Skip to main content
Microbiology Resource Announcements logoLink to Microbiology Resource Announcements
. 2020 May 28;9(22):e00194-20. doi: 10.1128/MRA.00194-20

Draft Genome Sequence of an Unusually Multidrug-Resistant Strain of Achromobacter xylosoxidans from a Blood Isolate

Hosoon Choi a, Chetan Jinadatha b,c, Piyali Chatterjee a, Yonhui Allton a,*, Dhammika H Navarathna d,
Editor: David Raskoe
PMCID: PMC7256251  PMID: 32467264

Achromobacter xylosoxidans strain DN2019 was isolated from blood of a septicemia patient. We describe the draft genome and antibiotic susceptibility of this strain.

ABSTRACT

Achromobacter xylosoxidans strain DN2019 was isolated from blood of a septicemia patient. We describe the draft genome and antibiotic susceptibility of this strain.

ANNOUNCEMENT

Achromobacter xylosoxidans is a Gram-negative, flagellated, motile, and aerobic non-lactose fermenting bacillus first characterized in 1971 (1). This bacterium is an opportunistic human pathogen and often contributes to nosocomial infections (26). In general, A. xylosoxidans is resistant to a broad range of antibiotics, including aminoglycosides, cephalosporins, and penicillin (4, 711).

We sequenced the draft genome of an A. xylosoxidans strain DN2019 isolate from a septicemia patient at the Central Texas Veterans Heath Care System. Table 1 shows the resistance pattern of the isolate. The resistance profile was determined using CLSI MIC breakpoints for other non-Enterobacteriaceae strains (see Table 2B-5 in reference 12). This strain is a multidrug-resistant organism showing resistance against various classes of antimicrobials, including cephalosporins and quinolones.

TABLE 1.

MICs of Achromobacter xylosoxidans DN2019

Antibiotic MIC (μg/ml) CLSI interpretationa
Amikacin ≥64 R
Gentamicin 8 I
Tobramycin 8 I
Ampicillin ≥32 R
Ampicillin-sulbactam 8 S
Piperacillin ≤4 S
Piperacillin-tazobactam ≤4 S
Moxifloxacin ≥8 R
Cefotetan ≥64 R
Cefoxitin ≥64 R
Ceftazidime 2 S
Cefuroxime-axetil ≥64 R
Cefuroxime-sodium ≥64 R
Ciprofloxacin ≥4 R
Imipenem 8 I
Norfloxacin 8 I
Trimethoprim-sulfamethoxazole ≤20 S
Ceftriaxone ≥64 R
Amoxicillin-clavulanic acid 8 S
Cefazolin ≥64 R
Aztreonam ≥64 R
Nalidixic acid ≥32 R
Levofloxacin 4 I
Ceftizoxime ≥64 R
Meropenem 1 S
a

I, intermediate; R, resistant; S, susceptible.

One drop of blood was cultured on Trypticase soy agar (TSA) with sheep blood agar (Remel, Inc., San Diego, CA) at 37°C overnight. Strain DN2019 was isolated from the culture. Genomic DNA was extracted using the QIAamp DNA microkit (Qiagen, Hilden, Germany). Libraries were prepared using the Nextera DNA flex library prep kit (Illumina, San Diego, CA), and paired-end reads (2 × 151 bp) were generated using a NextSeq instrument (Illumina, San Diego, CA). The default parameters of the software programs were used for all sequence analyses. The de novo assembly was completed using the SPAdes version 3.7.1 assembler (13) in the BioNumerics version 7.6.3 program (Applied Maths NV, Sint-Martens-Latem, Belgium). The final de novo assembly consisted of 3,023,655,234 reads. The average quality score of the reads was 30.50 calculated by BioNumerics, based on the Q score generated by Illumina’s Sequence Analysis Viewer (SAV) software. In the assembled genome, there were 341 contigs with an N50 value of 38,282 bp. The final genome length comprised 6,607,874 bp with a 400-fold average coverage and 67.7% G+C content.

Sequence type 182 (ST 182) was determined using multilocus sequence typing (MLST) analysis (14). Achromobacter ST 182 was identified as Achromobacter xylosoxidans using the PubMLST database (15, 16). Average nucleotide identity (ANI) analysis (http://enve-omics.ce.gatech.edu/ani/) (17) with the A. xylosoxidans type strain genome (NCTC 10807, GenBank accession number NZ_LN831029.1) showed 98.77% mean nucleotide identity with A. xylosoxidans. Mean nucleotide identities with other closely related species, Achromobacter ruhlandii and Achromobacter denitrificans, were 92.46% and 85.71%, respectively. In addition, KmerFinder version 3.1 identified the sequence as Achromobacter xylosoxidans (18, 19).

The NCBI Prokaryotic Genome Annotation Pipeline (PGAP) (20) predicted 6,175 protein-coding sequences (CDSs), 4 copies of the rRNA, and 58 tRNAs. ResFinder version 3.2 (21) analysis identified the following putative antibiotic resistance genes: β-lactamase class D blaOXA-114a, phenicol resistance gene catB1, and quinolone resistance gene oqxB. Gene annotation revealed various efflux pumps involved in antibiotic resistance (22), multidrug and toxin extrusion (MATE) family efflux pumps ydhE and norM, macrolide-specific efflux genes macA and macB, multidrug efflux system mdtABC-tolC, RND efflux system cmeA, and multidrug efflux system mexX. Antibiotic resistance gene marC and tetracycline resistance regulatory gene tetR (22) were also present.

Data availability.

The draft genome sequence described here has been deposited at DDBJ/ENA/GenBank under the accession number WWES00000000. The raw sequence reads are available under the SRA accession number PRJNA591881.

ACKNOWLEDGMENTS

This work was supported by the resources of the Central Texas Veterans Health Care System (Temple, TX) and the Central Texas Veterans Health Care System Research Service.

REFERENCES

  • 1.Yabuuchi E. 1973. Identification of Pseudomonas and related organisms. Rinsho Byori 21:102–108. [PubMed] [Google Scholar]
  • 2.Gómez-Cerezo J, Suárez I, Ríos JJ, Peña P, García de Miguel MJ, de José M, Monteagudo O, Linares P, Barbado-Cano A, Vázquez JJ. 2003. Achromobacter xylosoxidans bacteremia: a 10-year analysis of 54 cases. Eur J Clin Microbiol Infect Dis 22:360–363. doi: 10.1007/s10096-003-0925-3. [DOI] [PubMed] [Google Scholar]
  • 3.Ahmed MS, Nistal C, Jayan R, Kuduvalli M, Anijeet HK. 2009. Achromobacter xylosoxidans, an emerging pathogen in catheter-related infection in dialysis population causing prosthetic valve endocarditis: a case report and review of literature. Clin Nephrol 71:350–354. doi: 10.5414/cnp71350. [DOI] [PubMed] [Google Scholar]
  • 4.Aisenberg G, Rolston KV, Safdar A. 2004. Bacteremia caused by Achromobacter and Alcaligenes species in 46 patients with cancer (1989–2003). Cancer 101:2134–2140. doi: 10.1002/cncr.20604. [DOI] [PubMed] [Google Scholar]
  • 5.Tena D, Gonzalez-Praetorius A, Perez-Balsalobre M, Sancho O, Bisquert J. 2008. Urinary tract infection due to Achromobacter xylosoxidans: report of 9 cases. Scand J Infect Dis 40:84–87. doi: 10.1080/00365540701558714. [DOI] [PubMed] [Google Scholar]
  • 6.Turel O, Kavuncuoglu S, Hosaf E, Ozbek S, Aldemir E, Uygur T, Hatipoglu N, Siraneci R. 2013. Bacteremia due to Achromobacter xylosoxidans in neonates: clinical features and outcome. Braz J Infect Dis 17:450–454. doi: 10.1016/j.bjid.2013.01.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Glupczynski Y, Hansen W, Freney J, Yourassowsky E. 1988. In vitro susceptibility of Alcaligenes denitrificans subsp. xylosoxidans to 24 antimicrobial agents. Antimicrob Agents Chemother 32:276–278. doi: 10.1128/aac.32.2.276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Fabbri A, Tacchella A, Manno G, Viscoli C, Palmero C, Gargani GF. 1987. Emerging microorganisms in cystic fibrosis. Chemioterapia 6:32–37. [PubMed] [Google Scholar]
  • 9.Almuzara M, Limansky A, Ballerini V, Galanternik L, Famiglietti A, Vay C. 2010. In vitro susceptibility of Achromobacter spp. isolates: comparison of disk diffusion, Etest and agar dilution methods. Int J Antimicrob Agents 35:68–71. doi: 10.1016/j.ijantimicag.2009.08.015. [DOI] [PubMed] [Google Scholar]
  • 10.Saiman L, Chen Y, Tabibi S, San Gabriel P, Zhou J, Liu Z, Lai L, Whittier S. 2001. Identification and antimicrobial susceptibility of Alcaligenes xylosoxidans isolated from patients with cystic fibrosis. J Clin Microbiol 39:3942–3945. doi: 10.1128/JCM.39.11.3942-3945.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Nakamoto S, Sakamoto M, Sugimura K, Honmura Y, Yamamoto Y, Goda N, Tamaki H, Burioka N. 2017. Environmental distribution and drug susceptibility of Achromobacter xylosoxidans isolated from outdoor and indoor environments. Yonago Acta Med 60:67–70. [PMC free article] [PubMed] [Google Scholar]
  • 12.CLSI. 2019. Performance standards for antimicrobial susceptibility testing, 29th ed CLSI supplement M100 CLSI, Wayne, PA. [Google Scholar]
  • 13.Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. doi: 10.1089/cmb.2012.0021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Spilker T, Vandamme P, Lipuma JJ. 2012. A multilocus sequence typing scheme implies population structure and reveals several putative novel Achromobacter species. J Clin Microbiol 50:3010–3015. doi: 10.1128/JCM.00814-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Jolley KA, Maiden MC. 2010. BIGSdb: scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics 11:595. doi: 10.1186/1471-2105-11-595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Jolley KA, Bray JE, Maiden M. 2018. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res 3:124. doi: 10.12688/wellcomeopenres.14826.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM. 2007. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91. doi: 10.1099/ijs.0.64483-0. [DOI] [PubMed] [Google Scholar]
  • 18.Hasman H, Saputra D, Sicheritz-Ponten T, Lund O, Svendsen CA, Frimodt-Møller N, Aarestrup FM. 2014. Rapid whole-genome sequencing for detection and characterization of microorganisms directly from clinical samples. J Clin Microbiol 52:139–146. doi: 10.1128/JCM.02452-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Larsen MV, Cosentino S, Lukjancenko O, Saputra D, Rasmussen S, Hasman H, Sicheritz-Ponten T, Aarestrup FM, Ussery DW, Lund O. 2014. Benchmarking of methods for genomic taxonomy. J Clin Microbiol 52:1529–1539. doi: 10.1128/JCM.02981-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, Ostell J. 2016. NCBI Prokaryotic Genome Annotation Pipeline. Nucleic Acids Res 44:6614–6624. doi: 10.1093/nar/gkw569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, Aarestrup FM, Larsen MV. 2012. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 67:2640–2644. doi: 10.1093/jac/dks261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Jakobsen TH, Hansen MA, Jensen PO, Hansen L, Riber L, Cockburn A, Kolpen M, Ronne Hansen C, Ridderberg W, Eickhardt S, Hansen M, Kerpedjiev P, Alhede M, Qvortrup K, Burmolle M, Moser C, Kuhl M, Ciofu O, Givskov M, Sorensen SJ, Hoiby N, Bjarnsholt T. 2013. Complete genome sequence of the cystic fibrosis pathogen Achromobacter xylosoxidans NH44784-1996 complies with important pathogenic phenotypes. PLoS One 8:e68484. doi: 10.1371/journal.pone.0068484. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

The draft genome sequence described here has been deposited at DDBJ/ENA/GenBank under the accession number WWES00000000. The raw sequence reads are available under the SRA accession number PRJNA591881.


Articles from Microbiology Resource Announcements are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES