowden strain. Other questions include whether genogroups/genotypes correlate with serotypes and whether cross-reactivities exist among genogroups/genotypes.

CRediT authorship contribution statement

Makoto Nagai: Writing - original draft, Visualization. Qiuhong Wang: Conceptualization, Writing - original draft, Writing - review & editing. Tomoichiro Oka: Writing- review & editing. Linda J. Saif: Writing - review & editing.

Acknowledgements

Salaries and research support for QW and LJS were provided by state and federal funds appropriated to The Ohio Agricultural Research and Development Center, College of Food, Agricultural, and Environmental Sciences, The Ohio State University.

Footnotes

Appendix A

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.virusres.2020.198025.

Appendix A. Supplementary data

The following is Supplementary data to this article:

mmc1.zip (377B, zip)

References

  1. Alcalá A.C., Rodríguez-Díaz J., de Rolo M., Vizzi E., Buesa J., Liprandi F., Ludert J.E. Seroepidemiology of porcine enteric sapovirus in pig farms in Venezuela. Vet. Immuno. Immunopathol. 2010;137:269–274. doi: 10.1016/j.vetimm.2010.06.005. [DOI] [PubMed] [Google Scholar]
  2. Alfajaro M.M., Cho E.H., Kim D.S., Kim J.Y., Park J.G., Soliman M., Baek Y.B., Park C.H., Kang M.I., Park S.I., Cho K.O. Early porcine Sapovirus infection disrupts tight junctions and uses occludin as a Coreceptor. J. Virol. 5. 2019;93(4) doi: 10.1128/JVI.01773-18. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Alhatlani B., Vashist S., Goodfellow I. Functions of the 5′ and 3′ ends of calicivirus genomes. Virus Res. 2015;206:134–143. doi: 10.1016/j.virusres.2015.02.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barry A.F., Alfieri A.F., Alfieri A.A. High genetic diversity in RdRp gene of Brazilian porcine sapovirus strains. Vet. Microbiol. 2008;131:185–191. doi: 10.1016/j.vetmic.2008.02.021. [DOI] [PubMed] [Google Scholar]
  5. Chang K.O., Sosnovtsev S.V., Belliot G., Kim Y., Saif L.J., Green K.Y. Bile acids are essential for porcine enteric calicivirus replication in association with down-regulation of signal transducer and activator of transcription 1. Proc Natl. Acad. Sci. USA. 2004;101:8733–8738. doi: 10.1073/pnas.0401126101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chao D.Y., Wei J.Y., Chang W.F., Wang J., Wang L.C. Detection of multiple genotypes of calicivirus infection in asymptomatic swine in Taiwan. Zoonoses Public Health. 2012;59:434–444. doi: 10.1111/j.1863-2378.2012.01483.x. [DOI] [PubMed] [Google Scholar]
  7. Chen Q., Wang L., Zheng Y., Zhang J., Guo B., Yoon K.J., Gauger P.C., Harmon K.M., Main R.G., Li G. Metagenomic analysis of the RNA fraction of the fecal virome indicates high diversity in pigs infected by porcine endemic diarrhea virus in the United States. Virol J. 25. 2018;15(1):95. doi: 10.1186/s12985-018-1001-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Collins P.J., Martella V., Buonavoglia C., O’Shea H. Detection and characterization of porcine sapoviruses from asymptomatic animals in Irish farms. Vet Microbiol. 2009;139:176–182. doi: 10.1016/j.vetmic.2009.05.013. [DOI] [PubMed] [Google Scholar]
  9. Cortey M., Díaz I., Vidal A., Martín-Valls G., Franzo G., Gómez de Nova P.J., Darwich L., Puente H., Carvajal A., Martín M., Mateu E. High levels of unreported intraspecific diversity among RNA viruses in faeces of neonatal piglets with diarrhoea. BMC Vet. Res. 5. 2019;15(1):441. doi: 10.1186/s12917-019-2204-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cunha J.B., de Mendonça M.C., Miagostovich M.P., Leite J.P. Genetic diversity of porcine enteric caliciviruses in pigs raised in Rio de Janeiro State, Brazil. Arch. Virol. 2010;155:1301–1305. doi: 10.1007/s00705-010-0695-z. [DOI] [PubMed] [Google Scholar]
  11. das Merces Hernandez J., Stangarlin D.C., Siqueira J.A., de Souza Oliveira D., Portal T.M., Barry A.F., Dias F.A., de Matos J.C., Mascarenhas J.D., Gabbay Y.B. Genetic diversity of porcine sapoviruses in pigs from the Amazon region of Brazil. Arch. Virol. 2014;159:927–933. doi: 10.1007/s00705-013-1904-3. [DOI] [PubMed] [Google Scholar]
  12. Di Bartolo I., Tofani S., Angeloni G., Ponterio E., Ostanello F., Ruggeri F.M. Detection and characterization of porcine caliciviruses in Italy. Arch. Virol. 2014;159:2479–2484. doi: 10.1007/s00705-014-2076-5. [DOI] [PubMed] [Google Scholar]
  13. Ding G., Fu Y., Li B., Chen J., Wang J., Yin B., Sha W., Liu G. Development of a multiplex RT-PCR for the detection of major diarrhoeal viruses in pig herds in China. Transbound Emerg. Dis. 2019;2019(Oct 9) doi: 10.1111/tbed.13385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dufkova L., Scigalkova I., Moutelikova R., Malenovska H., Prodelalova J. Genetic diversity of porcine sapoviruses, kobuviruses, and astroviruses in asymptomatic pigs: an emerging new sapovirus GIII genotype. Arch. Virol. 2013;158:549–558. doi: 10.1007/s00705-012-1528-z. [DOI] [PubMed] [Google Scholar]
  15. Ettayebi K., Crawford S.E., Murakami K., Broughman J.R., Karandikar U., Tenge V.R., Neill F.H., Blutt S.E., Zeng X.L., Qu L., Kou B., Opekun A.R., Burrin D., Graham D.Y., Ramani S., Atmar R.L., Estes M.K. Replication of human noroviruses in stem cell-derived human enteroids. Science. 2016;353:1387–1393. doi: 10.1126/science.aaf5211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Farkas T., Zhong W.M., Jing Y., Huang P.W., Espinosa S.M., Martinez N., Morrow A.L., Ruiz-Palacios G.M., Pickering L.K., Jiang X. Genetic diversity among sapoviruses. Arch. Virol. 2004;149:1309–1323. doi: 10.1007/s00705-004-0296-9. [DOI] [PubMed] [Google Scholar]
  17. Flynn W.T., Saif L.J. Serial propagation of porcine enteric calicivirus-like virus in primary porcine kidney cell cultures. J. Clin. Microbiol. 1988;26:206–212. doi: 10.1128/jcm.26.2.206-212.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Flynn W.T., Saif L.J., Moorhead P.D. Pathogenesis of porcine enteric calicivirus-like virus in four-day-old gnotobiotic pigs. Am. J. Vet. Res. 1988;49:819–825. [PubMed] [Google Scholar]
  19. Guo M., Chang K.O., Hardy M.E., Zhang Q., Parwani A.V., Saif L.J. Molecular characterization of a porcine enteric calicivirus genetically related to Sapporo-like human caliciviruses. J. Virol. 1999;73:9625–9631. doi: 10.1128/jvi.73.11.9625-9631.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Guo M., Hayes J., Cho K.O., Parwani A.V., Lucas L.M., Saif L.J. Comparative pathogenesis of tissue cultureadapted and wild-type Cowden porcine enteric calicivirus (PEC) in gnotobiotic pigs and induction of diarrhea by intravenous inoculation of wild-type PEC. J. Virol. 2001;75:9239–9251. doi: 10.1128/JVI.75.19.9239-9251.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Haga K., Fujimoto A., Takai-Todaka R., Miki M., Doan Y.H., Murakami K., Yokoyama M., Murata K., Nakanishi A., Katayama K. Functional receptor molecules CD300lf and CD300ld within the CD300 family enable murine noroviruses to infect cells. Proc. Natl. Acad. Sci. USA. 2016;113:E6248–E6255. doi: 10.1073/pnas.1605575113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hall G.A., Bridger J.C., Brooker B.E., Parsons K.R., Ormerod E. Lesions of gnotobiotic calves experimentally infected with a calicivirus-like (Newbury) agent. Vet. Pathol. 1984;21:208–215. doi: 10.1177/030098588402100213. [DOI] [PubMed] [Google Scholar]
  23. Hansman G.S., Takeda N., Oka T., Oseto M., Hedlund K.O., Katayama K. Intergenogroup recombination in sapoviruses. Emerg. Infect. Dis. 2005;11:1916–1920. doi: 10.3201/eid1112.050722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hansman G.S., Oka T., Sakon N., Takeda N. Antigenic diversity of human sapoviruses. Emerg. Infect. Dis. 2007;13:1519–1525. doi: 10.3201/eid1310.070402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Jeong C., Park S.I., Park S.H., Kim H.H., Park S.J., Jeong J.H., Choy H.E., Saif L.J., Kim S.K., Kang M.I., Hyun B.H., Cho K.O. Genetic diversity of porcine sapoviruses. Vet. Microbiol. 2007;122:246–257. doi: 10.1016/j.vetmic.2007.02.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Jiang X., Huang P.W., Zhong W.M., Farkas T., Cubitt D.W., Matson D.O. Design and evaluation of a primer pair that detects both Norwalk- and Sapporo-like caliciviruses by RT-PCR. J. Virol. Methods. 1999;83:145–154. doi: 10.1016/s0166-0934(99)00114-7. [DOI] [PubMed] [Google Scholar]
  27. Jiang C., He H., Zhang C., Zhang X., Han J., Zhang H., Luo Y., Wu Y., Wang Y., Ge B., Xu J. One-step triplex reverse-transcription PCR detection of porcine epidemic diarrhea virus, porcine sapelovirus, and porcine sapovirus. J. Vet. Diagn. Invest. 2019;31:909–912. doi: 10.1177/1040638719883834. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Jones M.K., Watanabe M., Zhu S., Graves C.L., Keyes L.R., Grau K.R., Gonzalez-Hernandez M.B., Iovine N.M., Wobus C.E., Vinje J., Tibbetts S.A., Wallet S.M., Karst S.M. Enteric bacteria promote human and mouse norovirus infection of B cells. Science. 2014;346:755–759. doi: 10.1126/science.1257147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Jun Q., Lulu T., Qingling M., Xingxing Z., Haiting L., Shasha G., Zibing C., Xuepeng C., Jinsheng Z., Zaichao Z., Kuojun C., Chuangfu C. Serological and molecular investigation of porcine sapovirus infection in piglets in Xinjiang. China. Trop. Anim. Health Prod. 2016;48:863–869. doi: 10.1007/s11250-016-1023-8. [DOI] [PubMed] [Google Scholar]
  30. Katsuda K., Kohmoto M., Kawashima K., Tsunemitsu H. Frequency of enteropathogen detection in suckling and weaned pigs with diarrhea in Japan. J. Vet. Diagn. Invest. 2006;18:350–354. doi: 10.1177/104063870601800405. [DOI] [PubMed] [Google Scholar]
  31. Katsuta R., Sunaga F., Oi T., Doan Y.H., Tsuzuku S., Suzuki Y., Sano K., Katayama Y., Omatsu T., Oba M., Furuya T., Ouchi Y., Shirai J., Mizutani T., Oka T., Nagai M. First identification of Sapoviruses in wild boar. Virus. Res. 2019;2(271):197680. doi: 10.1016/j.virusres.2019.197680. [DOI] [PubMed] [Google Scholar]
  32. Keum H.O., Moon H.J., Park S.J., Kim H.K., Rho S.M., Park B.K. Porcine noroviruses and sapoviruses on Korean swine farms. Arch. Virol. 2009;154:1765–1774. doi: 10.1007/s00705-009-0501-y. [DOI] [PubMed] [Google Scholar]
  33. Kim D.S., Hosmillo M., Alfajaro M.M., Kim J.Y., Park J.G., Son K.Y., Ryu E.H., Sorgeloos F., Kwon H.J., Park S.J., Lee W.S., Cho D., Kwon J., Choi J.S., Kang M.I., Goodfellow I., Cho K.O. Both alpha2,3- and alpha2,6-Linked Sialic Acids on O-Linked Glycoproteins Act as Functional Receptors for Porcine Sapovirus. PLoS. Pathog. 2014;10 doi: 10.1371/journal.ppat.1004172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Kim H.J., Cho H.S., Cho K.O., Park N.Y. Detection and molecular characterization of porcine enteric calicivirus in Korea, genetically related to sapoviruses. J. Vet. Med. B. Infect. Dis. Vet. Public Health. 2006;53:155–159. doi: 10.1111/j.1439-0450.2006.00939.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Kumar S., Stecher G., Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016;33:1870–1874. doi: 10.1093/molbev/msw054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Kuroda M., Masuda T., Ito M., Naoi Y., Doan Y.H., Haga K., Tsuchiaka S., Kishimoto M., Sano K., Omatsu T., Katayama Y., Oba M., Aoki H., Ichimaru T., Sunaga F., Mukono I., Yamasato H., Shirai J., Katayama K., Mizutani T., Oka T., Nagai M. Genetic diversity and intergenogroup recombination events of sapoviruses detected from feces of pigs in Japan. Infect. Genet. Evol. 2017;55:209–217. doi: 10.1016/j.meegid.2017.09.013. [DOI] [PubMed] [Google Scholar]
  37. Lauritsen K.T., Hansen M.S., Johnsen C.K., Jungersen G., Böttiger B. Repeated examination of natural sapovirus infections in pig litters raised under experimental conditions. Acta. Vet. Scand. 2015;26(57):60. doi: 10.1186/s13028-015-0146-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. L’Homme Y., Brassard J., Ouardani M., Gagné M.J. Characterization of novel porcine sapoviruses. Arch. Virol. 2010;155:839–846. doi: 10.1007/s00705-010-0651-y. [DOI] [PubMed] [Google Scholar]
  39. L’Homme Y., Sansregret R., Plante-Fortier E., Lamontagne A.M., Lacroix G., Ouardani M. Genetic diversity of porcine Norovirus and Sapovirus: Canada, 2005-2007. Arch Virol. 2009;154:581–593. doi: 10.1007/s00705-009-0344-6. [DOI] [PubMed] [Google Scholar]
  40. Le Guyader F., Estes M.K., Hardy M.E., Neill F.H., Green J., Brown D.W., Atmar R.L. Evaluation of a degenerate primer for the PCR detection of human caliciviruses. Arch. Virol. 1996;141:2225–2235. doi: 10.1007/BF01718228. [DOI] [PubMed] [Google Scholar]
  41. Li J., Shen Q., Zhang W., Zhao T., Li Y., Jiang J., Yu X., Guo Z., Cui L., Hua X. Genomic organization and recombination analysis of a porcine sapovirus identified from a piglet with diarrhea in China. Virol. J. 2017;14(1):57. doi: 10.1186/s12985-017-0729-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Li J., Zhang W., Cui L., Shen Q., Hua X. Metagenomic identification, genetic characterization and genotyping of porcine sapoviruses. Infect. Genet. Evol. 2018;62:244–252. doi: 10.1016/j.meegid.2018.04.034. [DOI] [PubMed] [Google Scholar]
  43. Liu G.H., Li R.C., Huang Z.B., Yang J., Xiao C.T., Li J., Li M.X., Yan Y.Q., Yu X.L. RT-PCR test for detecting porcine sapovirus in weanling piglets in Hunan Province. China. Trop. Anim. Health Prod. 2012;44:1335–1339. doi: 10.1007/s11250-012-0138-9. [DOI] [PubMed] [Google Scholar]
  44. Liu G.H., Li R.C., Li J., Huang Z.B., Xiao C.T., Luo W., Ge M., Jiang D.L., Yu X.L. Seroprevalence of porcine cytomegalovirus and sapovirus infection in pigs in Hunan Province. China. Arch. Virol. 2012;157:521–524. doi: 10.1007/s00705-011-1189-3. [DOI] [PubMed] [Google Scholar]
  45. Liu W., Yang B., Wang E., Liu J., Lan X. Complete sequence and phylogenetic analysis of a porcine sapovirus strain isolated from western China. Virus Genes. 2014;49:100–105. doi: 10.1007/s11262-014-1078-4. [DOI] [PubMed] [Google Scholar]
  46. Liu Z.K., Li J.Y., Pan H. Seroprevalence and molecular detection of porcine sapovirus in symptomatic suckling piglets in Guangdong Province. China. Trop. Anim. Health Prod. 2014;46:583–587. doi: 10.1007/s11250-013-0531-z. [DOI] [PubMed] [Google Scholar]
  47. Lu Z., Yokoyama M., Chen N., Oka T., Jung K., Chang K.O., Annamalai T., Wang Q., Saif L.J. Mechanism of cell culture adaptation of an enteric calicivirus, porcine sapovirus Cowden strain. J. Virol. 2016;90:1345–1358. doi: 10.1128/JVI.02197-15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Makino A., Shimojima M., Miyazawa T., Kato K., Tohya Y., Akashi H. Junctional adhesion molecule 1 is a functional receptor for feline calicivirus. J. Virol. 2006;80:4482–4490. doi: 10.1128/JVI.80.9.4482-4490.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Martella V., Bányai K., Lorusso E., Bellacicco A.L., Decaro N., Mari V., Saif L., Costantini V., De Grazia S., Pezzotti G., Lavazza A., Buonavoglia C. Genetic heterogeneity of porcine enteric caliciviruses identified from diarrhoeic piglets. Virus Genes. 2008;36:365–373. doi: 10.1007/s11262-008-0198-0. [DOI] [PubMed] [Google Scholar]
  50. Martínez M.A., Alcalá A.C., Carruyo G., Botero L., Liprandi F., Ludert J.E. Molecular detection of porcine enteric caliciviruses in Venezuelan farms. Vet. Microbiol. 2006;216:77–84. doi: 10.1016/j.vetmic.2006.03.016. [DOI] [PubMed] [Google Scholar]
  51. Mauroy A., Scipioni A., Mathijs E., Miry C., Ziant D., Thys C., Thiry E. Noroviruses and sapoviruses in pigs in Belgium. Arch. Virol. 2008;153:1927–1931. doi: 10.1007/s00705-008-0189-4. [DOI] [PubMed] [Google Scholar]
  52. Mijovski J.Z., Poljsak-Prijatelj M., Steyer A., Barlic-Maganja D., Koren S. Detection and molecular characterisation of noroviruses and sapoviruses in asymptomatic swine and cattle in Slovenian farms. Infect. Genet. Evol. 2010;10:413–420. doi: 10.1016/j.meegid.2009.11.010. [DOI] [PubMed] [Google Scholar]
  53. Nakamura K., Saga Y., Iwai M., Obara M., Horimoto E., Hasegawa S., Kurata T., Okumura H., Nagoshi M., Takizawa T. Frequent detection of noroviruses and sapoviruses in swine and high genetic diversity of porcine sapovirus in Japan during Fiscal Year 2008. J. Clin. Microbiol. 2010;48:1215–1222. doi: 10.1128/JCM.02130-09. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Oka T., Mori K., Iritani N., Harada S., Ueki Y., Iizuka S., Mise K., Murakami K., Wakita T., Katayama K. Human sapovirus classification based on complete capsid nucleotide sequences. Arch. Virol. 2012;157:349–352. doi: 10.1007/s00705-011-1161-2. [DOI] [PubMed] [Google Scholar]
  55. Oka T., Wang Q., Katayama K., Saif L.J. Comprehensive review of human sapoviruses. Clin. Microbiol. Rev. 2015;28:32–53. doi: 10.1128/CMR.00011-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Oka T., Lu Z., Phan T., Delwart E.L., Saif L.J., Wang Q. Genetic characterization and classification of human and animal sapoviruses. PLoS ONE. 2016;11 doi: 10.1371/journal.pone.0156373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Orchard R.C., Wilen C.B., Doench J.G., Baldridge M.T., McCune B.T., Lee Y.C., Lee S., Pruett-Miller S.M., Nelson C.A., Fremont D.H., Virgin H.W. Discovery of a proteinaceous cellular receptor for a norovirus. Science. 2016;353:933–936. doi: 10.1126/science.aaf1220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Parwani A.V., Flynn W.T., Gadfield K.L., Saif L.J. Serial propagation of porcine enteric calicivirus in a continuous cell line. Effect of medium supplementation with intestinal contents or enzymes. Arch. Virol. 1991;120:115–122. doi: 10.1007/BF01310954. [DOI] [PubMed] [Google Scholar]
  59. Reuter G., Bíró H., Szucs G. Enteric caliciviruses in domestic pigs in Hungary. Arch. Virol. 2007;152:611–614. doi: 10.1007/s00705-006-0887-8. [DOI] [PubMed] [Google Scholar]
  60. Reuter G., Zimsek-Mijovski J., Poljsak-Prijatelj M., Di Bartolo I., Ruggeri F.M., Kantala T., Maunula L., Kiss I., Kecskeméti S., Halaihel N., Buesa J., Johnsen C., Hjulsager C.K., Larsen L.E., Koopmans M., Böttiger B. Incidence, diversity, and molecular epidemiology of Sapoviruses in swine across Europe. J. Clin. Microbiol. 2010;48:363–368. doi: 10.1128/JCM.01279-09. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Saif L.J., Bohl E.H., Theil K.W., Cross R.F., House J.A. Rotavirus-like, calicivirus-like, and 23-nm virus-like particles associated with diarrhea in young pigs. J. Clin. Microbiol. 1980;12:105–111. doi: 10.1128/jcm.12.1.105-111.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Salamunova S., Jackova A., Mandelik R., Novotny J., Vlasakova M., Vilcek S. Molecular detection of enteric viruses and the genetic characterization of porcine astroviruses and sapoviruses in domestic pigs from Slovakian farms. BMC Vet. Res. 2018;14(1):313. doi: 10.1186/s12917-018-1640-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Scheuer K.A., Oka T., Hoet A.E., Gebreyes W.A., Molla B.Z., Saif L.J., Wang Q. Prevalence of porcine noroviruses, molecular characterization of emerging porcine sapoviruses from finisher swine in the United States, and unified classification scheme for sapoviruses. J. Clin. Microbiol. 2013;51:2344–23453. doi: 10.1128/JCM.00865-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Shen Q., Ren R., Zhang W., Yang Z., Yang S., Chen Y., Cui L., Hua X. Prevalence of hepatitis E virus and porcine caliciviruses in pig farms of Guizhou province. China. Hepat. Mon. 2011;11:459–463. [PMC free article] [PubMed] [Google Scholar]
  65. Shen Q., Zhang W., Yang S., Chen Y., Ning H., Shan T., Liu J., Yang Z., Cui L., Zhu J., Hua X. Molecular detection and prevalence of porcine caliciviruses in eastern China from 2008 to 2009. Arch Virol. 2009;154:1625–1630. doi: 10.1007/s00705-009-0487-5. [DOI] [PubMed] [Google Scholar]
  66. Sisay Z., Wang Q., Oka T., Saif L. Prevalence and molecular characterization of porcine enteric caliciviruses and first detection of porcine kobuviruses in US swine. Arch. Virol. 2013;158:1583–1588. doi: 10.1007/s00705-013-1619-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Sisay Z., Djikeng A., Berhe N., Belay G., Abegaz W.E., Wang Q.H., Saif L.J. First detection and molecular characterization of sapoviruses and noroviruses with zoonotic potential in swine in Ethiopia. Arch. Virol. 2016;161:2739–2747. doi: 10.1007/s00705-016-2974-9. [DOI] [PubMed] [Google Scholar]
  68. Smiley J.R., Chang K.O., Hayes J., Vinje J., Saif L.J. Characterization of an enteropathogenic bovine calicivirus representing a potentially new calicivirus genus. J. Virol. 2002;76:10089–10098. doi: 10.1128/JVI.76.20.10089-10098.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Song Y.J., Yu J.N., Nam H.M., Bak H.R., Lee J.B., Park S.Y., Song C.S., Seo K.H., Choi I.S. Identification of genetic diversity of porcine Norovirus and Sapovirus in Korea. Virus Genes. 2011;42:394–401. doi: 10.1007/s11262-011-0588-6. [DOI] [PubMed] [Google Scholar]
  70. Stuart A.D., Brown T.D. Alpha2,6-linked sialic acid acts as a receptor for Feline calicivirus. J. Gen. Virol. 2007;88:177–186. doi: 10.1099/vir.0.82158-0. [DOI] [PubMed] [Google Scholar]
  71. Taube S., Perry J.W., Yetming K., Patel S.P., Auble H., Shu L., Nawar H.F., Lee C.H., Connell T.D., Shayman J.A., Wobus C.E. Ganglioside-linked terminal sialic acid moieties on murine macrophages function as attachment receptors for murine noroviruses. J. virol. 2009;83:4092–4101. doi: 10.1128/JVI.02245-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Valente C.S., Alfieri A.F., Barry A.F., Leme R.A., Lorenzetti E., Alfieri A.A. Age distribution of porcine sapovirus asymptomatic infection and molecular evidence of genogroups GIII and GIX? Circulation in distinct Brazilian pig production systems. Trop. Anim. Health Prod. 2016;48:21–27. doi: 10.1007/s11250-015-0912-6. [DOI] [PubMed] [Google Scholar]
  73. Vinjé J., Deijl H., van der Heide R., Lewis D., Hedlund K.O., Svensson L., Koopmans M.P. Molecular detection and epidemiology of Sapporo-like viruses. J. Clin. Microbiol. 2000;38:530–536. doi: 10.1128/jcm.38.2.530-536.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Wang L., Marthaler D., Fredrickson R., Gauger P.C., Zhang J., Burrough E.R., Petznick T., Li G. Genetically divergent porcine sapovirus identified in pigs, United States. Transbound Emerg. Dis. 2019;(Aug 28) doi: 10.1111/tbed.13337. [DOI] [PubMed] [Google Scholar]
  75. Wang Q.H., Han M.G., Funk J.A., Bowman G., Janies D.A., Saif L.J. Genetic diversity and recombination of porcine sapoviruses. J. Clin. Microbiol. 2005;43:5963–5972. doi: 10.1128/JCM.43.12.5963-5972.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Wang Q.H., Souza M., Funk J.A., Zhang W., Saif L.J. Prevalence of noroviruses and sapoviruses in swine of various ages determined by reverse transcription-PCR and microwell hybridization assays. J. Clin. Microbiol. 2006;44:2057–2062. doi: 10.1128/JCM.02634-05. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Wang Q.H., Chang K.O., Han M.G., Sreevatsan S., Saif L.J. Development of a new microwell hybridization assay and an internal control RNA for the detection of porcine noroviruses and sapoviruses by reverse transcription-PCR. J. Virol. Methods. 2006;132:135–145. doi: 10.1016/j.jviromet.2005.10.003. [DOI] [PubMed] [Google Scholar]
  78. Wang Q., Zhang Z., Saif L.J. Stability of and attachment to lettuce by a culturable porcine sapovirus surrogate for human caliciviruses. Appl. Environ. Microbiol. 2012;78:3932–3940. doi: 10.1128/AEM.06600-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Yin Y., Tohya Y., Ogawa Y., Numazawa D., Kato K., Akashi H. Genetic analysis of calicivirus genomes detected in intestinal contents of piglets in Japan. Arch. Virol. 2006;151:1749–1759. doi: 10.1007/s00705-006-0750-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Yinda C.K., Conceição-Neto N., Zeller M., Heylen E., Maes P., Ghogomu S.M., Van Ranst M., Matthijnssens J. Novel highly divergent sapoviruses detected by metagenomics analysis in straw-colored fruit bats in Cameroon. Emerg. Microbes Infect. 2017;24(65):e38. doi: 10.1038/emi.2017.20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Yu J.N., Kim M.Y., Kim D.G., Kim S.E., Lee J.B., Park S.Y., Song C.S., Shin H.C., Seo K.H., Choi I.S. Prevalence of hepatitis E virus and sapovirus in post-weaning pigs and identification of their genetic diversity. Arch. Virol. 2008;153:739–742. doi: 10.1007/s00705-008-0046-5. [DOI] [PubMed] [Google Scholar]
  82. Zhang B., Tang C., Yue H., Ren Y., Song Z. Viral metagenomics analysis demonstrates the diversity of viral flora in piglet diarrhoeic faeces in China. J. Gen. Virol. 2014;95:1603–1611. doi: 10.1099/vir.0.063743-0. [DOI] [PubMed] [Google Scholar]
  83. Zheng D.-P., Ando T., Fankhauser R.L., Beard R.S., Glass R.I., Monroe S.S. Norovirus classification and proposed strain nomenclature. Virology. 2006;346:312–323. doi: 10.1016/j.virol.2005.11.015. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

mmc1.zip (377B, zip)

Articles from Virus Research are provided here courtesy of Elsevier

RESOURCES