Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2020 Feb 13:2020.02.05.936013. [Version 1] doi: 10.1101/2020.02.05.936013

Potentially highly potent drugs for 2019-nCoV

Duc Duy Nguyen, Kaifu Gao, Jiahui Chen, Rui Wang, Guo-Wei Wei
PMCID: PMC7255774  PMID: 32511344

Abstract

The World Health Organization (WHO) has declared the 2019 novel coronavirus (2019-nCoV) infection outbreak a global health emergency. Currently, there is no effective anti-2019-nCoV medication. The sequence identity of the 3CL proteases of 2019-nCoV and SARS is 96%, which provides a sound foundation for structural-based drug repositioning (SBDR). Based on a SARS 3CL protease X-ray crystal structure, we construct a 3D homology structure of 2019-nCoV 3CL protease. Based on this structure and existing experimental datasets for SARS 3CL protease inhibitors, we develop an SBDR model based on machine learning and mathematics to screen 1465 drugs in the DrugBank that have been approved by the U.S. Food and Drug Administration (FDA). We found that many FDA approved drugs are potentially highly potent to 2019-nCoV.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES